Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52709
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊烽正(Feng-Cheng Yang)
dc.contributor.authorChing-Min Tsaoen
dc.contributor.author曹靖民zh_TW
dc.date.accessioned2021-06-15T16:24:13Z-
dc.date.available2022-01-01
dc.date.copyright2020-08-07
dc.date.issued2020
dc.date.submitted2020-08-06
dc.identifier.citationBland, R. and D. Shallcross (1989). 'Large travelling salesman problems arising from experiments in X-ray crystallography: A preliminary report on computation.' Operations Research Letters 8: 125-128.
Croes, A. G. (1958). 'A Method for Solving Traveling-Salesman Problems.' Operations Research 6: 791-812.
Dantzig, G. and R. Ramser (1959). 'The Truck Dispatching Problem.' Management Science 6: 80-91.
Dorigo, M. and L. M. Gambardella (1997). 'Ant Colonies for the Traveling Salesman Problem.' Bio Systems 43: 73-81.
Fukushima, K. (1980). 'Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.' Biol Cybern 36(4): 193-202.
Grötschel, M., M. Jünger and G. Reinelt (1991). 'Optimal control of plotting and drilling machines: A case study.' Mathematical Methods of Operational Research 35: 61-84.
Hochreiter, S. and J. Schmidhuber (1997). 'Long Short-term Memory.' Neural computation 9: 1735-1780.
Holland, J. (1975). 'Adaptation In Natural And Artificial Systems.' University of Michigan Press.
Hopfield, J. (1982). 'Neural Networks and Physical Systems with Emergent Collective Computational Abilities.' Proceedings of the National Academy of Sciences of the United States of America 79: 2554-2558.
Johnson, D. and L. McGeoch (1997). 'The Traveling Salesman Problem: A Case Study in Local Optimization.' Local Search in Combinatorial Optimization 1.
Krizhevsky, A., I. Sutskever and G. Hinton (2012). 'ImageNet Classification with Deep Convolutional Neural Networks.' Neural Information Processing Systems 25.
Lecun, Y., L. Bottou, Y. Bengio and P. Haffner (1998). 'Gradient-based learning applied to document recognition.' Proceedings of the IEEE 86(11): 2278-2324.
Lenstra, J. and A. Kan (1975). 'Some Simple Applications of the Traveling Salesman Problem.' Journal of The Operational Research Society - J OPER RES SOC 26: 717-733.
Lin, S. and B. W. Kernighan (1973). 'An effective heuristic algorithm for the traveling salesman problem.' Oper. Res. 21: 489-516.
Ling, Z., X. Tao, Y. Zhang and X. Chen (2020). 'Solving Optimization Problems Through Fully Convolutional Networks: An Application to the Traveling Salesman Problem.' IEEE Transactions on Systems, Man, and Cybernetics: Systems PP: 1-11.
Plante, R., T. Lowe and R. Chandrasekaran (1987). 'The Product Matrix Traveling Salesman Problem: An Application and Solution Heuristic.' Operations Research 35: 772-783.
Ratliff, H. and A. Rosenthal (1983). 'Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem.' Operations Research 31: 507-521.
Rumelhart, D. E., G. E. Hinton and R. J. Williams (1986). 'Learning representations by back-propagating errors.' Nature 323(6088): 533-536.
Ruohonen, K. (2013). 'Graph Theory.'
Simonyan, K. and A. Zisserman (2014). 'Very Deep Convolutional Networks for Large-Scale Image Recognition.' arXiv 1409.1556.
Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich (2015). Going deeper with convolutions.
Toth, P. and D. Vigo (2002). The Vehicle Routing Problem.
Vinyals, O., M. Fortunato and N. Jaitly (2015). 'Pointer Networks.' Advances in Neural Information Processing Systems 28.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52709-
dc.description.abstract本研究首先依照圖論的定義以及過往對最短迴圈問題的研究,定義一適合類神經網路使用的最短迴圈問題格式。據此,自行產出訓練及測試資料,再以多層感知器、卷積神經網路、遞歸神經網路等經典的神經網路架構為基礎,開發不同的最短迴圈求解系統,在已知各節點間距離的情況下,目標是讓系統求算出最短距離的迴圈。為達到此目的,使用已知最佳解的訓練資料對網路的權重進行訓練。訓練過程中,用初始網路權重計算對輸入距離矩陣的輸出結果,通過設定的誤差函數計算輸出結果與已知最佳解之間的誤差,並使用選定的優化器,通過誤差函數值更新網路權重。反覆的更新網路權重,直到網路的計算結果與最佳解之間的誤差值收斂,得到求解系統的最佳網路權重。為了計算系統的求解效能,使用不重複的距離矩陣測試資料,對系統進行測試,並紀錄系統求算序列與最佳解是否相同。結果顯示以類神經網路為基礎的最短迴圈雖然具有優於貪婪法的求解效力,但最終求解品質都不足以作為一個有效的求解演算法。zh_TW
dc.description.abstractThis research first defines a shortest circuit problem format suitable for neural networks based on the definition of graph theory and previous research on the shortest circuit problem. With the defined shortest circuit problem format we self-produce training and test data, and then develop different shortest loop solving systems based on classic neural network architectures such as multilayer perceptrons, convolutional neural networks, and recurrent neural networks. With all distances between nodes are known, the goal is to let the system calculate the shortest distance circuit. To achieve this goal, the weights of the network are trained by training data with known best solution. During the training process, the initial network weight is used to calculate the output result of the input distance matrix, the error between the output result and the known best solution is calculated through loss function, and the selected optimizer is used to update network weights through loss function. The network weights are updated repeatedly until the error value between the network calculation results and the optimal solution converges, and the optimal network weight for the solution system is obtained. In order to calculate the solution performance of the system, test the system using non-repetitive distance matrix test data, and record whether the system output sequence is the same as the best solution. The results show that although the shortest circuit result based on the neural networks has better solution efficiency than the greedy method, the final solution quality is not enough for it to be an effective solution algorithm.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:24:13Z (GMT). No. of bitstreams: 1
U0001-0608202012334500.pdf: 2705071 bytes, checksum: 04fbebb28a9e677062ea532326eace17 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究方法 2
1.4 章節概要 2
第二章 文獻回顧 4
2.1 圖論與旅行推銷員問題 4
2.1.1 圖論 4
2.2 旅行推銷員問題 7
2.2.1 TSP應用 7
2.2.2 TSP近似解求解方法 8
2.3 小結 9
第三章 深度學習 10
3.1 多層感知器(Multilayer Perceptron, MLP) 10
3.2 誤差函數(Loss Function) 11
3.3 優化器 13
3.4 卷積神經網路(Convolutional Neural Network, CNN) 15
3.5 遞歸神經網路(Recurrent Neural Network, RNN) 18
第四章 完全圖最短迴圈AI求解系統 25
4.1 最短迴圈問題 25
4.2 網路訓練資料 26
4.2.1 訓練資料格式 26
4.2.2 訓練資料產生器 28
4.3 最短迴圈的AI求解系統 29
4.3.1 n2CNN架構的完全圖最短迴圈求解系統 30
4.3.2 互斥標籤CNN架構的完全圖最短迴圈求解系統 35
4.3.3 MLP架構的完全圖最短迴圈求解系統 39
4.3.4 RNN架構的完全圖最短迴圈解檢構系統 42
4.3.5 混合CNN與RNN架構的完全圖最短迴圈求解系統 47
4.4 小結 49
第五章 迴圈求解系統測試及結果分析 50
5.1 測試資料 50
5.2 範例測試 50
5.2.1 訓練資料量對各系統訓練結果的影響 50
5.2.2 各系統最佳訓練結果的正確率測試 54
5.2.3 混合訓練資料對系統正確率的影響 55
5.3 小結 56
第六章 結論與未來研究建議 57
6.1 結論 57
6.2 未來研究建議 57
參考文獻 59
附錄(一) n2CNN網路 61
附錄(二) 互斥標籤CNN網路 62
附錄(三) MLP網路 63
附錄(四) RNN網路 64
附錄(五) 混合NN網路 65
dc.language.isozh-TW
dc.subject類神經網路zh_TW
dc.subject最短迴圈問題zh_TW
dc.subject多層感知器zh_TW
dc.subject遞歸神經網路zh_TW
dc.subject卷積神經網路zh_TW
dc.subjectShortest circuit problemen
dc.subjectNeural Networken
dc.subjectMultilayer perceptronen
dc.subjectConvolutional Neural Networken
dc.subjectRecurrent neural networken
dc.title以類神經網路為基的最短迴圈求解系統zh_TW
dc.titleNeural Network Models For Finding The Shortest Cycle In Complete Graphs
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪一薰(I-Hsuan Hong),楊曙榮(Shu-Jung Yang),王宏鍇(Hung-Kai Wang)
dc.subject.keyword最短迴圈問題,類神經網路,多層感知器,卷積神經網路,遞歸神經網路,zh_TW
dc.subject.keywordShortest circuit problem,Neural Network,Multilayer perceptron,Convolutional Neural Network,Recurrent neural network,en
dc.relation.page66
dc.identifier.doi10.6342/NTU202002523
dc.rights.note有償授權
dc.date.accepted2020-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0608202012334500.pdf
  未授權公開取用
2.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved