Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5269
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信銘(Hsin-Min Lu)
dc.contributor.authorCheng-Jen Leeen
dc.contributor.author李承錱zh_TW
dc.date.accessioned2021-05-15T17:54:45Z-
dc.date.available2015-07-29
dc.date.available2021-05-15T17:54:45Z-
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-22
dc.identifier.citationBate, A., & Evans, S. J. W. (2009). Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiology and Drug Safety, 18(6), 427–436. doi:10.1002/pds.1742
Bate, A., Lindquist, M., Edwards, I. R., & Orre, R. (2002). A data mining approach for signal detection and analysis. Drug Safety: An International Journal of Medical Toxicology and Drug Experience, 25(6), 393–397.
Bates, D. W. (1995). Incidence of Adverse Drug Events and Potential Adverse Drug Events: Implications for Prevention. JAMA, 274(1), 29. doi:10.1001/jama.1995.03530010043033
Bright, T. J., Wong, A., Dhurjati, R., Bristow, E., Bastian, L., Coeytaux, R. R., … Lo-bach, D. (2012). Effect of clinical decision-support systems: a systematic review. Annals of Internal Medicine, 157(1), 29–43.
doi:10.7326/0003-4819-157-1-201207030-00450
Bureau of National Health Insurance, Department of Health, Executive Yuan, Taiwan. (2012, May). Universal Health Coverage in Taiwan. Retrieved from http://www.nhi.gov.tw/Resource/webdata/21717_1_20120808UniversalHealthCoverage.pdf
Choi, C. A., Chang, M. J., Choi, H. D., Chung, W.-Y., & Shin, W. G. (2013). Applica-tion of a drug-interaction detection method to the Korean National Health In-surance claims database. Regulatory Toxicology and Pharmacology: RTP, 67(2), 294–298. doi:10.1016/j.yrtph.2013.08.009
Coloma, P. M., Trifiro, G., Schuemie, M. J., Gini, R., Herings, R., Hippisley-Cox, J., … EU-ADR Consortium. (2012). Electronic healthcare databases for active drug safety surveillance: is there enough leverage? Pharmacoepidemiology and Drug Safety, 21(6), 611–621. doi:10.1002/pds.3197
Cornelius, V. R., Sauzet, O., & Evans, S. J. W. (2012). A signal detection method to detect adverse drug reactions using a parametric time-to-event model in simu-lated cohort data. Drug Safety: An International Journal of Medical Toxicology and Drug Experience, 35(7), 599–610. doi:10.2165/11599740-000000000-00000
Deshpande, G., Gogolak, V., & Smith, S. W. (2010). Data Mining in Drug Safety: Re-view of Published Threshold Criteria for Defining Signals of Disproportionate Reporting. Pharmaceutical Medicine, 24(1), 37–43. doi:10.1007/BF03256796
Dumouchel, W. (1999). Bayesian Data Mining in Large Frequency Tables, with an Ap-plication to the FDA Spontaneous Reporting System. The American Statistician, 53(3), 177–190. doi:10.1080/00031305.1999.10474456
Hacker, M. P., Messer, W. S., & Bachmann, K. A. (2009). Pharmacology principles and practice. Amsterdam; Boston: Academic Press/Elsevier. Retrieved from http://public.eblib.com/EBLPublic/PublicView.do?ptiID=452816
Harpaz, R., Chase, H. S., & Friedman, C. (2010). Mining multi-item drug adverse effect associations in spontaneous reporting systems. BMC Bioinformatics, 11(Suppl 9), S7. doi:10.1186/1471-2105-11-S9-S7
Harpaz, R., Vilar, S., Dumouchel, W., Salmasian, H., Haerian, K., Shah, N. H., … Friedman, C. (2013). Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions. Journal of the American Medical Informatics Association: JAMIA, 20(3), 413–419. doi:10.1136/amiajnl-2012-000930
Jha, A. K., Kuperman, G. J., Teich, J. M., Leape, L., Shea, B., Rittenberg, E., … Bates, D. W. (1998). Identifying adverse drug events: development of a comput-er-based monitor and comparison with chart review and stimulated voluntary report. Journal of the American Medical Informatics Association: JAMIA, 5(3), 305–314.
Jin, H., Chen, J., He, H., Kelman, C., McAullay, D., & O’Keefe, C. M. (2010). Signal-ing Potential Adverse Drug Reactions from Administrative Health Databases. IEEE Transactions on Knowledge and Data Engineering, 22(6), 839–853. doi:10.1109/TKDE.2009.212
Johansson, S., Wallander, M.-A., de Abajo, F. J., & Garcia Rodriguez, L. A. (2010). Prospective drug safety monitoring using the UK primary-care General Practice Research Database: theoretical framework, feasibility analysis and extrapolation to future scenarios. Drug Safety: An International Journal of Medical Toxicol-ogy and Drug Experience, 33(3), 223–232. doi:10.2165/11319010-000000000-00000
Johnson, J. A. (1995). Drug-Related Morbidity and Mortality: A Cost-of-Illness Model. Archives of Internal Medicine, 155(18), 1949. doi:10.1001/archinte.1995.00430180043006
Kubota, K., Koide, D., & Hirai, T. (2004). Comparison of data mining methodologies using Japanese spontaneous reports. Pharmacoepidemiology and Drug Safety, 13(6), 387–394. doi:10.1002/pds.964
Kuperman, G. J., Bobb, A., Payne, T. H., Avery, A. J., Gandhi, T. K., Burns, G., … Bates, D. W. (2007). Medication-related clinical decision support in computer-ized provider order entry systems: a review. Journal of the American Medical Informatics Association: JAMIA, 14(1), 29–40. doi:10.1197/jamia.M2170
Lazarou, J., Pomeranz, B. H., & Corey, P. N. (1998). Incidence of adverse drug reac-tions in hospitalized patients: a meta-analysis of prospective studies. JAMA: The Journal of the American Medical Association, 279(15), 1200–1205.
Minino, A. M., Murphy, S. L., Xu, J., & Kochanek, K. D. (2011). Deaths: final data for 2008. National Vital Statistics Reports: From the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System, 59(10), 1–126.
National Health Insurance Administraction, Ministry of Health and Welfare. (2014, January 3). 藥品代碼與ATC碼對照. Retrieved from http://www.nhi.gov.tw/Resource/webdata/13733_1_藥品代碼與ATC碼對照-10212(上網).xls
Noren, G. N., Sundberg, R., Bate, A., & Edwards, I. R. (2008). A statistical methodol-ogy for drug-drug interaction surveillance. Statistics in Medicine, 27(16), 3057–3070. doi:10.1002/sim.3247
Orre, R., Lansner, A., Bate, A., & Lindquist, M. (2000). Bayesian neural networks with confidence estimations applied to data mining. Computational Statistics & Data Analysis, 34(4), 473–493. doi:10.1016/S0167-9473(99)00114-0
Park, M. Y., Yoon, D., Lee, K., Kang, S. Y., Park, I., Lee, S.-H., … Park, R. W. (2011). A novel algorithm for detection of adverse drug reaction signals using a hospital electronic medical record database. Pharmacoepidemiology and Drug Safety, 20(6), 598–607. doi:10.1002/pds.2139
Pharmaceutical data mining: approaches and applications for drug discovery. (2010). Hoboken, N.J: Wiley.
Sauzet, O., Carvajal, A., Escudero, A., Molokhia, M., & Cornelius, V. R. (2013). Illus-tration of the weibull shape parameter signal detection tool using electronic healthcare record data. Drug Safety: An International Journal of Medical Toxi-cology and Drug Experience, 36(10), 995–1006.
doi:10.1007/s40264-013-0061-7
Uppsala Monitoring Centre. (2013, April 22). VigiBase. Retrieved from http://www.who-umc.org/DynPage.aspx?id=98082&mn1=7347&mn2=7252&mn3=7322&mn4=7326
World Health Organization, & WHO Collaborating Centre for International Drug Mon-itoring. (2002). The importance of pharmacovigilance. [Geneva]: World Health Organization : Uppsala Monitoring Centre, WHO Collaborating Centre for In-ternational Drug Monitoring.
蔡雅婷, 陳文雯, & 蔡翠敏. (2014). 102 年度藥品不良品通報系統之案件分析. Drug Safety Newsletter, (45), 18–27.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5269-
dc.description.abstract藥物不良反應(Adverse Drug Reactions,簡稱ADRs)係指接受藥物治療後所產生的嚴重健康危害。更由於ADRs是當今主要死因之一,故妥善監視上市後藥物成為一重要課題。然而,傳統的失衡分析法(disproportionality analysis)與貝氏偵測方法(Bayesian signal detection)仰賴預先收集的ADR通報案例,以及需事先定義、無統一標準的門檻值,其偵測結果也經常無法一致。另一方面,用以進行偵測的資料集長久受限於兩個資料庫—美國FDA之FAERS與WHO之VigiBase,於這些資料庫的偵測也存在諸多困難。
為解決上述問題,本研究使用全民健康保險研究資料庫,以一週為單位聚合每位病患之歷史就診紀錄後,建立藥物與診斷先後關係。我們並提出一結合三種偵測分數:回歸t值(REG)、通報相對比例值(PRR)與通報相對勝算比(ROR)作為輸入特徵的新模型,用以偵測藥物不良反應。實驗結果顯示,相較單獨使用一種分數,結合三種偵測分數的新模型之準確度(Accuracy)最高有9.5%的提升。
zh_TW
dc.description.abstractAdverse Drug Reactions (ADRs) are fatal health problems due to medical treatments. ADRs are leading cause of death, and thus it is crucial to properly monitor post-marketing drugs. However, traditional disproportionality analysis and Bayesian signal detection depend on pre-collected ADR reports and a not universal, predefined threshold; the results are often inconsistent. Moreover, the available data sources were limited to two databases — U.S. FDA’s FAERS and WHO’s VigiBase; there are also several difficulties when detecting ADRs in these databases.
To address above problems, in this study, we proposed a model combining three detecting scores: regression’s t-value (REG), proportional reporting ratio (PRR), and reporting odds ratio (ROR), as features for detecting serious drug-ADR pairs from one-week aggregated patient-week information with precedence relationship between drugs and diagnoses, in an health insurance claims database NHIRD (National Health Insurance Research Database). We demonstrated that the proposed combined score led to an improvement (up to 9.5%) of signal detection accuracy over applying each of score independently.
en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:54:45Z (GMT). No. of bitstreams: 1
ntu-103-R01725015-1.pdf: 2138051 bytes, checksum: 368a745d6b69c48ead20bbff1762b478 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsTable of Contents i
List of Tables iii
List of Figures iv
Chapter 1 Introduction 1
Chapter 2 Literatures Review 4
2.1 ADR Signal Detection 4
2.1.1 Disproportionality Analysis (DPA) 6
2.1.2 Bayesian Signal Detection (BSD) 7
2.1.3 The Problems of Traditional Approaches for ADR Detection 9
2.1.4 Other Approaches for ADR Detection 10
2.2 The Data Sources Used for ADR Detection 11
2.3 Evaluating Performance in ADR Detection 12
Chapter 3 Data and Models 15
3.1 Data Source 16
3.2 Patient Week Aggregation 18
3.3 Feature Generation 19
3.4 Reference Standard 24
3.5 Evaluation 25
Chapter 4 Results 27
4.1 Signaling Performance 27
4.2 Marginal Improvement of Combined Model 28
4.3 Differences between ADRs 29
4.4 The Effect of Period Length 29
Chapter 5 Conclusion 31
5.1 Contributions 31
5.2 Managerial Implication 31
5.3 Limitations and Future Work 32
References 33
dc.language.isoen
dc.subject藥物不良反應zh_TW
dc.subject健康資料庫zh_TW
dc.subject訊號偵測zh_TW
dc.subject藥物安全監視zh_TW
dc.subject藥物主動監視zh_TW
dc.subjectsignal detectionen
dc.subjectpharmacovigilanceen
dc.subjectdrug safety surveillanceen
dc.subjectadministrative health databaseen
dc.subjectadverse drug reactionen
dc.title於健保資料庫中偵測藥物不良反應zh_TW
dc.titleDetecting Adverse Drug Reactions in Health Insurance Claims Dataen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曹承礎(Seng-Cho Chou),李昇暾(Sheng-Tun Li)
dc.subject.keyword藥物不良反應,訊號偵測,健康資料庫,藥物安全監視,藥物主動監視,zh_TW
dc.subject.keywordadverse drug reaction,signal detection,administrative health database,drug safety surveillance,pharmacovigilance,en
dc.relation.page37
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-07-22
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf2.09 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved