Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52706
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林立德(Li-Deh Lin)
dc.contributor.authorHsin-Yuan Fanen
dc.contributor.author樊馨遠zh_TW
dc.date.accessioned2021-06-15T16:24:06Z-
dc.date.available2015-09-24
dc.date.copyright2015-09-24
dc.date.issued2015
dc.date.submitted2015-08-14
dc.identifier.citationAl-Nawas B, Wagner W, Grötz KA (2005). Insertion torque and resonance frequency analysis of dental implant systems in an animal model with loaded implants. The International Journal of Oral & Maxillofacial implants 21(5):726-732.
Albrektsson T, Brånemark P-I, Hansson H-A, Lindström J (1981). Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthopaedica 52(2):155-170.
Aparicio C (1997). The use of the Periotest value as the initial success criteria of an implant: 8-year report. The International Journal of Periodontics & Restorative Dentistry 17(2):150-161.
Araújo MG, Sukekava F, Wennström JL, Lindhe J (2005). Ridge alterations following implant placement in fresh extraction sockets: an experimental study in the dog. Journal of Clinical Periodontology 32(6):645-652.
Atsumi M, Park S-h, Wang H-L (2006). Methods used to assess implant stability: current status. The International Journal of Oral & Maxillofacial Implants 22(5):743-754.
Bahleitner A, Monov G (2004). Assessment of bone quality: Techniques, procedures and limitations. Implants in Qualitatively Compromised Bone Chicago: Quintessence:55-66.
Balshi SF, Allen FD, Wolfinger GJ, Balshi TJ (2004). A resonance frequency analysis assessment of maxillary and mandibular immediately loaded implants. The International Journal of Oral & Maxillofacial implants 20(4):584-594.
Barewal RM, Oates TW, Meredith N, Cochran DL (2002). Resonance frequency measurement of implant stability in vivo on implants with a sandblasted and acid-etched surface. The International Journal of Oral & Maxillofacial Implants 18(5):641-651.
Beer A, Gahleitner A, Holm A, Tschabitscher M, Homolka P (2003). Correlation of insertion torques with bone mineral density from dental quantitative CT in the mandible. Clinical Oral Implants Research 14(5):616-620.
Beer A, Gahleitner A, Holm A, Birkfellner W, Homolka P (2007). Adapted preparation technique for screw‐type implants: explorative in vitro pilot study in a porcine bone model. Clinical Oral Implants Research 18(1):103-107.
Brunski JB (1999). In vivo bone response to biomechanical loading at the bone/dental-implant interface. Advances in Dental Research 13(1):99-119.
Calandriello R, Tomatis M, Rangert B (2003). Immediate Functional Loading of Brånemark System® Implants with Enhanced Initial Stability: A Prospective 1–to 2‐Year Clinical and Radiographic Study. Clinical Implant Dentistry and Related Research 5(s1):10-20.
Cameron HU, Pilliar RM, Macnab I (1973). The effect of movement on the bonding of porous metal to bone. Journal of Biomedical Materials Research 7(4):301-311.
Çehreli M, editor (2012). Biomechanics of Dental Implants: Handbook for Researchers. Hauppauge (NY): Nova Science Publishers.
Chong L, Khocht A, Suzuki JB, Gaughan J (2009). Effect of implant design on initial stability of tapered implants. Journal of Oral Implantology 35(3):130-135.
Coelho PG, Suzuki M, Guimaraes MV, Marin C, Granato R, Gil JN et al. (2010). Early bone healing around different implant bulk designs and surgical techniques: a study in dogs. Clinical Implant Dentistry and Related Research 12(3):202-208.
Del Fabbro M, Testori T, Francetti L, Taschieri S, Weinstein R (2006). Systematic review of survival rates for immediately loaded dental implants. The International Journal of Periodontics & Restorative Dentistry 26(3):249-263.
Devlin H, Horner K, Ledgerton D (1998). A comparison of maxillary and mandibular bone mineral densities. The Journal of Prosthetic Dentistry 79(3):323-327.
Engelke W, Decco OA, Rau MJ, Massoni MCA, Schwarzwäller W (2004). In vitro evaluation of horizontal implant micromovement in bone specimen with contact endoscopy. Implant Dentistry 13(1):88-94.
Esposito M, Grusovin MG, Maghaireh H, Worthington HV (2013). Interventions for replacing missing teeth: different times for loading dental implants. Cochrane Database Syst Rev 3(1).
Freitas Jr AC, Bonfante EA, Giro G, Janal MN, Coelho PG (2012). The effect of implant design on insertion torque and immediate micromotion. Clinical Oral Implants Research 23(1):113-118.
Friberg B, Sennerby L, Roos J, Johansson P, Strid C, Lekholm U (1995). Evaluation of bone density using cutting resistance measurements and microradiography. An in vitro study in pig ribs. Clinical Oral Implants Research 6(3):164-171.
Friberg B, Sennerby L, Gröndahl K, Bergström C, Bäck T, Lekholm U (1999). On Cutting Torque Measurements during Implant Placement: A 3‐Year Clinical Prospective Study. Clinical Implant Dentistry and Related Research 1(2):75-83.
Friberg B, Jisander S, Widmark G, Lundgren A, Ivanoff CJ, Sennerby L et al. (2003). One‐Year Prospective Three‐Center Study Comparing the Outcome of a “Soft Bone Implant”(Prototype Mk IV) and the Standard Brånemark Implant. Clinical Implant Dentistry and Related Research 5(2):71-77.
Gahleitner A, Monov G, editors (2004). Assessment of bone quality:Techniques,procedures, and limitations. Chicago: Quintessence.
Garber DA, Salama H, Salama MA (2001). Two-stage versus one-stage-Is there really a controversy? Journal of Periodontology 72(3):417-421.
Garg AK (2004). Bone biology, harvesting, grafting for dental implants: rationale and clinical applications: Quintessence Publishing Company.
Goodson J, Haffajee A, Socransky S (1984). The relationship between attachment level loss and alveolar bone loss. Journal of Clinical Periodontology 11(5):348-359.
Hall J, Miranda‐Burgos P, Sennerby L (2005). Stimulation of directed bone growth at oxidized titanium implants by macroscopic grooves: an in vivo study. Clinical Implant Dentistry and Related Research 7(s1):s76-s82.
Hansson S, Werke M (2003). The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. Journal of Biomechanics 36(9):1247-1258.
Herrmann I, Lekholm U, Holm S, Kultje C (2004). Evaluation of patient and implant characteristics as potential prognostic factors for oral implant failures. The International Journal of Oral & Maxillofacial Implants 20(2):220-230.
Huang HM, Lee SY, Yeh CY, Lin CT (2002). Resonance frequency assessment of dental implant stability with various bone qualities: a numerical approach. Clinical Oral Implants Research 13(1):65-74.
Ikumi N, Tsutsumi S (2004). Assessment of correlation between computerized tomography values of the bone and cutting torque values at implant placement: a clinical study. The International Journal of Oral & Maxillofacial Implants 20(2):253-260.
Ivanoff C-J, Gröndahl K, Bergström C, Lekholm U, Brånemark P-I (1999). Influence of bicortical or monocortical anchorage on maxillary implant stability: a 15-year retrospective study of Branemark System implants. The International Journal of Oral & Maxillofacial Implants 15(1):103-110.
Javed F, Romanos GE (2010). The role of primary stability for successful immediate loading of dental implants. A literature review. Journal of Dentistry 38(8):612-620.
Johansson C, Albrektsson T (1986). Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants. The International Journal of Oral & Maxillofacial Implants 2(2):69-75.
Johansson P, Strid K (1994). Assessment of bone quality from cutting resistance during implant surgery. International Journal of Oral and Maxillofacial Implants 9(3):279-288.
Khayat PG, Arnal HM, Tourbah BI, Sennerby L (2013). Clinical outcome of dental implants placed with high insertion torques (up to 176 Ncm). Clinical Implant Dentistry and Related Research 15(2):227-233.
Kim YS, Lim YJ (2011). Primary stability and self‐tapping blades: biomechanical assessment of dental implants in medium‐density bone. Clinical Oral Implants Research 22(10):1179-1184.
Klemetti E, Vainio P (1993). Effect of bone mineral density in skeleton and mandible on extraction of teeth and clinical alveolar height. The Journal of Prosthetic Dentistry 70(1):21-25.
Lekholm U (1985). Patient selection and preparation. Tissue-Integrated Prosthesis: Osseointegration in Clinical Dentistry:199-209.
Maló P, Friberg B, Polizzi G, Gualini F, Vighagen T, Rangert B (2003). Immediate and early function of Branemark System® implants placed in the esthetic zone: a 1-year prospective clinical multicenter study. Clinical Implant Dentistry and Related Research 5(37-46.
Meredith N (1997). Assessment of implant stability as a prognostic determinant. The International Journal of Prosthodontics 11(5):491-501.
Meredith N, Shagaldi F, Alleyne D, Sennerby L, Cawley P (1997). The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia. Clinical Oral Implants Research 8(3):234-243.
Meredith N (1998). A review of nondestructive test methods and their application to measure the stability and osseointegration of bone anchored endosseous implants. Critical Reviews™ in Biomedical Engineering 26(4).
Misch C (1998). Non-functional immediate teeth in partially edentulous patients: A pilot study of 10 consecutive cases using the Maestro dental implant system. Compendium 19(3):25-36.
Misch C (2005). An implant is not a tooth: a comparison of periodontal indexes. Dental Implant Prosthetics 1(1):18-31.
Misch CE (1999). Contemporary Implant Dentistry. Implant Dentistry 8(1):90.
Miyamoto I, Tsuboi Y, Wada E, Suwa H, Iizuka T (2005). Influence of cortical bone thickness and implant length on implant stability at the time of surgery—clinical, prospective, biomechanical, and imaging study. Bone 37(6):776-780.
Morris HF, Ochi S, Crum P, Orenstein I, Plezia R (2003). Bone density: its influence on implant stability after uncovering. Journal of Oral Implantology 29(6):263-269.
Natali AN, Pavan PG, Scarpa C (2004). Numerical analysis of tooth mobility: formulation of a non-linear constitutive law for the periodontal ligament. Dental Materials 20(7):623-629.
Neugebauer J, Traini T, Thams U, Piattelli A, Zöller JE (2006). Peri-implant bone organization under immediate loading state. Circularly polarized light analyses: a minipig study. Journal of Periodontology 77(2):152-160.
Nikellis I, Levi A, Nicolopoulos C (2003). Immediate loading of 190 endosseous dental implants: a prospective observational study of 40 patient treatments with up to 2-year data. The International Journal of Oral & Maxillofacial Implants 19(1):116-123.
O'Sullivan D, Sennerby L, Meredith N (2000). Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. Clinical Implant Dentistry and Related Research 2(2):85-92.
O'Sullivan D, Sennerby L, Meredith N (2004). Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clinical Oral Implants Research 15(4):474-480.
Olivé J, Aparicio C (1990). Periotest method as a measure of osseointegrated oral implant stability. Int J Oral Maxillofac Implants 5(4):390-400.
Olsen S, Ferguson SJ, Sigrist C, Fritz WR, Nolte LP, Hallermann W et al. (2005). A novel computational method for real‐time preoperative assessment of primary dental implant stability. Clinical Oral Implants Research 16(1):53-59.
Olsson M, Friberg B, Nilson H, Kultje C (1994). MkII--a modified self-tapping Branemark implant: 3-year results of a controlled prospective pilot study. The International Journal of Oral & Maxillofacial Implants 10(1):15-21.
Ottoni J, Oliveira Z, Mansini R, Cabral AM (2004). Correlation between placement torque and survival of single-tooth implants. The International Journal of Oral & Maxillofacial Implants 20(5):769-776.
Perren SM (2002). Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. The Bone & Joint Journal 84(8):1093-1110.
Pilliar R, Lee J, Maniatopoulos C (1986). Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clinical Orthopaedics and Related Research 208(1):108-113.
Rabel A, Köhler SG, Schmidt-Westhausen AM (2007). Clinical study on the primary stability of two dental implant systems with resonance frequency analysis. Clinical Oral Investigations 11(3):257-265.
Raghavendra S, Wood MC, Taylor TD (2004). Early wound healing around endosseous implants: a review of the literature. The International Journal of Oral & Maxillofacial Implants 20(3):425-431.
Rahn BA (1982). Bone healing: histologic and physiologic concepts. Bone in Clinical Orthopaedics Philadelphia, Pa: WB Saunders:335-386.
Romanos G, Damouras M, Veis A, Schwarz F, Parisis N (2007). Oral implants with different thread designs. Journal of Dental Research 86(
Romanos GE, Toh CG, Siar CH, Swaminathan D (2001). Histologic and histomorphometric evaluation of peri-implant bone subjected to immediate loading: an experimental study with Macaca fascicularis. The International Journal of Oral & Maxillofacial Implants 17(1):44-51.
Romanos GE, Toh CG, Siar CH, Wicht H, Yacoob H, Nentwig G-H (2003). Bone-implant interface around titanium implants under different loading conditions: a histomorphometrical analysis in the Macaca fascicularis monkey. Journal of Periodontology 74(10):1483-1490.
Salvi GE, Lang NP (2003). Diagnostic parameters for monitoring peri-implant conditions. The International Journal of Oral & Maxillofacial Implants 19(1):116-127.
Schulte W, Lukas D (1992). The Periotest method. International Dental Journal 42(6):433-440.
Simmons CA, Meguid SA, Pilliar RM (2001). Mechanical regulation of localized and appositional bone formation around bone‐interfacing implants. Journal of Biomedical Materials Research 55(1):63-71.
Skalak R, Zhao Y (2000). Interaction of Force‐Fitting and Surface Roughness of Implants. Clinical Implant Dentistry and Related Research 2(4):219-224.
Stacchi C, Vercellotti T, Torelli L, Furlan F, Di Lenarda R (2013). Changes in implant stability using different site preparation techniques: twist drills versus piezosurgery. a single‐blinded, randomized, controlled clinical trial. Clinical Implant Dentistry and Related Research 15(2):188-197.
Sullivan DY, Sherwood RL, Collins TA, Krogh P (1995). The reverse-torque test: a clinical report. The International Journal of Oral & Maxillofacial Implants 11(2):179-185.
Szivek J, Thomas M, Benjamin J (1993). Technical note. Characterization of a synthetic foam as a model for human cancellous bone. Journal of Applied Biomaterials 4(3):269-272.
Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille J (1998). Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. Journal of Biomedical Materials Research 43(2):192-203.
Tabassum A, Meijer GJ, Wolke JG, Jansen JA (2010). Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clinical Oral Implants Research 21(2):213-220.
Tarnow DP, Emtiaz S, Classi A (1997). Immediate loading of threaded implants at stage 1 surgery in edentulous arches: ten consecutive case reports with 1-to 5-year data. International Journal of Oral and Maxillofacial Implants 12(3):319-324.
Tricio J, van Steenberghe D, Rosenberg D, Duchateau L (1995). Implant stability related to insertion torque force and bone density: an in vitro study. The Journal of Prosthetic Dentistry 74(6):608-612.
Trisi P, Perfetti G, Baldoni E, Berardi D, Colagiovanni M, Scogna G (2009). Implant micromotion is related to peak insertion torque and bone density. Clinical Oral Implants Research 20(5):467-471.
Trisi P, De Benedittis S, Perfetti G, Berardi D (2011). Primary stability, insertion torque and bone density of cylindric implant ad modum Branemark: is there a relationship? An in vitro study. Clinical Oral Implants Research 22(5):567-570.
Truhlar RS, Morris HF, Ochi S, Winkler S (1994). Assessment of implant mobility at second-stage surgery with the periotest: DICRG interim report no. 3. Implant Dentistry 3(3):153-158.
Truhlar RS, Morris HF, Ochi S (2000). Stability of the bone-implant complex. Results of longitudinal testing to 60 months with the Periotest device on endosseous dental implants. Annals of Periodontology 5(1):42-55.
Turkyilmaz I, Tözüm T, Tumer C (2007). Bone density assessments of oral implant sites using computerized tomography. Journal of Oral Rehabilitation 34(4):267-272.
Turkyilmaz I, Aksoy U, McGlumphy EA (2008). Two alternative surgical techniques for enhancing primary implant stability in the posterior maxilla: a clinical study including bone density, insertion torque, and resonance frequency analysis data. Clinical Implant Dentistry and Related Research 10(4):231-237.
Van Oosterwyck H, Duyck J, Vander Sloten J, Van der Perre G, Naert I (2002). Peri‐implant bone tissue strains in cases of dehiscence: a finite element study. Clinical Oral Implants Research 13(3):327-333.
Van Steenberghe D, Tricio J, Naert I, Nys M (1995). Damping characteristics of bone‐to‐implant interface; A clinical study with the Periotest® device. Clinical Oral Implants Research 6(1):31-39.
Walker L, Morris HF, Ochi S, Group DICR (1997). Periotest values of dental implants in the first 2 years after second-stage surgery: DICRG interim report no. 8. Implant Dentistry 6(3):207-214.
Wang T-M, Lee M-S, Wang J-S, Lin L-D (2014). The effect of implant design and bone quality on insertion torque, resonance frequency analysis, and insertion energy during implant placement in low or low-to medium-density bone. The International Journal of Prosthodontics 28(1):40-47.
Watzak G, Zechner W, Ulm C, Tangl S, Tepper G, Watzek G (2005). Histologic and histomorphometric analysis of three types of dental implants following 18 months of occlusal loading: a preliminary study in baboons. Clinical Oral Implants Research 16(4):408-416.
Wyatt C, Pharoah MJ (1997). Imaging techniques and image interpretation for dental implant treatment. The International Journal of Prosthodontics 11(5):442-452.
Zarb GA, Albrektsson T, Branemark P-I (1985). Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry: Quintessence.
Zdero R, Olsen M, Bougherara H, Schemitsch E (2008). Cancellous bone screw purchase: a comparison of synthetic femurs, human femurs, and finite element analysis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 222(8):1175-1183.
Zix J, Kessler-Liechti G, Mericske-Stern R (2004). Stability measurements of 1-stage implants in the maxilla by means of resonance frequency analysis: a pilot study. The International Journal of Oral & Maxillofacial Implants 20(5):747-752.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52706-
dc.description.abstract實驗目的
骨整合牙科植體已成為缺牙重建治療計畫中不可或缺的一環,植體立即受力可以縮短植牙治療的時程,已成為目前研究發展的趨勢。植體的初期穩定度決定了植體適不適合立即受力的必要條件。定義上的植體穩定度為植體受力後的微移動,超過關鍵數值可能造成骨整合的失敗,但植體微移動臨床上無法直接以儀器測得。臨床上常用測定植體初期穩定度的方法如植入扭力值或共振頻率分析等方式來代表,但所測得的數值是否能夠直接代表植體的微移動量,又或者微移動的量是否因改變植體形狀,改變骨質會產生不同的結果? 因此本篇文章便想試著去探討在不同植體形狀及不同骨質情況下,植體穩定度相關參數與微移動量之間的關係。
實驗材料與方法
在此實驗中以Sawbone® test block做為均質的模擬骨塊,並選擇不同的密度(10、20pcf分別代表0.16、0.32 g/cc)來模擬不同骨密度的海綿骨,以50 pcf(0.80 g/cc)之1mm的薄層覆蓋在test block上模擬皮質骨。所使用的三種植體來自Nobel Biocare AB (Göteborg, Sweden)具有相同的表面處理但不同形狀,分別為MKIII(4.0x10mm), MKIV(4.0x10mm) 和 NobelActive(4.3x10mm)。使用廠商建議之鑽孔規則將鑽孔擴大,並以連接至Strain Gauge Transducer Indicator(SR1 Strain Gauge Indicator,Advance Instrument Inc.,Taiwan)之扭力板手(torque wrench,Sensor Development Inc.,MI,USA),將植體慢慢的順時針帶入,直到植體完全沒入,並紀錄最高置入扭力值(peak insertion torque)和最終扭力值(final insertion torque)。
在植體上接上相對應之magnetic peg,使用Osstell® ISQ (Integration Diagnostics, Göteborg, Sweden)測量ISQ (implant stability quotient)值。再將植體接上相對應之5mm高度癒合支台,使用Periotest® (Siemens AG, Bensheim, Germany)水平進行敲擊測試,得到Periotest value。最後將植入植體之骨塊固定於微移動測量儀載具。施力裝置(Dynamic Loading Machine, Advance Instrument Inc., Taiwan)以逐漸增加之扭力平行施加於連接在植體上之5mm癒合支台頂端,及植體微移動的測量是以線性位移計[micro miniature LVDT (Linear Variable Differential Transformer), Singer Instruments & Control Ltd, Israel] 測量位於5mm癒合支台底端的植體移動量。分別記錄施力1N,2N…10N之微移動量。三種植體在相同密度之不同骨塊以隨機方式分配位置,重複測量三次。
實驗結果
(1) 在相同植體的情況下,置入扭力、ISQ會隨著皮質骨厚度增加而提升,也會受到海綿骨密度的增加而提升;Periotest value(PTV)和植體微移動量會隨著皮質骨厚度增加而降低,也會受到海綿骨密度的增加而降低,這樣的趨勢在三種不同植體都可以觀察得到。
(2) 在中等骨質(1+10pcf和20pcf)的情況下,三種植體的置入扭力皆存在有顯著差異;而MKIII及MKIV兩種植體之ISQ值可觀察到顯著差異;而三種植體之PTV皆不存在顯著差異;在植體微移動量方面,MKIII植體與其餘兩種植體(MKIV和NobelActive)存在有顯著差異,其餘兩種植體間則不存在顯著差異。
(3) 在本實驗的骨質及鑽孔規則下,三種植體的置入扭力與植體微移動量呈顯著負相關;ISQ與植體微移動量呈顯著負相關;Periotest value與植體微移動量呈顯著正相關。
結論
(1)骨質會影響植體置入扭力、ISQ、Periotest value以及植體微移動量。(2)MKIV植體在相同骨質及鑽孔規則的情況下可以獲得三種植體中(MKIII,MKIV,NobelActive)最低的植體微移動量。(3)在本實驗的骨質及鑽孔規則下,三種植體的置入扭力與植體微移動量呈負相關;ISQ與植體微移動量呈負相關;Periotest value與植體微移動量呈正相關。
zh_TW
dc.description.abstractResearch goal
The purpose of this study was to investigate the correlation between implant macrodesign with implant insertion torque, implant stability quotient, periotest value and implant micromotion in artificial bone blocks of different densities.
Material and method
1. Sawbone blocks (30mm x15mm x25mm) were fabricated by combining with or without the 1mm 50 pounds per cubic foot (pcf) short fiber filled epoxy sheet on 10- or 20-pcf (density: 0.16, 0.32 g/cc) polyurethane foam test blocks, four combination blocks were used: 10pcf, 20pcf, 1+10pcf and 1+20pcf.
2. Three types of implant macrodesign (Nobel Biocare AB, Göteborg, Sweden) were used in this study: Nobelbiocare MKIII (4.0mm x 10mm; ø x length), MKIV(4.0mm x 10mm; ø x length) and NobelActive (4.3mm x 10mm; ø x length) implants.
3. Implant site preparations were performed according to manufacturer’s instruction: MK III and MK IV by step drilling with 2-mm, 2.4/2.8-mm, 3-mm drill in 10 mm depth, Counterbore drill was extra used with laminated sawbone blocks. NobelActive with final drill 3.2-mm in 10mm depth.
4. MK III, MK IV, NobelActive implants were inserted into sawbone blocks by hand torque wrench and peak insertion torque (PIT) and final insertion torque (FIT) were recorded.
5. ISQ was recorded with Osstell® ISQ (Integration Diagnostics, Göteborg, Sweden) by connecting implant with a smart peg;
6. Periotest value was recorded with Periotest® (Siemens AG, Bensheim, Germany) by connecting implant with a 5-mm healing abutment.
7. Bone block was then fixed in the vehicle, and lateral force applied to the top of 5 mm healing abutment by a Dynamic Loading Machine (Advance Instrument Inc., Taiwan), and micromotion was measured using [micro miniature LVDT (Linear Variable Differential Transformer), Singer Instruments & Control Ltd, Israel] at the opposite side of the healing abutment.
Results:
(1) In the same implant macrodesign, insertion torque and ISQ increased with the thickness of the cortical layer and the density of cancellous bone; on the contrast, Periotest value decreased. This trend can be observed in all three types of implant design.
(2) In the medium density bone block which including 1+10pcf and 20pcf, insertion torque among three type of implant design had siganificant difference; ISQ among MKIII and MKIV implant had siginificant difference; PTV among three types of implant had no significant difference; and the micromotion between MKIII and MKIV, MKIII and NobelActive had significant difference.
(3) With the bone block and the drilling protocol we used in this study, the three types of implant design had their insertion torque negatively related to micromotion; ISQ negatively related to micromotion; and Periotest value positively related to micromotion.
Conclusion:
(1) IT, ISQ, PTV and implant micromotion were affected by bone density.
(2) Based on the same bone quality and drilling protocol, MKIV implant had the lowest implant micromotion among the three implant designs.
(3) Under the bone quality and drilling protocol used in this study, IT and ISQ be negatively correlated with implant micromotion; PTV be positively correlated with implant micromotion.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:24:06Z (GMT). No. of bitstreams: 1
ntu-104-P01422001-1.pdf: 2468152 bytes, checksum: 2f4785050be9ceef666bbd6fb241e7e8 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
口試委員會審定書 I
誌謝 II
中文摘要 III
英文摘要 VI
圖目錄 XII
表目錄 XIV
Chapter 1 緒論 1
1.1 引言 1
1.2 文獻回顧 3
1.2.1 植體立即受力與植體骨整合 3
1.2.2 植體穩定度與測定 5
1.2.3 影響植體穩定度的因素 12
Chapter 2 研究目的 19
Chapter 3 實驗方法及程序 20
3.1 研究假說 20
3.2實驗材料及步驟 20
3.3 統計分析 23
Chapter 4 實驗結果 24
4.1不同骨質對植體穩定度參數的影響 24
4.1.1 不同骨質對置入扭力(insertion torque)的影響 24
4.1.2 不同骨質對ISQ值的影響 24
4.1.3 不同骨質對Periotest value(PTV)的影響 25
4.1.4 不同骨質對植體微移動(Micromotion)的影響 25
4.2 探討不同植體形狀對植體穩定度參數的影響 27
4.2.1 不同植體形狀對置入扭力的影響 27
4.2.2 不同植體形狀對ISQ值的影響 27
4.2.3 不同植體形狀對Periotest value(PTV)的影響 27
4.2.4 不同植體形狀對植體微移動(Micromotion)的影響 27
4.3 探討各植體穩定度參數之間的關聯性 29
4.3.1 置入扭力與植體微移動之相關性 29
4.3.2 ISQ值與植體微移動之相關性 29
4.3.3 Periotest value(PTV)與植體微移動之相關性 29
Chapter 5 討論 30
5.1 前言 30
5.2 Test block的選擇 30
5.3 不同骨質對於植體穩定度參數之影響 31
5.3.1 不同骨質對置入扭力的影響 31
5.3.2 不同骨質對ISQ的影響 32
5.3.3 不同骨質對PTV的影響 32
5.3.4 不同骨質對植體微移動的影響 33
5.4 不同植體設計對植體穩定度參數的影響 34
5.4.1 不同植體設計對置入扭力,ISQ及PTV的影響 34
5.4.2 不同植體設計對植體微移動的影響 35
5.5 各植體穩定度參數綜合分析 36
5.6 實驗設計之限制及未來展望 38
Chapter 6 結論 39
參考文獻 70
dc.language.isozh-TW
dc.subject植體微移動zh_TW
dc.subject立即受力zh_TW
dc.subject植體穩定度zh_TW
dc.subjectimmediate loadingen
dc.subjectimplant stabilityen
dc.subjectmicromotionen
dc.title不同植體設計與植體穩定度相關參數於人工合成骨之探討zh_TW
dc.titleInvestgating Implant Stability Parameters with Different Implant Macrodesign in Sawbone Blocksen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王東美(Tong-Mei Wang),洪志遠
dc.subject.keyword立即受力,植體穩定度,植體微移動,zh_TW
dc.subject.keywordimmediate loading,implant stability,micromotion,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2015-08-15
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved