請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52703
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 何佳安 | |
dc.contributor.author | Ching-Ying Tsai | en |
dc.contributor.author | 蔡靜瑩 | zh_TW |
dc.date.accessioned | 2021-06-15T16:23:58Z | - |
dc.date.available | 2020-08-01 | |
dc.date.copyright | 2015-08-28 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-14 | |
dc.identifier.citation | 1. Chidambaram, M., Manavalan, R., Kathiresan, K., 2011. 'Nanotherapeutics to overcome conventional cancer chemotherapy limitations.' J Pharm Pharm Sci 14(1): 67-77. 2. Swartz, M.A., Iida, N., Roberts, E.W., Sangaletti, S., Wong, M.H., Yull, F.E., Coussens, L.M., DeClerck, Y.A., 2012. 'Tumor microenvironment complexity: emerging roles in cancer therapy.' Cancer Res 72(10): 2473-2480. 3. Hanahan, D., Coussens, L.M., 2012. 'Accessories to the crime: functions of cells recruited to the tumor microenvironment.' Cancer Cell 21(3): 309-322. 4. Chen, F., Zhuang, X., Lin, L., Yu, P., Wang, Y., Shi, Y., Hu, G., Sun, Y., 2015. 'New horizons in tumor microenvironment biology: challenges and opportunities.' BMC Med 13: 45. 5. Wilson, W.R., Hay, M.P., 2011. 'Targeting hypoxia in cancer therapy.' Nat Rev Cancer 11(6): 393-410. 6. Kobayashi, H., Watanabe, R., Choyke, P.L., 2013. 'Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target?' Theranostics 4(1): 81-89. 7. Le, Q.T., Denko, N.C., Giaccia, A.J., 2004. 'Hypoxic gene expression and metastasis.' Cancer Metastasis Rev 23(3-4): 293-310. 8. Finger, E.C., Giaccia, A.J., 2010. 'Hypoxia, inflammation, and the tumor microenvironment in metastatic disease.' Cancer Metastasis Rev 29(2): 285-293. 9. Schofield, C.J., Ratcliffe, P.J., 2004. 'Oxygen sensing by HIF hydroxylases.' Nat Rev Mol Cell Biol 5(5): 343-354. 10. Valastyan, S., Weinberg, R.A., 2011. 'Tumor metastasis: molecular insights and evolving paradigms.' Cell 147(2): 275-292. 11. Gajewski, T.F., Schreiber, H., Fu, Y.X., 2013. 'Innate and adaptive immune cells in the tumor microenvironment.' Nat Immunol 14(10): 1014-1022. 12. Lindau, D., Gielen, P., Kroesen, M., Wesseling, P., Adema, G.J., 2013. 'The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells.' Immunology 138(2): 105-115. 13. Dijkgraaf, E.M., Heusinkveld, M., Tummers, B., Vogelpoel, L.T., Goedemans, R., Jha, V., Nortier, J.W., Welters, M.J., Kroep, J.R., van der Burg, S.H., 2013. 'Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment.' Cancer Res 73(8): 2480-2492. 14. Chen, F., Zhuang, X., Lin, L., Yu, P., Wang, Y., Shi, Y., Hu, G., Sun, Y., 2015. 'New horizons in tumor microenvironment biology: challenges and opportunities.' BMC Med 13: 45. 15. Tang, X., Mo, C., Wang, Y., Wei, D., Xiao, H., 2013. 'Anti-tumour strategies aiming to target tumour-associated macrophages.' Immunology 138(2): 93-104. 16. Solinas, G., Germano, G., Mantovani, A., Allavena, P., 2009. 'Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation.' J Leukoc Biol 86(5): 1065-1073. 17. Biswas, S.K., Mantovani, A., 2010. 'Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm.' Nat Immunol 11(10): 889-896. 18. Guo, L., Yan, D.D., Yang, D., Li, Y., Wang, X., Zalewski, O., Yan, B., Lu, W., 2014. 'Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles.' ACS Nano 8(6): 5670-5681. 19. Fridman, W.H., Pages, F., Sautes-Fridman, C., Galon, J., 2012. 'The immune contexture in human tumours: impact on clinical outcome.' Nat Rev Cancer 12(4): 298-306. 20. Qian, B.Z., Pollard, J.W., 2010. 'Macrophage diversity enhances tumor progression and metastasis.' Cell 141(1): 39-51. 21. Allavena, P., Sica, A., Solinas, G., Porta, C., Mantovani, A., 2008. 'The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages.' Crit Rev Oncol Hematol 66(1): 1-9. 22. Mantovani, A., Germano, G., Marchesi, F., Locatelli, M., Biswas, S.K., 2011. 'Cancer-promoting tumor-associated macrophages: new vistas and open questions.' Eur J Immunol 41(9): 2522-2525. 23. Steidl, C., Lee, T., Shah, S.P., Farinha, P., Han, G., Nayar, T., Delaney, A., Jones, S.J., Iqbal, J., Weisenburger, D.D., Bast, M.A., Rosenwald, A., Muller-Hermelink, H.K., Rimsza, L.M., Campo, E., Delabie, J., Braziel, R.M., Cook, J.R., Tubbs, R.R., Jaffe, E.S., Lenz, G., Connors, J.M., Staudt, L.M., Chan, W.C., Gascoyne, R.D., 2010. 'Tumor-associated macrophages and survival in classic Hodgkin's lymphoma.' N Engl J Med 362(10): 875-885. 24. Kurahara, H., Shinchi, H., Mataki, Y., Maemura, K., Noma, H., Kubo, F., Sakoda, M., Ueno, S., Natsugoe, S., Takao, S., 2011. 'Significance of M2-polarized tumor-associated macrophage in pancreatic cancer.' J Surg Res 167(2): e211-219. 25. Zhang, J., Cao, J., Ma, S., Dong, R., Meng, W., Ying, M., Weng, Q., Chen, Z., Ma, J., Fang, Q., He, Q., Yang, B., 2014. 'Tumor hypoxia enhances Non-Small Cell Lung Cancer metastasis by selectively promoting macrophage M2 polarization through the activation of ERK signaling.' Oncotarget 5(20): 9664-9677. 26. Laoui, D., Van Overmeire, E., Di Conza, G., Aldeni, C., Keirsse, J., Morias, Y., Movahedi, K., Houbracken, I., Schouppe, E., Elkrim, Y., Karroum, O., Jordan, B., Carmeliet, P., Gysemans, C., De Baetselier, P., Mazzone, M., Van Ginderachter, J.A., 2014. 'Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population.' Cancer Res 74(1): 24-30. 27. Davis, M.E., Chen, Z.G., Shin, D.M., 2008. 'Nanoparticle therapeutics: an emerging treatment modality for cancer.' Nat Rev Drug Discov 7(9): 771-782. 28. Cho, K., Wang, X., Nie, S., Chen, Z.G., Shin, D.M., 2008. 'Therapeutic nanoparticles for drug delivery in cancer.' Clin Cancer Res 14(5): 1310-1316. 29. Matsumura, Y., Maeda, H., 1986. 'A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.' Cancer Res 46(12 Pt 1): 6387-6392. 30. Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R., 2007. 'Nanocarriers as an emerging platform for cancer therapy.' Nat Nanotechnol 2(12): 751-760. 31. Tao, Y., Ju, E., Liu, Z., Dong, K., Ren, J., Qu, X., 2014. 'Engineered, self-assembled near-infrared photothermal agents for combined tumor immunotherapy and chemo-photothermal therapy.' Biomaterials 35(24): 6646-6656. 32. Fan, N.C., Cheng, F.Y., Ho, J.A., Yeh, C.S., 2012. 'Photocontrolled targeted drug delivery: photocaged biologically active folic acid as a light-responsive tumor-targeting molecule.' Angew Chem Int Ed 51(35): 8806-8810. 33. Ventola, C.L., 2012. 'The nanomedicine revolution: part 2: current and future clinical applications.' P T 37(10): 582-591. 34. Petros, R.A., DeSimone, J.M., 2010. 'Strategies in the design of nanoparticles for therapeutic applications.' Nat Rev Drug Discov 9(8): 615-627. 35. Kumari, A., Yadav, S.K., Yadav, S.C., 2010. 'Biodegradable polymeric nanoparticles based drug delivery systems.' Colloids Surf B Biointerfaces 75(1): 1-18. 36. Danhier, F., Ansorena, E., Silva, J.M., Coco, R., Le Breton, A., Preat, V., 2012. 'PLGA-based nanoparticles: an overview of biomedical applications.' J Control Release 161(2): 505-522. 37. Acharya, S., Sahoo, S.K., 2011. 'PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect.' Adv Drug Deliv Rev 63(3): 170-183. 38. Jain, R.A., 2000. 'The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices.' Biomaterials 21(23): 2475-2490. 39. Lehar, J., Krueger, A.S., Avery, W., Heilbut, A.M., Johansen, L.M., Price, E.R., Rickles, R.J., Short, G.F., 3rd, Staunton, J.E., Jin, X., Lee, M.S., Zimmermann, G.R., Borisy, A.A., 2009. 'Synergistic drug combinations tend to improve therapeutically relevant selectivity.' Nat Biotechnol 27(7): 659-666. 40. Jia, J., Zhu, F., Ma, X., Cao, Z., Li, Y., Chen, Y.Z., 2009. 'Mechanisms of drug combinations: interaction and network perspectives.' Nat Rev Drug Discov 8(2): 111-128. 41. Tao, Y., Ju, E., Liu, Z., Dong, K., Ren, J., Qu, X., 2014. 'Engineered, self-assembled near-infrared photothermal agents for combined tumor immunotherapy and chemo-photothermal therapy.' Biomaterials 35(24): 6646-6656. 42. Bracci, L., Schiavoni, G., Sistigu, A., Belardelli, F., 2014. 'Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer.' Cell Death Differ 21(1): 15-25. 43. Vanneman, M., Dranoff, G., 2012. 'Combining immunotherapy and targeted therapies in cancer treatment.' Nat Rev Cancer 12(4): 237-251. 44. Lake, R.A., Robinson, B.W., 2005. 'Immunotherapy and chemotherapy--a practical partnership.' Nat Rev Cancer 5(5): 397-405. 45. Ramakrishnan, R., Assudani, D., Nagaraj, S., Hunter, T., Cho, H.I., Antonia, S., Altiok, S., Celis, E., Gabrilovich, D.I., 2010. 'Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice.' J Clin Invest 120(4): 1111-1124. 46. Dockrell, D.H., Kinghorn, G.R., 2001. 'Imiquimod and resiquimod as novel immunomodulators.' J Antimicrob Chemother 48(6): 751-755. 47. Iwasaki, A., Medzhitov, R., 2004. 'Toll-like receptor control of the adaptive immune responses.' Nat Immunol 5(10): 987-995. 48. Kawai, T., Akira, S., 2010. 'The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors.' Nat Immunol 11(5): 373-384. 49. Bachelder, E.M., Beaudette, T.T., Broaders, K.E., Frechet, J.M., Albrecht, M.T., Mateczun, A.J., Ainslie, K.M., Pesce, J.T., Keane-Myers, A.M., 2010. 'In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants.' Mol Pharm 7(3): 826-835. 50. Lee, J., Chuang, T.H., Redecke, V., She, L., Pitha, P.M., Carson, D.A., Raz, E., Cottam, H.B., 2003. 'Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7.' Proc Natl Acad Sci U S A 100(11): 6646-6651. 51. Chinnery, H.R., Leong, C.M., Chen, W., Forrester, J.V., McMenamin, P.G., 2015. 'TLR9 and TLR7/8 activation induces formation of keratic precipitates and giant macrophages in the mouse cornea.' J Leukoc Biol 97(1): 103-110. 52. Saint-Jean, M., Knol, A.C., Nguyen, J.M., Khammari, A., Dreno, B., 2011. 'TLR expression in human melanoma cells.' Eur J Dermatol 21(6): 899-905. 53. Schmidt, C., 2007. 'Clinical setbacks for toll-like receptor 9 agonists in cancer.' Nat Biotechnol 25(8): 825-826. 54. Schon, M.P., Schon, M., 2008. 'TLR7 and TLR8 as targets in cancer therapy.' Oncogene 27(2): 190-199. 55. Ambach, A., Bonnekoh, B., Nguyen, M., Schon, M.P., Gollnick, H., 2004. 'Imiquimod, a Toll-like receptor-7 agonist, induces perforin in cytotoxic T lymphocytes in vitro.' Mol Immunol 40(18): 1307-1314. 56. Gorski, K.S., Waller, E.L., Bjornton-Severson, J., Hanten, J.A., Riter, C.L., Kieper, W.C., Gorden, K.B., Miller, J.S., Vasilakos, J.P., Tomai, M.A., Alkan, S.S., 2006. 'Distinct indirect pathways govern human NK-cell activation by TLR-7 and TLR-8 agonists.' Int Immunol 18(7): 1115-1126. 57. Smith, K.J., Hamza, S., Skelton, H., 2004. 'Topical imidazoquinoline therapy of cutaneous squamous cell carcinoma polarizes lymphoid and monocyte/macrophage populations to a Th1 and M1 cytokine pattern.' Clin Exp Dermatol 29(5): 505-512. 58. Sohn, K.C., Li, Z.J., Choi, D.K., Zhang, T., Lim, J.W., Chang, I.K., Hur, G.M., Im, M., Lee, Y., Seo, Y.J., Lee, J.H., Kim, C.D., 2014. 'Imiquimod induces apoptosis of squamous cell carcinoma (SCC) cells via regulation of A20.' PLoS One 9(4): e95337. 59. Schon, M., Bong, A.B., Drewniok, C., Herz, J., Geilen, C.C., Reifenberger, J., Benninghoff, B., Slade, H.B., Gollnick, H., Schon, M.P., 2003. 'Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod.' J Natl Cancer Inst 95(15): 1138-1149. 60. Siim, B.G., Pruijn, F.B., Sturman, J.R., Hogg, A., Hay, M.P., Brown, J.M., Wilson, W.R., 2004. 'Selective potentiation of the hypoxic cytotoxicity of tirapazamine by its 1-N-oxide metabolite SR 4317.' Cancer Res 64(2): 736-742. 61. Peters, K.B., Brown, J.M., 2002. 'Tirapazamine: a hypoxia-activated topoisomerase II poison.' Cancer Res 62(18): 5248-5253. 62. Yang, Z., Ming, X.F., 2014. 'Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders.' Front Immunol 5: 533. 63. Agrawal, A., Manchester, M., 2012. 'Differential uptake of chemically modified cowpea mosaic virus nanoparticles in macrophage subpopulations present in inflammatory and tumor microenvironments.' Biomacromolecules 13(10): 3320-3326. 64. Liu, C.Y., Xu, J.Y., Shi, X.Y., Huang, W., Ruan, T.Y., Xie, P., Ding, J.L., 2013. 'M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway.' Lab Invest 93(7): 844-854. 65. Liu, Z., Xiong, M., Gong, J., Zhang, Y., Bai, N., Luo, Y., Li, L., Wei, Y., Liu, Y., Tan, X., Xiang, R., 2014. 'Legumain protease-activated TAT-liposome cargo for targeting tumours and their microenvironment.' Nat Commun 5: 4280. 66. Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., Locati, M., 2004. 'The chemokine system in diverse forms of macrophage activation and polarization.' Trends Immunol 25(12): 677-686. 67. Stockert, J.C., Blazquez-Castro, A., Canete, M., Horobin, R.W., Villanueva, A., 2012. 'MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets.' Acta Histochem 114(8): 785-796. 68. Tarpey, M.M., Wink, D.A., Grisham, M.B., 2004. 'Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations.' Am J Physiol Regul Integr Comp Physiol 286(3): R431-444. 69. Sica, A., Mantovani, A., 2012. 'Macrophage plasticity and polarization: in vivo veritas.' J Clin Invest 122(3): 787-795. 70. Klinman, D.M., 2004. 'Immunotherapeutic uses of CpG oligodeoxynucleotides.' Nat Rev Immunol 4(4): 249-258. 71. Bachelder, E.M., Beaudette, T.T., Broaders, K.E., Frechet, J.M., Albrecht, M.T., Mateczun, A.J., Ainslie, K.M., Pesce, J.T., Keane-Myers, A.M., 2010. 'In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants.' Mol Pharm 7(3): 826-835. 72. Chollet, J.L., Jozwiakowski, M.J., Phares, K.R., Reiter, M.J., Roddy, P.J., Schultz, H.J., Ta, Q.V., Tomai, M.A., 1999. 'Development of a topically active imiquimod formulation.' Pharm Dev Technol 4(1): 35-43. 73. Primard, C., Poecheim, J., Heuking, S., Sublet, E., Esmaeili, F., Borchard, G., 2013. 'Multifunctional PLGA-based nanoparticles encapsulating simultaneously hydrophilic antigen and hydrophobic immunomodulator for mucosal immunization.' Mol Pharm 10(8): 2996-3004. 74. Durand, R.E., Olive, P.L., 1997. 'Physiologic and cytotoxic effects of tirapazamine in tumor-bearing mice.' Radiat Oncol Investig 5(5): 213-219. 75. Durand, R.E., Olive, P.L., 1992. 'Evaluation of bioreductive drugs in multicell spheroids.' Int J Radiat Oncol Biol Phys 22(4): 689-692. 76. Wu, L., Wu, J., Zhou, Y., Tang, X., Du, Y., Hu, Y., 2012. 'Enhanced antitumor efficacy of cisplatin by tirapazamine-transferrin conjugate.' Int J Pharm 431(1-2): 190-196. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52703 | - |
dc.description.abstract | 傳統化學藥物是針對癌細胞毒殺性來達成治療效果,但近年來發現此種療法仍有許多限制,因此多方研究開始慧眼在腫瘤的微環境。腫瘤微環境中的巨噬細胞可被簡單分為兩種類別: M1和M2型態。M1巨噬細胞是毒殺癌細胞的型態,可促進免疫系統辨識癌細胞;但晚期腫瘤內的巨噬細胞則多以M2型態為主,這種M2型態巨噬細胞會使癌細胞躲過免疫細胞的辨識,並分泌生長因子促進癌細胞的生長,甚至促進癌細胞的轉移。基於以上,本研究目的是以調節腫瘤微環境為治療主軸,開發一種新穎的治療癌症策略,利用PLGA載體,同時承載專一毒殺缺氧環境癌細胞的化學療法藥物-Tirapazamine (TPZ),以及促進巨噬細胞M1特性的免疫療法藥物-Imiquimod (IMQ),希望透過奈米載體降低副作用和提高藥物效果,並且利用藥物直接殺死缺氧較惡化癌細胞及抑制腫瘤中巨噬細胞朝向M2型態分化的能力來達成抑制腫瘤生長、預防轉移及使人體產生毒殺性T細胞的改善傳統化療的新抗癌策略研究。此論文以LL/2小鼠肺癌細胞株及RAW264.7小鼠巨噬細胞株被使用為in vitro細胞模式以模擬巨噬細胞M2、M1型態表現的實驗。TPZ藥物的in vitro實驗結果顯示TPZ對LL/2有抑制存活和生長的效果,並且較不影響RAW264.7的存活。而IMQ in vitro實驗結果顯示IMQ能夠抑制RAW264.7轉換成M2型態,並且大量表現M1型態的特徵;並且利用IMQ所誘導出的巨噬細胞去做促進癌細胞爬行(migration)的實驗,結果顯示比起M2型態的巨噬細胞的培養上清液,利用IMQ分化組別的培養上清液能夠有效減少癌細胞的爬行現象。載體效果初步測試發現PLGA@lipid承載之IMQ比起等藥量的free IMQ會更加促進M1型態的基因表現,顯示IMQ搭配奈米載體後將更有效地促進藥物效果。總結來說,本論文所提供的初步結果發現,奈米科技配合化學療法及免疫療法為癌症治療提供一個新的策略方向。 | zh_TW |
dc.description.abstract | Cancer cells themselves are usually the target in conventional chemotherapy, but many limitations remained with it. To advance the therapeutic success, scientists moved forward to focus on tumor microenvironment (TME) to improve cancer treatment. Both M1-state and M2-state macrophages were found to exist in the TME. M1-state macrophage is viewed as tumor-suppression type. However, macrophages in the TME were often M2-state, which suppressed immune system and promoted cancer cell growth and metastasis. Taking all together, we were motivated to develop a new strategy for cancer treatment, focusing over cancer cells themselves. In this study, we exploited the advantage of phospholipid-capped PLGA nanocarriers to deliver and accumulate drugs at the specific tumor site via EPR effect, and demonstrated a novel combination therapeutic strategy by integrating hypoxia activated drug (Tirapazamine, TPZ), and Imiquimod (IMQ) that enhanced M1 and impaired M2 macrophage polarization. It was anticipated that our new strategy led to reduction of metastasis by directly killing hypoxia-located malignant cancer cells and removal of M2-state macrophages, and subsequently inhibited tumor growth and reduced cancer mortality by activation of cancer specific cytotoxic T cells. Our results indicated that TPZ was able to inhibit LL/2 growth, whereas IMQ was sufficient to impede polarization of M2-state macrophage. In addition, IMQ-induced macrophage was confirmed to reduce LL/2 migration in vitro. In summary, our results showed that nanocarrier-formulated drugs revealed better efficiency in M1 polarization, and combo therapy was proven to be an emerging strategy of cancer treatment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:23:58Z (GMT). No. of bitstreams: 1 ntu-104-R02b22033-1.pdf: 5719946 bytes, checksum: 8ed49ee074d72b63c6d70e2691a37c4f (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 謝誌 Ⅰ 中文摘要 Ⅱ Abstract III? 圖目錄 Ⅷ 表目錄 Ⅹ 附錄目錄 ⅩⅠ 第一章 緒論 1 1.1 前言 1 1.2 腫瘤微環境 2 1.3 腫瘤微環境和癌症化學治療的限制 3 1.3.1 血管分布和化學治療的限制 3 1.3.2 缺氧環境和化學治療的限制 3 1.3.3 免疫細胞和化學治療的限制 4 1.3.3.1 巨噬細胞 4 1.3.3.2 針對巨噬細胞的療法 5 1.4 解決腫瘤微環境對化學療法的限制 6 1.4.1 奈米載體 6 1.4.1.1 Enhanced permeability and retention effect (EPR effect) 6 1.4.1.2 PLGA奈米載體 6 1.4.2 結合療法 8 1.5 Imiquimod (IMQ) 9 1.6 Tirapazamine (TPZ) 11 第二章 實驗目的 12 第三章 實驗材料 13 2.1 藥品試劑 13 2.1.1 細胞實驗 13 2.1.2 合成載體 14 2.1.3 引子序列 14 2.2 實驗儀器 15 2.3 細胞株 16 2.4 氣體 16 第四章 實驗方法 17 3.1 PLGA@lipid的合成與鑑定 17 3.1.1 DPPC粉末分裝 17 3.1.2 PLGA@lipid合成 17 3.1.3 載體粒徑測量-動態光散射粒徑分析儀 Dynamic Light Scattering Analyzer (DLS) 18 3.1.4 藥物包覆率測量 19 3.1.4.1 Imiquimod (IMQ)之包覆率 19 3.2 細胞實驗 20 3.2.1 細胞培養 20 3.2.1.1 細胞繼代 21 3.2.1.2 細胞冷凍 21 3.2.1.3 細胞解凍 22 3.2.1.4 缺氧細胞的培養 22 3.2.2 免疫細胞的分化方法 23 3.2.3 細胞存活實驗 (MTT assay) 24 3.2.4 細胞計數 24 3.2.4.1 血球計數器 24 3.2.4.2 Nexcelon Cellometer Auto T4自動計數 25 3.2.5 基因表現量測試 25 3.2.5.1 抽RNA 26 3.2.5.2 mRNA轉cDNA 26 3.2.5.3 cDNA放大以及real-time PCR 27 3.2.6 流式細胞儀 (Flow cytometry) 28 3.2.7 NO產量測試 28 3.2.8 Transwell migration assay 29 3.2.8.1 誘導物質的收集 29 3.2.8.2 Transwell爬行測試 30 第五章 實驗結果 31 4.1 實驗設計 31 4.2 少量的imiquimod(IMQ)對於RAW264.7有生長促進的作用 33 4.3 Tirapazamine(TPZ)對癌細胞株LL/2有較強的生長存活抑制能力 35 4.4 選擇高濃度的TPZ,搭配低濃度的IMQ,可使LL/2細胞株的生長存活被抑制外,還能使得RAW264.7的存活率遠大於LL/2 37 4.5 IMQ的加入,可使處在M2型態變化中的巨噬細胞轉換成趨向M1型態的巨噬細胞分化 39 4.6 IMQ誘導出的類M1型態巨噬細胞可以降低LL/2的爬行能力 45 4.7 PLGA奈米載體的合成 47 4.8 結論與未來展望 49 附錄 50 參考文獻 60 | |
dc.language.iso | zh-TW | |
dc.title | 利用生物可降解性奈米系統發展癌症新療法 | zh_TW |
dc.title | Development of a novel anti-tumor strategy using biodegradable nanosystems | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳立真,蘇純立,鄭宏祺,徐士蘭 | |
dc.subject.keyword | 癌症療法,腫瘤微環境,免疫療法,化學療法, | zh_TW |
dc.subject.keyword | cancer treatment,microenvironment,immunotherapy,chemotherapy, | en |
dc.relation.page | 71 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-15 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 5.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。