Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52697
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor毛明華(Ming-Hua Mao)
dc.contributor.authorZhen Gengen
dc.contributor.author耿震zh_TW
dc.date.accessioned2021-06-15T16:23:44Z-
dc.date.available2020-08-17
dc.date.copyright2015-08-17
dc.date.issued2015
dc.date.submitted2015-08-14
dc.identifier.citation1. Y. Jun, P. Bhattacharya, and Z. Mi, 'High-Performance In<sub>0.5</sub>Ga<sub>0.5</sub> As/GaAs Quantum-Dot Lasers on Silicon With Multiple-Layer Quantum-Dot Dislocation Filters,' Electron Devices, IEEE Transactions on 54, 2849-2855 (2007).
2. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, 'Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,' Nat Photon 5, 416-419 (2011).
3. E.-T. Kim, A. Madhukar, Z. Ye, and J. C. Campbell, 'High detectivity InAs quantum dot infrared photodetectors,' Applied Physics Letters 84, 3277-3279 (2004).
4. E. M. Purcell, 'Spontaneous Emission Probabilities at Radio Frequencies,' 69(11- 1), 681 (1946).
5. G. Shan, X. Zhao, M. Hu, C.-H. Shek, and W. Huang, 'Vertical-external-cavity surface-emitting lasers and quantum dot lasers,' Front. Optoelectron. 5, 157-170 (2012).
6. S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, 'Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,' Applied Physics Letters 78, 1023-1025 (2001).
7. K. J. Vahala, 'Optical microcavities,' Nature 424, 839-846 (2003).
8. 盧廷昌, and 王興宗, Introduction to Semiconductor Lasers (五南, 2008).
9. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, 2013).
10. A. Yariv, 'Universal relations for coupling of optical power between microresonators and dielectric waveguides,' Electronics Letters 36, 321-322 (2000).

11. C.-H. chu, 'Monolithic Waveguide-Coupled InAs Quantum-Dot Microdisk Modulators,' in Graduate Institute of Photonics and Optoelectronics(National Taiwan University, 2014).
12. A. G. Baca, and C. I. H. Ashby, 'Fabrication of GaAs devices,' (Institution of Engineering and Technology, 2005).
13. I. Lee, 'Influence of Device Structures on Current-injection Microdisk Laser Characteristics,' in Graduate Institute of Electronics Engineering(National Taiwan University, 2013).
14. H. Lim, S. Tsao, W. Zhang, and M. Razeghi, 'High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature,' Applied Physics Letters 90, 131112 (2007).
15. H. Dehdashti Jahromi, M. H. Sheikhi, and M. H. Yousefi, 'Investigation of the quantum dot infrared photodetectors dark current,' Optics & Laser Technology 43, 1020-1025 (2011).
16. D. M. T. Kuo, A. Fang, and Y. C. Chang, 'Theoretical modeling of dark current and photo-response for quantum well and quantum dot infrared detectors,' Infrared Physics & Technology 42, 433-442 (2001).
17. D.Bimberg, M.Grundmann, and N.N.Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1999).
18. Z. Zhang, and R. A. Hogg, 'Post-Growth Intermixing of GaAs Based Quantum Dot Devices,' in Quantum Dot Devices, Z. M. Wang, ed. (Springer New York, 2012), pp. 109-130.
19. P.Lever, H.H.Tan, and C.Jagadish, J.Appl. Phys. 96,7544 (2004).
20. H. S. Lee, A. Rastelli, S. Kiravittaya, P. Atkinson, C. C. Bof Bufon, I. M&ouml;nch, and O. G. Schmidt, 'Selective area wavelength tuning of InAs/GaAs quantum dots obtained by TiO2 and SiO2 layer patterning,' Applied Physics Letters 94, 161906 (2009).
21. L. M. Herz, L. V. Dao, M. B. Johnston, M. Gal, and C. Jagadish, 'Observation of state filling effects in the carrier dynamics of self-assembled quantum dots,' in Optoelectronic and Microelectronic Materials Devices, 1998. Proceedings. 1998 Conference on(1998), pp. 344-347.
22. D. G. Deppe, L. J. Guido, N. Holonyak, K. C. Hsieh, R. D. Burnham, R. L. Thornton, and T. L. Paoli, 'Stripe‐geometry quantum well heterostructure AlxGa1−xAs‐GaAs lasers defined by defect diffusion,' Applied Physics Letters 49, 510-512 (1986).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52697-
dc.description.abstract本文的研究主題為單石波導耦合式砷化銦量子點微碟光偵測器。
元件是由微碟共振腔搭配截面漸變波導(tapered waveguide),以單石(Monolithic)製程做在含量子點砷化鎵材料上。共振腔上下為一垂直的PIN結構,中間以三層砷化銦/砷化鎵量子點為主動層,操作波長在1140nm。與其他主動材料相比,量子點可達到極低的暗電流,有助於改善信噪比和提升響應率。
此外,使用微碟結構,除了有效減小元件的共振腔體積,以利在積體光路中應用,更大大提升了量子點的吸收效率,對光偵測器的響應率也是有著重要影響;而其模態選擇特性也有利於在波長分波多工(wavelength-division multiplexing ,WDM)上的要求。
對於本文中製作光偵測器的砷化銦量子點樣品(DO3525),我們利用無雜質空位擴散法,以二氧化矽/二氧化鈦作披覆層,實際展現了選擇性區域量子點混合效應。期望未來能將這項技術和元件製程結合,得以彈性的調變材料發光波段,以做更廣泛的應用。
zh_TW
dc.description.abstractIn this thesis, we demonstrate the monolithic waveguide coupled microdisk photodetector based on InAs quantum dots.
By embedding InAs self-assembled quantum dots (QDs) in a GaAs-based microdisk cavity, a resonant-cavity-enhanced waveguide photodetector (PD) using monolithic processing is experimentally demonstrated around 1140 nm wavelength. The microdisk resonant cavity is a vertical PIN diode with three InAs/GaAs QD active layers. QD structures provide better performances such as ultra-low dark current, which contributes to high responsivity and signal-to-noise-ratio, in comparison with other active materials.
Microdisk structures efficiently enhance the absorption of InAs QDs. In addition, their compact size makes it suitable for integrated optics. Furthermore, the wavelength selectivity of the disk resonant cavity also makes the PD preferable for wavelength-division multiplexing.
Moreover, from our InAs quantum dots sample (DO3525), we have successfully demonstrated the selective area quantum dots intermixing by the IFVD technique using SiO2/TiO2 cladding layers. We expect to apply this method to our QD devices in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:23:44Z (GMT). No. of bitstreams: 1
ntu-104-R02941047-1.pdf: 2222726 bytes, checksum: f91a6b72bb8f119ee555fbe6e6cb4b38 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 i
Abstarct ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 序論 1
1.1積體光學概述 1
1.2 波導耦合式微碟量子點光偵測器 3
1.3論文章節簡介 6
第二章 元件理論介紹 7
2.1 量子點 8
2.2微共振腔 11
2.2.1 迴音廊模態推導 12
2.2.2 品質因子 17
2.3樣品結構設計 20
第三章 元件結構和製程 22
3.1 樣品磊晶層結構 22
3.2 樣品製程步驟 24
3.2.1薄膜沉積(PECVD) 24
3.2.2電子束微影(E-Beam Lithography) 24
3.2.3乾式蝕刻(一)(RIE) 25
3.2.4乾式蝕刻(二)(ICPRIE) 26
3.2.5平坦化(Planarization) 28
3.2.6正面電極_二次曝光(2nd Photoligraphy) 29
3.2.7正面電極鍍金和掀離(e-gun evaporation & lift off) 30
3.2.8磨薄(grinding) 31
3.2.9背面電極鍍金(thermal evaporation) 31
3.2.10快速熱退火和樣品安裝(RTA & mount) 32
第四章 實驗量測與結果分析討論 33
4.1 電注入與穿透頻譜量測架構 34
4.2 光偵測器樣品穿透頻譜量測 36
4.3 光偵測器樣品I-V量測 44
4.4 分析討論 48
4.4.1 共振模態和品質因子 51
4.4.2 響應率和量子效率 56
第五章 選擇性區域量子點混合效應 58
5.1 選擇性量子混合效應介紹 59
5.2 量子點快速熱退火實驗 63
5.3 樣品光激螢光量測 65
5.4 分析討論 67
第六章 結論 77
6.1 總結 77
6.2 未來工作 78
參考文獻 79
dc.language.isozh-TW
dc.subject砷化銦量子點zh_TW
dc.subject微碟共振腔zh_TW
dc.subject光偵測器zh_TW
dc.subjectInAs Quantum Dotsen
dc.subjectPhotodetectorsen
dc.subjectMicrodisken
dc.title單石波導耦合式砷化銦量子點微碟光偵測器zh_TW
dc.titleMonolithic Waveguide Coupled Microdisk Photodetectors based on InAs Quantum Dotsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林浩雄(Hao-Hsiung Lin),黃鼎偉(Ding-wei Huang)
dc.subject.keyword光偵測器,砷化銦量子點,微碟共振腔,zh_TW
dc.subject.keywordMicrodisk,Photodetectors,InAs Quantum Dots,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2015-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved