Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52727
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳媺玫(Meei-Mei Chen)
dc.contributor.authorTing-Chieh Wangen
dc.contributor.author汪鼎傑zh_TW
dc.date.accessioned2021-06-15T16:24:59Z-
dc.date.available2025-08-14
dc.date.copyright2015-08-16
dc.date.issued2015
dc.date.submitted2015-08-14
dc.identifier.citationAiba, A., & Mizobuchi, K. (1989). Nucleotide sequence analysis of genes purH and purD involved in the de novo purine nucleotide biosynthesis of Escherichia coli. Journal of Biological Chemistry, 264(35), 21239-21246.
Altun, S., Onuk, E. E., Ciftci, A., Büyükekiz, A. G., & Duman, M. (2013). Phenotypic, genotypic characterisation and antimicrobial susceptibility determination of Lactococcus garvieae strains. The Journal of the Faculty of Veterinary Medicine, University of Kafkas, 19, 375-381.
Amal, M., & Zamri-Saad, M. (2011). Streptococcosis in tilapia (Oreochromis niloticus): a review. Pertanika Journal of Tropical Agricultural Science, 34(2), 195-206.
Avci, H., Aydoğan, A., Tanrikul, T. T., & Birincioğlu, S. S. (2010). Pathological and Microbiological Investigations in Rainbow Trout(Oncorhynchus mykiss Walbaum, 1792) Naturally Infected with Lactococcus garvieae. Journal of the Faculty of Veterinary Medicine, Kafkas University, 16, 313-318.
Böckelmann, U., Janke, A., Kuhn, R., Neu, T. R., Wecke, J., Lawrence, J. R., & Szewzyk, U. (2006). Bacterial extracellular DNA forming a defined network-like structure. Federation of European Microbiological Societies Microbiology Letters, 262(1), 31-38.
Balaban, N., Cirioni, O., Giacometti, A., Ghiselli, R., Braunstein, J. B., Silvestri, C., Mocchegiani, F., Saba, V., & Scalise, G. (2007). Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP. Antimicrobial agents and chemotherapy, 51(6), 2226-2229.
Barken, K. B., Pamp, S. J., Yang, L., Gjermansen, M., Bertrand, J. J., Klausen, M., Givskov, M., Whitchurch, C. B., Engel, J. N., & Tolker‐Nielsen, T. (2008). Roles of type IV pili, flagellum‐mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environmental microbiology, 10(9), 2331-2343.
Beenken, K. E., Dunman, P. M., McAleese, F., Macapagal, D., Murphy, E., Projan, S. J., Blevins, J. S., & Smeltzer, M. S. (2004). Global gene expression in Staphylococcus aureus biofilms. Journal of bacteriology, 186(14), 4665-4684.
Beloin, C., Roux, A., & Ghigo, J.-M. (2008). Escherichia coli biofilms Bacterial Biofilms (pp. 249-289): Springer.
Bjarnsholt, T. (2013). The role of bacterial biofilms in chronic infections. Acta Pathologica, Microbiologica, et Immunologica Scandinavica Supplement(136), 1-51. doi: 10.1111/apm.12099
Bjarnsholt, T., Jensen, P. Ø., Fiandaca, M. J., Pedersen, J., Hansen, C. R., Andersen, C. B., Pressler, T., Givskov, M., & H?iby, N. (2009). Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatric pulmonology, 44(6), 547-558.
Boels, I. C., van Kranenburg, R., Hugenholtz, J., Kleerebezem, M., & de Vos, W. M. (2001). Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. International Dairy Journal, 11(9), 723-732.
Brackman, G., & Coenye, T. (2015). Quorum sensing inhibitors as anti-biofilm agents. Current pharmaceutical design, 21(1), 5-11.
Burton, E., Gawande, P. V., Yakandawala, N., LoVetri, K., Zhanel, G. G., Romeo, T., Friesen, A. D., & Madhyastha, S. (2006). Antibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropathogens. Antimicrobial agents and chemotherapy, 50(5), 1835-1840.
Busalmen, J., Vazquez, M., & De Sánchez, S. (2002). New evidences on the catalase mechanism of microbial corrosion. Electrochimica Acta, 47(12), 1857-1865.
Cash, P., & Argo, E. (2009). Analysis of bacterial proteins by 2DE Two-Dimensional Electrophoresis Protocols (pp. 131-144): Springer.
Castro, N., Toranzo, A., Nunez, S., & Magariños, B. (2008). Development of an effective Edwardsiella tarda vaccine for cultured turbot (Scophthalmus maximus). Fish & shellfish immunology, 25(3), 208-212.
Chang, P., Lin, C., & Lee, Y. (2002). Lactococcus garvieae infection of cultured rainbow trout, Oncorhynchus mykiss in Taiwan and associated biophysical characteristics and histopathology. Bulletin of the European Association of Fish Pathologists, 22, 319-327.
Chen, L., & Wen, Y.-m. (2011). The role of bacterial biofilm in persistent infections and control strategies. International journal of oral science, 3(2), 66.
Chen, S.-C., Lin, Y.-D., Liaw, L.-L., & Wang, P.-C. (2001). Lactococcus garvieae infection in the giant freshwater prawn Macrobranchium rosenbergii confirmed by polymerase chain reaction and 16S rDNA sequencing. Diseases of aquatic organisms, 45(1), 45-52.
Chen, S. C., Liaw, L. L., Su, H. Y., Ko, S. C., Wu, C. Y., Chaung, H. C., Tsai, Y. H., Yang, K. L., Chen, Y. C., & Chen, T. H. (2002). Lactococcus garvieae, a cause of disease in grey mullet, Mugil cephalus L., in Taiwan. Journal of fish diseases, 25(12), 727-732.
Cheng, W., Liu, C.-H., & Chen, J.-C. (2002). Effect of nitrite on interaction between the giant freshwater prawn Macrobrachium rosenbergii and its pathogen Lactococcus garvieae. Diseases of aquatic organisms, 50(3), 189-197.
Clement, C. G., Tuvim, M. J., Evans, C. M., Tuvin, D. M., Dickey, B. F., & Evans, S. E. (2009). Allergic lung inflammation alters neither susceptibility to Streptococcus pneumoniae infection nor inducibility of innate resistance in mice. Respiratory Research, 10, 70.
Collins, M., Farrow, J., Phillips, B., & Kandler, O. (1983). Streptococcus garvieae sp. nov. and Streptococcus plantarum sp. nov. Journal of General Microbiology, 129(11), 3427-3431.
Costerton, J. W., Stewart, P. S., & Greenberg, E. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284(5418), 1318-1322.
Cusumano, Z. T., Watson, M. E., & Caparon, M. G. (2014). Streptococcus pyogenes arginine and citrulline catabolism promotes infection and modulates innate immunity. Infection and immunity, 82(1), 233-242.
da Silva Trentin, D., Giordani, R. B., Zimmer, K. R., Da Silva, A. G., Da Silva, M. V., dos Santos Correia, M. T., Baumvol, I. J. R., & Macedo, A. J. (2011). Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. Journal of Ethnopharmacology, 137(1), 327-335.
Degnan, B., Palmer, J., Robson, T., Jones, C., Fischer, M., Glanville, M., Mellor, G., Diamond, A., Kehoe, M., & Goodacre, J. (1998). Inhibition of human peripheral blood mononuclear cell proliferation by Streptococcus pyogenes cell extract is associated with arginine deiminase activity. Infection and immunity, 66(7), 3050-3058.
Dickschat, J. S. (2010). Quorum sensing and bacterial biofilms. Natural product reports, 27(3), 343-369.
Donlan, R. M. (2009). Preventing biofilms of clinically relevant organisms using bacteriophage. Trends in microbiology, 17(2), 66-72.
Donlan, R. M. (2011). Biofilm elimination on intravascular catheters: important considerations for the infectious disease practitioner. Clinical infectious diseases, 52(8), 1038-1045.
Donlan, R. M., & Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews, 15(2), 167-193.
Dwyer, M., & Gadjeva, M. (2014). Opsonophagocytic assay The Complement System (pp. 373-379): Springer.
Eldar, A., Ghittino, C., Asanta, L., Bozzetta, E., Goria, M., Prearo, M., & Bercovier, H. (1996). Enterococcus seriolicida is a junior synonym of Lactococcus garvieae, a causative agent of septicemia and meningoencephalitis in fish. Current microbiology, 32(2), 85-88.
Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623-633.
Foulston, L., Elsholz, A. K., DeFrancesco, A. S., & Losick, R. (2014). The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. MBio, 5(5), e01667-01614.
Fulton, K. M., Martin, S. S., Wolfraim, L., & Twine, S. M. (2013). Methods and applications of serological proteome analysis Immunoproteomics (pp. 97-112): Springer.
Ghittino, C. (1999). La estreptococosis en los peces. Revista AquaTIC, 6.
Gorg, A., Weiss, W., & Dunn, M. J. (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics, 4(12), 3665-3685.
Gruening, P., Fulde, M., Valentin-Weigand, P., & Goethe, R. (2006). Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. Journal of bacteriology, 188(2), 361-369.
Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology, 2(2), 95-108.
Henderson, B., & Martin, A. (2011). Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infection and immunity, 79(9), 3476-3491.
Henningham, A., Chiarot, E., Gillen, C. M., Cole, J. N., Rohde, M., Fulde, M., Ramachandran, V., Cork, A. J., Hartas, J., & Magor, G. (2012). Conserved anchorless surface proteins as group A streptococcal vaccine candidates. Journal of molecular medicine, 90(10), 1197-1207.
Hernández-Jiménez, E., del Campo, R., Toledano, V., Vallejo-Cremades, M. T., Muñoz, A., Largo, C., Arnalich, F., García-Rio, F., Cubillos-Zapata, C., & López-Collazo, E. (2013). Biofilm vs. planktonic bacterial mode of growth: Which do human macrophages prefer? Biochemical and biophysical research communications, 441(4), 947-952.
Hoffmann, A., Bukau, B., & Kramer, G. (2010). Structure and function of the molecular chaperone Trigger Factor. Biochimica et Biophysica Acta Molecular Cell Research, 1803(6), 650-661.
Issaq, H. J. (2001). The role of separation science in proteomics research. Electrophoresis, 22(17), 3629.
Izano, E. A., Amarante, M. A., Kher, W. B., & Kaplan, J. B. (2008). Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Applied and environmental microbiology, 74(2), 470-476.
Jefferson, K. K. (2004). What drives bacteria to produce a biofilm? Federation of European Microbiological Societies Microbiology Letters, 236(2), 163-173.
Jeffery, C. J. (2014). An introduction to protein moonlighting. Biochemical Society transactions, 42(6), 1679-1683.
Joo, H.-S., & Otto, M. (2012). Molecular basis of in vivo biofilm formation by bacterial pathogens. Chemistry & biology, 19(12), 1503-1513.
Kang, S. H., Shin, Y. S., Kim, Y. R., Lee, E. Y., Huh, N. E., & Jung, T. S. (2004). Short Communication: Experimental evaluation of pathogenicity of Lactococcus garvieae in black rockfish (Sebastes schlegeli). Journal of veterinary science, 5(4), 387-390.
Kawanishi, M., Kojima, A., Ishihara, K., Esaki, H., Kijima, M., Takahashi, T., Suzuki, S., & Tamura, Y. (2005). Drug resistance and pulsed‐field gel electrophoresis patterns of Lactococcus garvieae isolates from cultured Seriola (yellowtail, amberjack and kingfish) in Japan. Letters in applied microbiology, 40(5), 322-328.
Kim, J. S., Kuk, E., Yu, K. N., Kim, J.-H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., & Hwang, C.-Y. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95-101.
Kostakioti, M., Hadjifrangiskou, M., & Hultgren, S. J. (2013). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor perspectives in medicine, 3(4), a010306.
Kranenburg, R. v., Marugg, J. D., Van Swam, I. I., Willem, N. J., & De Vos, W. M. (1997). Molecular characterization of the plasmid‐encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Molecular microbiology, 24(2), 387-397.
Kusuda, R., Kawai, K., Salati, F., Banner, C., & Fryer, J. (1991). Enterococcus seriolicida sp. nov., a fish pathogen. International Journal of Systematic Bacteriology, 41(3), 406-409.
Langley, S. R., Dwyer, J., Drozdov, I., Yin, X., & Mayr, M. (2013). Proteomics: from single molecules to biological pathways. Cardiovascular research, cvs346.
Li, W., Xin, Y., McNeil, M. R., & Ma, Y. (2006). rmlB and rmlC genes are essential for growth of mycobacteria. Biochemical and biophysical research communications, 342(1), 170-178.
Li, Y.-H., Tang, N., Aspiras, M. B., Lau, P. C., Lee, J. H., Ellen, R. P., & Cvitkovitch, D. G. (2002). A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. Journal of bacteriology, 184(10), 2699-2708.
Liebler, D. (2001). Introduction to proteomics: tools for the new biology: Springer Science & Business Media.
Lindgren, J., Thomas, V., Olson, M., Chaudhari, S., Nuxoll, A., Schaeffer, C., Lindgren, K., Jones, J., Zimmerman, M., & Dunman, P. (2014). Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. Journal of bacteriology, 196(12), 2277-2289.
Liu, H. L., & Hsu, J. P. (2005). Recent developments in structural proteomics for protein structure determination. Proteomics, 5(8), 2056-2068.
Lorenz, M. G., & Wackernagel, W. (1994). Bacterial gene transfer by natural genetic transformation in the environment. Microbiological reviews, 58(3), 563.
Marquis, R., Bender, G., Murray, D., & Wong, A. (1987). Arginine deiminase system and bacterial adaptation to acid environments. Applied and environmental microbiology, 53(1), 198-200.
Muzquiz, J., Royo, F., Ortega, C., De Blas, I., Ruiz, I., & Alonso, J. (1999). Pathogenicity of streptococcosis in rainbow trout (Oncorhynchus mykiss): dependence on age of diseased fish. Bulletin of the European Association of Fish Pathologists, 19, 114-119.
O'Toole, G. A., & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular microbiology, 30(2), 295-304.
Otto, M. (2014). Biofilms in Disease Antibiofilm Agents (pp. 3-13): Springer.
Pamp, S. J., Gjermansen, M., & Tolker-Nielsen, T. (2007). The biofilm matrix: a sticky framework The biofilm mode of life: mechanisms and adaptations (pp. 37-69).
Parsek, M. R., & Singh, P. K. (2003). Bacterial biofilms: an emerging link to disease pathogenesis. Annual Reviews in Microbiology, 57(1), 677-701.
Pompilio, A., Scocchi, M., Pomponio, S., Guida, F., Di Primio, A., Fiscarelli, E., Gennaro, R., & Di Bonaventura, G. (2011). Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. Peptides, 32(9), 1807-1814.
Post, D. M., Held, J. M., Ketterer, M. R., Phillips, N. J., Sahu, A., Apicella, M. A., & Gibson, B. W. (2014). Comparative analyses of proteins from Haemophilus influenzae biofilm and planktonic populations using metabolic labeling and mass spectrometry. BMC microbiology, 14(1), 329.
Pot, B., Devriese, L. A., Ursi, D., Vandamme, P., Haesebrouck, F., & Kersters, K. (1996). Phenotypic identification and differentiation of Lactococcus strains isolated from animals. Systematic and applied microbiology, 19(2), 213-222.
Prakash, B., Veeregowda, B., & Krishnappa, G. (2003). Biofilms: a survival strategy of bacteria. Current science, 85(9), 1299-1307.
Rabilloud, T., & Lelong, C. (2011). Two-dimensional gel electrophoresis in proteomics: a tutorial. Journal of proteomics, 74(10), 1829-1841.
Rabinovitch, C., & Stewart, P. S. (2006). Removal and inactivation of Staphylococcus epidermidis biofilms by electrolysis. Applied and environmental microbiology, 72(9), 6364-6366.
Resch, A., Leicht, S., Saric, M., Pásztor, L., Jakob, A., Götz, F., & Nordheim, A. (2006). Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics, 6(6), 1867-1877.
Resch, A., Rosenstein, R., Nerz, C., & Götz, F. (2005). Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Applied and environmental microbiology, 71(5), 2663-2676.
Ring?, E., & Gatesoupe, F.-J. (1998). Lactic acid bacteria in fish: a review. Aquaculture, 160(3), 177-203.
Rogowska-Wrzesinska, A., Le Bihan, M.-C., Thaysen-Andersen, M., & Roepstorff, P. (2013). 2D gels still have a niche in proteomics. Journal of proteomics, 88, 4-13.
Romaní, A. M., Fund, K., Artigas, J., Schwartz, T., Sabater, S., & Obst, U. (2008). Relevance of polymeric matrix enzymes during biofilm formation. Microbial ecology, 56(3), 427-436.
Ruas-Madiedo, P., Tuinier, R., Kanning, M., & Zoon, P. (2002). Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. International Dairy Journal, 12(8), 689-695.
Sanchez, C. J., Hurtgen, B. J., Lizcano, A., Shivshankar, P., Cole, G. T., & Orihuela, C. J. (2011). Biofilm and planktonic pneumococci demonstrate disparate immunoreactivity to human convalescent sera. BMC microbiology, 11(1), 245.
Sauer, K. (2003). The genomics and proteomics of biofilm formation. Genome Biology, 4(6), 219.
Shahrooei, M., Hira, V., Stijlemans, B., Merckx, R., Hermans, P. W., & Van Eldere, J. (2009). Inhibition of Staphylococcus epidermidis biofilm formation by rabbit polyclonal antibodies against the SesC protein. Infection and immunity, 77(9), 3670-3678.
Shaw, M. M., & Riederer, B. M. (2003). Sample preparation for two‐dimensional gel electrophoresis. Proteomics, 3(8), 1408-1417.
Shin, G.-W., Palaksha, K., Yang, H.-H., Shin, Y.-S., Kim, Y.-R., Lee, E.-Y., Oh, M.-J., & Jung, T.-S. (2006). Partial two-dimensional gel electrophoresis (2-DE) maps of Streptococcus iniae ATCC29178 and Lactococcus garvieae KG9408. Diseases of aquatic organisms, 70(1), 71-79.
Shin, J.-H., Lee, H.-W., Kim, S.-M., & Kim, J. (2009). Proteomic analysis of Acinetobacter baumannii in biofilm and planktonic growth mode. The Journal of Microbiology, 47(6), 728-735.
Simões, M., Simões, L. C., & Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. Lebensmittel-Wissenschaft & Technologie Food Science and Technology, 43(4), 573-583.
Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. The lancet, 358(9276), 135-138.
Sun, D., Accavitti, M., & Bryers, J. (2005). Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein. Clinical and diagnostic laboratory immunology, 12(1), 93-100.
Toranzo, A., Devesa, S., Heinen, P., Riaza, A., Nunez, S., & Barja, J. (1994). Streptococcosis in cultured turbot caused by an Enterococcus-like bacterium. Bulletin of the European Association of Fish Pathologists, 14(1), 19-23.
Totsika, M., Kostakioti, M., Hannan, T. J., Upton, M., Beatson, S. A., Janetka, J. W., Hultgren, S. J., & Schembri, M. A. (2013). A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug resistant uropathogenic Escherichia coli ST131. Journal of Infectious Diseases, 921-928.
Tremoulet, F., Duche, O., Namane, A., Martinie, B., Labadie, J., & Consortium, E. L. G. (2002). Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. Federation of European Microbiological Societies Microbiology Letters, 210(1), 25-31.
Tyers, M., & Mann, M. (2003). From genomics to proteomics. Nature, 422(6928), 193-197.
Valle, J., Solano, C., García, B., Toledo-Arana, A., & Lasa, I. (2013). Biofilm switch and immune response determinants at early stages of infection. Trends in microbiology, 21(8), 364-371.
Vaningelgem, F., Zamfir, M., Mozzi, F., Adriany, T., Vancanneyt, M., Swings, J., & De Vuyst, L. (2004). Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Applied and environmental microbiology, 70(2), 900-912.
Vendrell, D., Balcázar, J. L., Ruiz-Zarzuela, I., de Blas, I., Gironés, O., & Múzquiz, J. L. (2006). Lactococcus garvieae in fish: A review. Comparative Immunology, Microbiology and Infectious Diseases, 29(4), 177-198. doi: http://dx.doi.org/10.1016/j.cimid.2006.06.003
Vendrell, D., Balcázar, J. L., Ruiz-Zarzuela, I., de Blas, I., Gironés, O., & Múzquiz, J. L. (2007). Safety and efficacy of an inactivated vaccine against Lactococcus garvieae in rainbow trout (Oncorhynchus mykiss). Preventive veterinary medicine, 80(2), 222-229.
Wang, C. Y. C., Shie, H. S., Chen, S. C., Huang, J. P., Hsieh, I. C., Wen, M. S., Lin, F. C., & Wu, D. (2007). Lactococcus garvieae infections in humans: possible association with aquaculture outbreaks. International journal of clinical practice, 61(1), 68-73.
Wang, Y., Yi, L., Wu, Z., Shao, J., Liu, G., Fan, H., Zhang, W., & Lu, C. (2012). Comparative proteomic analysis of Streptococcus suis biofilms and planktonic cells that identified biofilm infection-related immunogenic proteins. Public Library of Science One, 7(4), e33371.
Wang, Y., Zhang, W., Wu, Z., & Lu, C. (2011). Reduced virulence is an important characteristic of biofilm infection of Streptococcus suis. Federation of European Microbiological Societies Microbiology Letters, 316(1), 36-43.
Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S., & Greenberg, E. (2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413(6858), 860-864.
Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., & Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature, 407(6802), 327-339.
Wingender, J., Neu, T. R., & Flemming, H.-C. (1999). What are bacterial extracellular polymeric substances? Microbial extracellular polymeric substances (pp. 1-19): Springer.
Wingender, J., Neu, T. R., & Flemming, H.-C. (2012). Microbial extracellular polymeric substances: characterization, structure and function: Springer Science & Business Media.
Wu, Q., Tun, H. M., Leung, F. C.-C., & Shah, N. P. (2014). Genomic insights into high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275. Scientific reports, 4.
Zabel, C., & Klose, J. (2009). Protein extraction for 2DE Two-Dimensional Electrophoresis Protocols (pp. 171-196): Springer.
Zhu, Y., Weiss, E. C., Otto, M., Fey, P. D., Smeltzer, M. S., & Somerville, G. A. (2007). Staphylococcus aureus biofilm metabolism and the influence of arginine on polysaccharide intercellular adhesin synthesis, biofilm formation, and pathogenesis. Infection and immunity, 75(9), 4219-4226.
王廷輔(2013)。比較不同生物膜形成能力之魚類來源乳酸球菌在體內持續感染期間與體外抗吞噬能力之差異。臺灣大學獸醫學研究所學位論文。
高淑芳(2001)。魚類來源鏈球菌對紅黴素抗藥性產生及其機制之探討。臺灣大學獸醫學研究所學位論文。
許承智(2011)。台灣水產動物分離鏈球菌株對四環黴素與紅黴素抗藥性基因之調查與分析。臺灣大學獸醫學研究所學位論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52727-
dc.description.abstractLactococcus garvieae is an aquatic pathogen that causes disease in a wide range of aquatic species all over the world. It is generally believed that latent bacterial infections and resulting antibiotic resistance are caused by the in vivo formation of biofilms. Moreover, previous studies have revealed that biofilm formation causes a change in protein expression and the antigen profile available for host-recognition. In view of this, proteomic and immunoproteomic analysis were used to compare the proteomes of L. garvieae grown either as a biofilm or in the planktonic state. Proteomic analysis using two-dimensional gel electrophoresis (2-DE) revealed varying amounts of protein in nine protein spots, among which seven were up-regulated and two were down-regulated in the biofilm form when compared to the planktonic controls. Among the up-regulated proteins, four of them (glmU, gtaB, rmlB, and rfbC) participated in extracellular polymeric substances (EPS) synthesis, which is the main component of biofilm. In the immunoproteomic analysis, polyclonal rabbit antibodies raised against biofilm and planktonic bacteria reduced biofilm formation by L. garvieae, while the anti-biofilm serum showed stronger inhibition of biofilm formation. The sera were later used to perform 2-DE Western blot assays on whole cell protein extracted from both biofilm and planktonic forms. Two immunoreactive proteins specifically recognized by anti-biofilm sera were selected, among which a moonlighting protein, arginine deiminase (AD), was considered to be associated with biofilm formation, and thus may be a potential vaccine candidate against biofilm infections.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:24:59Z (GMT). No. of bitstreams: 1
ntu-104-R02629017-1.pdf: 2557694 bytes, checksum: edf3a25f51fed26fd960453015a6fdba (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要…………………………………………………………………………………… i
Abstract………………………………………………………………………………...ii
目錄……………………………………………………………………………………iii
圖次……………………………………………………………………………...……vii
表次……………………………………………………………………………...…...viii
第一章 緒論……………………………………………………………………………1
第二章 文獻回顧
2.1格氏乳酸球菌…………………………………………………………………2
2.1.1背景和生化特性………………………………………………………...2
2.1.2流行病學和宿主………………………………………………………...2
2.2生物膜介紹……………………………………………………………………4
2.2.1生物膜簡介……………………………………………………………...4
2.2.2生物膜的生長與組成…………………………………………………...5
2.2.3生物膜內微生物的性狀及基因表現…………………………………...7
2.2.4生物膜與宿主免疫……………………………………………………...9
2.2.5生物膜的控制……………………………………………………….......11
2.3蛋白質體學……………………………………………………………………13
2.3.1蛋白質體學簡介………………………………………………………...13
2.3.2蛋白質體學與基因表現………………………………………………...14
2.3.3二維電泳簡介…………………………………………………………...15
第三章 材料與方法
3.1實驗設計及流程………………………………………………………………18
3.2格氏乳酸球菌之生物膜及懸浮菌粒培養……………………………………19
3.2.1生物膜培養……………………………………………………………...19
3.2.2懸浮菌粒培養…………………………………………………………...20
3.3細菌全蛋白質樣本製備………………………………………………….…...21
3.3.1蛋白質粗萃取…………………………………………………………...21
3.3.2蛋白質純化……………………………………………………………...22
3.4比較生物膜及懸浮菌粒之蛋白質表現……………………………………....23
3.4.1蛋白質樣本定量………………………………………………………...23
3.4.2二維電泳–等電膠集電泳……………………………………………...25
3.4.3二維電泳–聚丙烯醯胺膠片電泳……………………………………...27
3.4.4二維電泳之影像軟體分析……………………………………………...30
3.4.4.1圖檔分析前處理……………………………………………......30
3.4.4.2分析參數設定………………………………………………......31
3.5抗生物膜及抗懸浮菌粒之血清抑制試驗…………………………………....32
3.5.1生長抑制試驗………………………………………………...……........32
3.5.2生物膜抑制試驗……………………………………………...……........33
3.6比較生物膜及懸浮菌粒之抗原性與免疫原性…………………...…….........34
3.6.1二維電泳–蛋白質轉印法…………………………………...……........34
3.6.2二維電泳–西方墨點法……………………………………...……........36
3.7蛋白質身分鑑定………………………………………………………….......37
3.7.1膠體內水解………………………………………………………….......37
3.8重組表現與生物膜形成相關之抗原蛋白………………………………........40
3.8.1目標基因序列的增幅及純化……………………………………….......41
3.8.2建構含有目標基因序列的表現質體……………………………….......44
3.8.3表現重組蛋白……………………………………………………….......47
3.8.3.1表現條件測試…………………………………………...….......48
3.8.3.2大量表現重組蛋白……………………………………...….......49
3.8.4純化重組蛋白……………………………………………………….......50
3.8.5重組蛋白抗原特性檢驗…………………………………………….......52
3.9抗重組蛋白之多株抗體製備及血清抑菌能力試驗……………………........52
第四章 結果
4.1格氏乳酸球菌之生物膜及懸浮菌粒培養………………………………........54
4.2細菌全蛋白質樣本製備……………………………………………................54
4.2.1蛋白質粗萃取…………………………………………….......................54
4.2.2蛋白質純化……………………………………………...........................54
4.3比較生物膜及懸浮菌粒之蛋白質表現……………………............................55
4.3.1蛋白質樣本定量………………………………………...........................55
4.3.2二維電泳……………………………………………...............................55
4.3.3影像軟體分析………………………………………...............................55
4.4抗生物膜及抗懸浮菌粒之血清抑菌試驗……………………………............56
4.4.1生長抑制試驗………………………………………...............................56
4.4.2生物膜抑制試驗…………………………………..….............................56
4.5比較生物膜及懸浮菌粒之抗原性與免疫原性……………............................57
4.6蛋白質身份鑑定…………………………………………................................57
4.6.1生物膜和懸浮菌粒之間表現量具有差異的蛋白質...............................58
4.6.2生物膜形成相關之免疫原性蛋白…………………...............................58
4.7重組表現與生物膜形成相關之抗原蛋白………………................................59
4.7.1目標基因序列的增幅及純化………………………...............................59
4.7.2建構含有目標基因序列的表現質體………………...............................59
4.7.3表現重組蛋白………………………………………...............................59
4.7.4純化重組蛋白………………………………………...............................60
4.7.5重組蛋白之抗原特性檢驗及多珠抗體製備………………...................60
4.7.6抗重組蛋白之血清抑菌能力測試……………………………………...60
第五章 討論
5.1細菌全蛋白質樣本製備…………………………………................................61
5.2二維電泳………………………………………................................................62
5.3比較生物膜及懸浮菌粒之蛋白質表現………................................................63
5.4抗生物膜及抗懸浮菌粒之血清抑菌試驗………………………....................67
5.5比較生物膜及懸浮菌粒之抗原性與免疫原性................................................68
5.6重組表現與生物膜形成相關之抗原蛋白及多珠抗體製備............................71
5.7抗重組蛋白之血清抑菌能力測試………………............................................71
第六章 參考文獻………………………………………...............................................87
dc.language.isozh-TW
dc.title格氏乳酸球菌在懸浮態和生物膜態之蛋白質表現分析及辨識生物膜形成相關的免疫原性蛋白zh_TW
dc.titleProteomic Analysis of Lactococcus garvieae Cultivated under Planktonic and Biofilm Conditions and Identification of Biofilm Formation-Related Immunogenic Proteinsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張本恆,張錦宜,黃子鳴
dc.subject.keyword格氏乳酸球菌,生物膜,二維電泳,免疫蛋白質體學,精氨酸脫亞氨?,zh_TW
dc.subject.keywordLactococcus garvieae,biofilm,two-dimensional gel electrophoresis,immunoproteomic,arginine deiminase,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2015-08-14
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved