Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52699
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊全(Chiun-Chuan Chen)
dc.contributor.authorYen-Chi Leeen
dc.contributor.author李彥奇zh_TW
dc.date.accessioned2021-06-15T16:23:48Z-
dc.date.available2018-10-12
dc.date.copyright2015-10-12
dc.date.issued2015
dc.date.submitted2015-08-14
dc.identifier.citation[1] S. Hiyama et al., Molecular communication, Journal-Institute of Electronics Information and Communication Engineers, 2006.
[2] I. F. Akyildiz, F. Brunetti, and C. Blzquez, Nanonetworks: A new communication paradigm, Computer Networks (Elsevier) Journal, vol. 52, no. 12, pp. 2260-2279, 2008.
[3] M. Moore et al., A design of a molecular communication system for nanomachines using molecular motors, in Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom06), 2006.
[4] P. C. Yeh et al., A new frontier of wireless communication theory: diffusion-based molecular communications, IEEE Wireless Communications, vol. 19, no. 5, pp. 28-35, 2012.
[5] R. Freitas, Nanomedicine, Volume I: Basic Capabilities, Landes Biosience, 1999.
[6] A. W. Eckford, Achievable information rates for molecular communication with distinct molecules, Bio-Inspired Models of Network, Information and Computing Systems, 2007.
[7] M. U. Mahfuz, D. Makrakis, and H. T. Mouftah, A comprehensive study of concentration-encoded unicast molecular communication with binary pulse transmission, IEEE Conference on Nanotechnology (IEEE-NANO), 2011.
[8] B. Atakan, S. Galmes, and O. B. Akan, Nanoscale communication with molecular arrays in nanonetworks, IEEE Transactions on NanoBioscience, vol. 11, no. 2, pp.
149-160, 2012.
[9] J. Crank, The Mathematics of Diffusion, Oxford: Clarendon Press, 1956.
[10] B. Atakan and O. Akan, An information theoretical approach for molecular communications, Bio-Inspired Models of Network, Information and Computing Systems,
2007.
[11] A. Einstein, On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat, Annalen der physik, vol. 17, pp. 549-560, 1905.
[12] P. M orters and Y. Peres, Brownian motion, Vol. 30. Cambridge University Press, 2010.
[13] K. Srinivas, A. Eckford, and R. Adve, Molecular communication in fluid media: The additive inverse Gaussian noise channel, IEEE Trans. Inf. Theory, vol. 58, no. 7, pp. 4678-4692, 2012.
[14] J. L. Doob, Classical potential theory and its probabilistic counterpart, Springer-Verlag, 1984.
[15] R. Nevanlinna, Analytic functions, Berlin: Springer, 1970.
[16] R. Nevanlinna, Das harmonische Mass von Punktmengen und seine Anwendung in der Funktionentheorie, 8th Scand. Math. Congr., Stockholm, 1934.
[17] S. Kakutani, On Brownian motion in n-space, Proc. Acad. Japan, 20, pp. 648-652, 1944.
[18] E. B. Dynkin, Markov processes, Springer Berlin Heidelberg, 1965.
[19] B. Oksendal, Stochastic differential equations. Springer Berlin Heidelberg, 2003.
[20] L. Evans, Partial differential equations, American Mathematical Society, 1998.
[21] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second, Springer, 1977.
[22] A. D., Polyanin, Handbook of linear partial differential equations for engineers and scientists, CRC press, 2001.
[23] A. N. Tikhonov and A. A. Samariskii, Equations of mathematical physics, Courier Corporation, 1990.
[24] O.I. Marichev, Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables, Chichester, Ellis Horwood, 1983.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52699-
dc.description.abstractRecent technology enables people to design tiny machines in nano-scale. These nanomachines bring us new applications in many fields, such as biomedical and military technology. Since the nano-scale devices have limited size and energy, molecular communication (MC) becomes a promising communication approach for nanonetworks. In this article, we propose a new molecular communication model that uses the particle position to carry information.
To analyze the position modulation system, we consider the integral kernel of the steady-state convection diffusion equation:
△u+⃗v•∇u=0.
With the help of the Green's function of the Helmholtz equation, the integral kernel of the steady-state convection-diffusion equation can be written in explicit form. There is a close relation between the integral kernel of steady-state convection-diffusion equation and Brownian motion with drift. We discuss in this article why the integral kernel can be interpreted as the hitting position distribution of a Brownian motion particle. With the hitting distribution, we derive the optimal detection rule for the proposed MC system, and analyze the bit error rate performance for the zero drift case. For the non-zero drift case, we derive an approximated representation for the detection boundary.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:23:48Z (GMT). No. of bitstreams: 1
ntu-104-R02221023-1.pdf: 818982 bytes, checksum: 41f671dc9ea26483df78d9835d84be93 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents1 Introduction......................................... 1
1.1 A Short Introduction to Molecular Communication.. 1
1.2 Harmonic Measure: A Link Between Probability and PDE Theory............................................. 3
2 A Relation Between Integral Kernel and First Hitting Position............................................... 4
2.1 The Dynkin Formula............................... 4
2.2 Finding First Hitting Position Distribution...... 5
3 Integral Kernel for Steady-State Convection-Diffusion Equation............................................... 8
3.1 Steady-State Convection-Diffusion Equation....... 8
3.2 The Helmholtz Equation........................... 9
3.3 Representation Formula for the Integral Kernel.. 10
4 Detection Problem for Binary Position Modulation.... 12
4.1 Detection for Zero Drift Case................... 12
4.2 Detection for Non-Zero Drift Case............... 15
Reference............................................. 19
dc.language.isoen
dc.subject分子通信zh_TW
dc.subject布朗運動zh_TW
dc.subject信號偵測zh_TW
dc.subject調變zh_TW
dc.subject對流擴散zh_TW
dc.subjectBrownian motionen
dc.subjectMolecular communicationen
dc.subjectconvection-diffusionen
dc.subjectmodulationen
dc.subjectsignal detectionen
dc.title對流擴散方程的積分核及其在分子通信上的應用zh_TW
dc.titleIntegral Kernel of Steady-State Convection-Diffusion Equation and Its Application to Molecular Communicationen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳宜良(I-Liang Chern),葉丙成(Ping-Cheng Yeh),夏俊雄(Chun-Hsiung Hsia),林太家(Tai-Chia Lin)
dc.subject.keyword分子通信,對流擴散,布朗運動,調變,信號偵測,zh_TW
dc.subject.keywordMolecular communication,convection-diffusion,Brownian motion,modulation,signal detection,en
dc.relation.page20
dc.rights.note有償授權
dc.date.accepted2015-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
799.79 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved