請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52728完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪銘輝 | |
| dc.contributor.author | Yu-Wei Chen | en |
| dc.contributor.author | 陳昱維 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:25:02Z | - |
| dc.date.available | 2020-08-19 | |
| dc.date.copyright | 2015-08-19 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-14 | |
| dc.identifier.citation | [1] Semiconductor Spintronics and Quantum Computing, edited by D. D. Awschalom, D. Loss, and N. Samarth, (Springer, NY, 2002)
[2] R. T. Tung, Appl. Phys. Rev. 1, 011304 (2014) [3] T.-C. Chiang, Crit. Rev. Solid State Mater. Sci. 14, 269 (1988) [4] J. Tersoff, Phys. Rev. B 32, 6968 (1985) [5] A. Y. Cho, P. D. Dernier, J. Appl. Phys. 49, 3328 (1978) [6] J. Massies, N. T. Linh, J. Crystal Growth 56, 25 (1982) [7] G. A. Prinz, J. J. Krebs, Appl. Phys. Letters 39, 397 (1981) [8] C. J. Palmstrom, S. Mouniet, T. G. Finstad, P.F. Miceli, Appl. Phys. Lett. 56, 382 (1990) [9] A. Ionescu, C. A. F. Vaz, T. Trypiniotis, C. M. Gürtler, H. García-Miquel, and J. A. C. Bland, Phys. Rev. B 71, 094401 (2005) [10] M. Hong, H.S. Chen, J. Kwo, A.R. Kortan, J.P. Mannaerts, B.E. Weir, L.C. Feldman, J. Crystal Growth 111, 984 (1991) [11] Y.F. Hsieh, M. Hong, J. Kwo, A.R. Kortan, H.S. Chen, J.P. Mannaerts, in: G.B. Stringfellow (Ed.), GaAs and Related Compounds 1991, IOP Conference Series, vol. 120, Institute of Physics, London p. 95 (1992) [12] D.Y. Noh, M. Hong, Y. Hwu, J.H. Je, J.P. Mannaerts, Appl. Phys. Lett. 68 1528 (1996) [13] Y.L. Hsu, Y.J. Lee, Y.H. Chang, M.L. Huang, Y.N. Chiu, C.C. Ho, P. Chang, C.H. Hsu, M. Hong, J. Kwo, Journal of Crystal Growth 301–302, 588 (2007) [14] K. Hamaya, K. Ueda, Y. Kishi, Y. Ando, T. Sadoh, M. Miyao, Appl. Phys. Letters 93, 132117 (2008) [15] Fangting Lin, Dongmei Jiang, Xueming Ma, Wangzhou Shi, Thin Solid Films 515, 5353 (2007) [16] M. Miyao, K. Hamaya, T. Sadoh, H. Itoh, Y. Maeda, Thin Solid Films 518, S273–S277 (2010) [17] K. Hamaya, T. Murakami and S. Yamada, K. Mibu, M. Miyao, Phys. Rev. B 83, 144411 (2011) [18] S. Yamada, J. Sagar, S. Honda, L. Lari, G. Takemoto, H. Itoh, A. Hirohata, K. Mibu, M. Miyao, K. Hamaya, Phys. Rev. B 86, 174406 (2012) [19] T. Yoshitake, T. Ogawa, D. Nakagauchi, D. Hara, M. Itakura, N. Kuwano, Y. TomokiyoK. Takeda, T. Kajiwara, M. Ohashi, G. Oomi, K. Nagayama, Appl. Phys. Let. 89, 253110 (2006) [20] T. Harianto, K. Kobayashi, T. Suemasu, and H. Akinaga Jpn. J. Appl. Phys. 46, L904 (2007) [21] Ch. Deneke, J. Schumann, R. Engelhard, J. Thomas, C. Müller, M. S. Khatri, A. Malachias, M. Weisser, T. H. Metzger, O. G. Schmidt, Nanotechnology 20, 045703 (2009) [22] B. Jenichen , J. Herfort, U. Jahn, A. Trampert, H. Riechert, Thin Solid Films 556, 120–124 (2014) [23] S. Noor, I. Barsukov, M. S. Özkan, L. Elbers, N. Melnichak, J. Lindner, M. Farle, U. Köhler J. Appl. Phys. 113, 103908 (2013) [24] Harald Brune, Surface Science Reports 31, 121-229 (1998) [25] Vladimir M. Kaganer, Bernd Jenichen, Roman Shayduk, Wolfgang Braun, and Henning Riechert Phys. Rev. Lett. 102, 016103 (2009) [26] K. Yamane, K. Hamaya, Y. Ando,1 Y. Enomoto, K. Yamamoto, T. Sadoh and M. Miyao Appl. Phys. Let. 96, 162104 (2010) [27] Jamie D. W. Thompson, James R. Neal, Tiehan H. Shen, Simon A. Morton, James G. Tobin, G. Dan Waddill, Jim A. D. Matthew, Denis Greig, and Mark Hopkinson J. Appl. Phys. 104, 024516 (2008) [28] B. D. Schultz, C. Adelmann, X. Y. Dong, S. McKernan, and C. J. Palmstrøm, Appl. Phys. Let. 92, 091914 (2008) [29] Scanning Probe Microscopy and Spectroscopy, edited Dawn Bonnell, (2001) [30] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995) [31] R.A. de Groot, F.M. Mueller, P.G. van Engen et al, Phys. Rev. Lett. 50, 2024 (1983) [32] E. G. Moroni, W. Wolf, J. Hafner, and R. Podloucky, Phys. Rev. B 59, 12 860 (1999) [33] A. Bansil, S. Kaprzyk, P. E. Mijnarends, and J. Tobola, Phys. Rev. B 60, 13 396 (1999) [34] R. Tromp, R. Hamers, and J. Demuth, Phys. Rev. B 34, 1388 (1986) [35] R. Feenstra, J. Stroscio, J Tersoff, and A. Fein, Phys. Rev. Lett. 58, 1192 (1987) [36] Walter A. Harrison J. Vac. Sci. Technol. 16, 1492 (1979) [37] A. Y. Cho, Surf. Sci. 17, 494 (1969) [38] A. Y. Cho and J. R. Arthur, Prog. Solid State Ch. 10, 157 (1975) [39] A. Y. Cho, J. Crystal Growth 150, 1 (1995) [40] C. F. Majkrzak, J. W. Cable, J. Kwo, M. Hong, D. B. Mcwhan, Y. Yafet, J. V. Waszczak and C. Vettier Phys. Rev. Lett. 56, 2700 (1986) [41] J. Kwo, M. Hong and S. Nakahara Appl. Phys. Let. 49, 319 (1986) [42] J. Kwo, M. Hong, F. J. Disalvo, J. V. Waszczak and C. F. Majkrzak Phys. Rev. B 35, 7295 (1987) [43] J. Kwo, T.C. Hsieh, R. M. Fleming, M. Hong, S. H. Liou, B. A. Davidson and . Feldman Phys. Rev. B 36 4039 (1987) [44] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts and A. M. Sergent Science 283 1897 (1999) [45] M. Hong, Z. H. Lu, J. Kwo, A. R. Kortan, J. P. Mannaerts, J. J. Krajewski, K. C. Hsieh, L. J. Chou, and K. Y. Cheng Appl. Phys. Let. 76, 312 (2000) [46] R. Hamers, R. Tromp, and J. Demuth, Phys. Rev. Lett. 56, 1972 (1986) [47] G. Binning, et al., Phys. Rev. Lett. 55, 911(1985) [48] J. Stroscia, R. Feenstra, and A. Fein, J. Vac. Sci. Technol. A 5, 838 (1987) [49] Vladimir M. Kaganer, Bernd Jenichen, Roman Shayduk, Wolfgang Braun, Henning Riechert Phys. Rev. Lett. 102, 016103 (2009) [50] Akihiro Ohtake, Pavel Kocán, Kaori Seino, Wolf G. Schmidt, and Nobuyuki Koguchi Phys. Rev. Lett. 93, 266101 (2004) [51] S. Y. Tong, G. Xu and W. N. Mei Phys. Rev. Lett. 52, 1693 [52] Akihiro Ohtake, Jun Nakamura, Takuji Komura, Takashi Hanada, Takafumi Yao, Hiromi Kuramochi and Masashi Ozeki Phys. Rev. B, Volume 64, 045318 [53] Hiroshi Yamaguchi, Yoshikazu Homma, Kiyoshi Kanisawa and Yoshiro Hirayama Jpn. J. Appl. Phys. Vol. 38, pp.635-644 (1999) [54] K. Sato, M. R. Fahy, B. A. Joyce Surf. Sci. 315, 105-111 (1994) [55] Akihito Taguchi, Kenji Shiraishi and Tomonori Ito Phys. Rev. B, Volume 61, 12670 (2000) [56] E.M. Kneedler, B. T. Jonker, P. M. Thibado, R. J. Wagner, B. V. Shanabrook, L. J. Whitman Phys. Rev. B 56, 8163 (1997) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52728 | - |
| dc.description.abstract | 電子自旋元件需要高效的將電子自旋注入半導體材料,其中製備高品質的鐵磁和半導體材料異質結構的結合是扮演著非常重要的角色。鐵三矽與砷化鎵擁有良好的晶格匹配以及鐵三矽用有43%的自旋電子極化率使鐵三矽與砷化鎵的結合成為了最佳化的異質結構。本篇論文中,單晶的鐵三矽藉由分子束磊晶的方式成長在砷化鎵(001)-4×6以及砷化鎵(111)A-2×2基板上,並且利用掃描穿隧式電子顯微鏡來分析表面形貌。藉由反射式高能量電子繞射得到高品質砷化鎵(001)-4×6以及砷化鎵(111)A-2×2的成長層。接著鐵三矽成長在砷化鎵表面上,藉由掃描穿隧式電子顯微鏡隨著不同厚度有系統的分析。鐵三矽在相同的長晶條件下成長在兩個不同晶面的表面,發現有不同的成長模式。透過掃描穿隧式電子顯微鏡得到鐵三矽在砷化鎵(001)-4×6上隨著厚度演變的表面形貌在定性上與先前論文中利用理論模擬得到的結果相似。在初始成長時,鐵三矽遵循島狀生長方式直到36.7埃,表面的顆粒才完全聯合在一起,而二維的層狀成長開始形成。在鐵三矽成長在砷化鎵(111)A-2×2中,一樣發現島狀成長出現於初始的成長過程。但二維的層狀成長出現在16.3埃較低的厚度。同時藉由理論計算表面的能量可以佐證在(001)及(111)晶面下成長會有不同的成長模式。 | zh_TW |
| dc.description.abstract | High-quality hetero-junction comprises magnetic materials and semiconductors plays an important role in fabrication of spintronic devices which require high efficiency of spin injection into semiconductor for manipulations. Fe3Si/GaAs provides such an optimized hetero-structure in which the lattice is nearly matched and Fe3Si was found to have a spin polarization of 43%. In this work Fe3Si has been epitaxially grown on both GaAs (001)-4×6 and GaAs (111)A-2×2 by MBE and the in-situ scanning tunneling microscopy (STM) was utilized to characterize the surface morphology. Verified by RHEED, high-quality GaAs (001)-4×6 and (111)A-2×2 surfaces were obtained after the GaAs epi-layer growth. During the deposition of Fe3Si, the surface morphology was systematically studied by STM thickness-dependently. Different growth modes were observed between the Fe3Si films grown on the two surfaces with the same growth parameters. The STM investigation on Fe3Si/GaAs(001)-4x6 reveals a surface morphology evolution which is qualitatively consistent with a previous theoretical simulation; namely, the initial growth follows the Volmer-Weber (VW) mode up to 36.7 Å (13 ML), where the grains coalesced completely. Then, the two-dimensional layer-by-layer growth prevails. On the growth of Fe3Si/GaAs(111)A-2×2, the observed surface morphology follows the similar trend with the VW mode on the initial growth. However, a nearly layer-by-layer 2-dimensional growth mode was achieved in a much thinner film of 16.3 Å. Also the theoretical surface energy calculation supported the different growth mode occur in (001) and (111) plane. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:25:02Z (GMT). No. of bitstreams: 1 ntu-104-R01222070-1.pdf: 91692663 bytes, checksum: c751fc803c5660be3c9400cdfd78a736 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Acknowledgement i
中文摘要 ii Abstract iii Chapter 1 Introduction 1 1.1 Background 1 1.2 Volmer Weber growth of Fe3Si on GaAs(001) 4 Chapter 2 Theory and Instrumentations 10 2.1 Theory of Scanning Tunneling Microscopy (STM) 10 2.2 Voltage-dependent STM imaging 15 2.3 In-situ combination of MBE and STM 20 2.4 STM equipment illustration 23 Chapter 3 Experimental Procedures 27 Chapter 4 Result and Discussion 32 4.1 GaAs (001)-4x6 surface 32 4.2 GaAs (111) A-2x2 surface 38 4.3 Surface morphology evolution of Fe3Si on GaAs (001)-4x6 46 4.4 Surface morphology evolution of Fe3Si on GaAs (111) A-2x2 56 Chapter 5 Conclusion 71 References 73 Appendix 79 Epitaxial ferromagnetic Fe3Si on GaAs(111)A with atomically smooth surface and interface 79 | |
| dc.language.iso | en | |
| dc.subject | 砷化鎵 | zh_TW |
| dc.subject | 長晶模式 | zh_TW |
| dc.subject | 表面形貌 | zh_TW |
| dc.subject | 掃描穿隧式顯微鏡 | zh_TW |
| dc.subject | 鐵三矽 | zh_TW |
| dc.subject | STM | en |
| dc.subject | surface morphology | en |
| dc.subject | Fe3Si | en |
| dc.subject | growth mode | en |
| dc.subject | GaAs | en |
| dc.title | 利用掃描穿隧式顯微鏡研究鐵三矽逐層成長在砷化鎵(001)及(111)A之表面形貌演化 | zh_TW |
| dc.title | Surface morphology evolution of Fe3Si on GaAs(001) and GaAs(111)A – Atomic layer-by-layer growth studied by scanning tunneling microscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭瑞年,林登松,皮敦文 | |
| dc.subject.keyword | 鐵三矽,砷化鎵,掃描穿隧式顯微鏡,表面形貌,長晶模式, | zh_TW |
| dc.subject.keyword | Fe3Si,GaAs,STM,surface morphology,growth mode, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-14 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 89.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
