Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52740
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳立仁(Li-Jen Chen)
dc.contributor.authorHui-Ping Linen
dc.contributor.author林暉評zh_TW
dc.date.accessioned2021-06-15T16:25:32Z-
dc.date.available2020-08-28
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-14
dc.identifier.citation1 Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F. and Jiang, L. Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114-4119 (2008).
2 Hong, X., Gao, X. and Jiang, L. Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. Journal of the American Chemical Society 129, 1478-1479 (2007).
3 Ebert, D. and Bhushan, B. Wear-resistant rose petal-effect surfaces with superhydrophobicity and high droplet adhesion using hydrophobic and hydrophilic nanoparticles. J. Colloid Interface Sci. 384, 182-188 (2012).
4 Cha, T.-G., Yi, J. W., Moon, M.-W., Lee, K.-R. and Kim, H.-Y. Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness. Langmuir 26, 8319-8326 (2010).
5 Li, X.-M., He, T., Crego-Calama, M. and Reinhoudt, D. N. Conversion of a metastable superhydrophobic surface to an ultraphobic surface. Langmuir 24, 8008-8012 (2008).
6 Cho, K.-H. and Chen, L.-J. Fabrication of sticky and slippery superhydrophobic surfaces via spin-coating silica nanoparticles onto flat/patterned substrates. Nanotechnology 22, 445706 (2011).
7 Yeh, K.-Y., Chen, L.-J. and Chang, J.-Y. Contact angle hysteresis on regular pillar-like hydrophobic surfaces. Langmuir 24, 245-251 (2008).
8 Promraksa, A., Chuang, Y.-C. and Chen, L.-J. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface. J. Colloid Interface Sci. 418, 8-19 (2014).
9 Yeh, K.-Y., Cho, K.-H., Yeh, Y.-H., Promraksa, A., Huang, C.-H., Hsu, C.-C. and Chen, L.-J. Observation of the rose petal effect over single-and dual-scale roughness surfaces. Nanotechnology 25, 345303 (2014).
10 Picknett, R. and Bexon, R. The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61, 336-350 (1977).
11 Rowan, S., Newton, M. and McHale, G. Evaporation of microdroplets and the wetting of solid surfaces. The Journal of Physical Chemistry 99, 13268-13271 (1995).
12 Rowan, S., McHale, G., Newton, M. and Toorneman, M. Evaporation of microdroplets of three alcohols. The Journal of Physical Chemistry B 101, 1265-1267 (1997).
13 McHale, G., Rowan, S., Newton, M. and Banerjee, M. Evaporation and the wetting of a low-energy solid surface. The Journal of Physical Chemistry B 102, 1964-1967 (1998).
14 McHale, G., Aqil, S., Shirtcliffe, N., Newton, M. and Erbil, H. Y. Analysis of droplet evaporation on a superhydrophobic surface. Langmuir 21, 11053-11060 (2005).
15 Kulinich, S. and Farzaneh, M. Effect of contact angle hysteresis on water droplet evaporation from super-hydrophobic surfaces. Applied Surface Science 255, 4056-4060 (2009).
16 Reyssat, M., Yeomans, J. and Quéré, D. Impalement of fakir drops. EPL (Europhysics Letters) 81, 26006 (2008).
17 Tsai, P., Lammertink, R. G., Wessling, M. and Lohse, D. Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures. Phys. Rev. Lett. 104, 116102 (2010).
18 Papadopoulos, P., Mammen, L., Deng, X., Vollmer, D. and Butt, H.-J. How superhydrophobicity breaks down. Proceedings of the National Academy of Sciences 110, 3254-3258 (2013).
19 Butt, H.-J., Roisman, I. V., Brinkmann, M., Papadopoulos, P., Vollmer, D. and Semprebon, C. Characterization of super liquid-repellent surfaces. Current Opinion in Colloid Interface Science 19, 343-354 (2014).
20 Good, R. J. Contact angle, wetting, and adhesion: a critical review. Journal of adhesion science and technology 6, 1269-1302 (1992).
21 Young, T. Phil. Trans Roy. Soc 95, 65-75 (1805).
22 Wenzel, R. N. Resistance of solid surfaces to wetting by water. Industrial Engineering Chemistry 28, 988-994 (1936).
23 Cassie, A. and Baxter, S. Wettability of porous surfaces. Transactions of the Faraday Society 40, 546-551 (1944).
24 Jopp, J., Grüll, H. and Yerushalmi-Rozen, R. Wetting behavior of water droplets on hydrophobic microtextures of comparable size. Langmuir 20, 10015-10019 (2004).
25 Neumann, A. W. S., J. K. Applied Surface Thermodynamics. ( 1996).
26 Furmidge, C. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. Journal of colloid science 17, 309-324 (1962).
27 Quéré, D., Azzopardi, M.-J. and Delattre, L. Drops at rest on a tilted plane. Langmuir 14, 2213-2216 (1998).
28 Erbil, H. Y. Evaporation of pure liquid sessile and spherical suspended drops: A review. Advances in Colloid and Interface Science 170, 67-86 (2012).
29 Bourges-Monnier, C. and Shanahan, M. Influence of evaporation on contact angle. Langmuir 11, 2820-2829 (1995).
30 Schönfeld, F., Graf, K.-H., Hardt, S. and Butt, H.-J. Evaporation dynamics of sessile liquid drops in still air with constant contact radius. International Journal of Heat and Mass Transfer 51, 3696-3699 (2008).
31 Butt, H.-J., Graf, K. and Kappl, M. Physics and chemistry of interfaces. (John Wiley Sons, 2006).
32 Lopes, M. C. and Bonaccurso, E. Evaporation control of sessile water drops by soft viscoelastic surfaces. Soft Matter 8, 7875-7881 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52740-
dc.description.abstract一般認為玫瑰花瓣效應是由於雙層結構(奈米加微米結構)所造成,但是以水滴滲入結構的情況,微米結構會比奈米結構還來得好,這造成我們看到玫瑰花瓣同時具有疏水性質(接觸角大於150∘)及對水有很高的附著力,基於這個現象我們推測只要改變單ㄧ結構尺寸就能看到玫瑰花瓣效應,於是我們利用曝光顯影製程作出了ㄧ系列不同高度的PDMS柱狀結構,並分別以埋針法測量前進角、揮發法觀測水滴在結構上的揮發情形、用倒立埋針法觀察水滴底部在接觸線向外擴時滲入結構的情況及作滑動角測試觀察水滴對於結構的附著程度,我們發現隨著PDMS柱狀結構粗糙度增加,水在表面上的濕潤情形會呈Wenzel→Petal (具黏滯性的超疏水區域) →Cassie (具滑動的超疏水區域)變化;至於水在結構上的附著程度則是呈現高附著力→低附著力。zh_TW
dc.description.abstractIt is generally believed that the surface of petal effect possess both nano-and micro-structure. It has been proposed that water droplet penetrate into micro-structure much more than nano- structure. That makes the rose petals have the characteristics of superhydrophobicity (contact angle larger than 150o) and strong adhesion to pin water drops. Based on this phenomenon, we conjecture that changing the roughness of micro-structure can make surface exhibit petal effect, so we make a series of micropillar-like patterned PDMS surfaces with different pillar sizes and spacing are fabricated via soft lithography. In this study, embedded needle method and evaporation method are used to measure advancing and receding angle respectively. An inverted needle method is applied to observe and identify whether water penetrates into the bottom of the substrate when the water droplet contact line is expanding and we also measure sliding angle to observe the ability of water droplet to adhere to micro-structure. We find out that a sequence of wetting transitions: Wenzel→ petal (sticky super-hydrophobic region) → Cassie (slippery super-hydrophobic state) would be consistently observed along with an increase in surface roughness for these micro-structure PDMS substrates. In addition, the ability of water droplet to adhere to micro-structure changes from high adhesion to low adhesion with increasing surface roughness.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:25:32Z (GMT). No. of bitstreams: 1
ntu-104-R02524018-1.pdf: 6230292 bytes, checksum: 616f186b93c49afd7f05704f03050ca4 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
摘要 i
Abstract ii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1研究回顧 4
第二章 理論介紹 10
2.1濕潤行為簡介 10
2.1.1理想表面的濕潤行為 13
2.1.2 粗糙表面的溼潤行為 14
2.1.3遲滯接觸角定義 20
2.1.4滑動角與接觸角的關係 22
2.2 液滴揮發 24
2.2.1揮發機制 24
2.2.2揮發速率 26
2.2.4 拉普拉斯壓力 27
2.2.4揮發引起的濕潤狀態轉換 28
第三章 實驗部分 30
3.1 藥品 30
3.2實驗設備 31
3.3 實驗器材 32
3.4 實驗流程 32
3.4.1母片準備 32
3.4.2 PDMS樣品製備 33
3.4.3 揮發 34
3.4.4 前進角及後退角測量 35
3.4.5 倒立埋針法紀錄水滴底部前進情況 36
3.4.6 滑動角測量 36
第四章 結果與討論-不同尺寸之單一結構接觸角情形 42
4.1具有微米粗糙度之單一結構的潤濕行為 46
4.2不同粗糙度區間下前進角及後退角的變化情形 54
4.3不同粗糙度區間下的水滴底部前進情形 79
4.4不同粗糙度區間下滑動角及遲滯角的變化情形 97
4.5不同粗糙度下水滴接觸狀態情形之模擬結果 104
第五章 結果與討論-不同粗糙度表面的揮發情形 107
5.1揮發過程水滴體積的變化 107
5.2濕潤狀態轉換過程水滴接觸情形變化 119
5.3水滴底部在Petal(r=1.73~1.86)、Cassie區間之下沉機制 127
第六章 結論 136
參考文獻 139
dc.language.isozh-TW
dc.subject濕潤轉換zh_TW
dc.subject黏滯性zh_TW
dc.subject超疏水表面zh_TW
dc.subjectsuperhydrophobic surfaceen
dc.subjectstickyen
dc.subjectwetting transitionen
dc.title水滴於單ㄧ結構疏水表面之濕潤現象zh_TW
dc.titleThe wetting phenomenon of water droplet on hydrophobic single scale surfaceen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林析右(Shi-Yow Lin),蔡瑞瑩(Ruey-Yug Tsay)
dc.subject.keyword超疏水表面,黏滯性,濕潤轉換,zh_TW
dc.subject.keywordsuperhydrophobic surface,sticky,wetting transition,en
dc.relation.page141
dc.rights.note有償授權
dc.date.accepted2015-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
6.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved