請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52685完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝志豪(Chih-hao Hsieh) | |
| dc.contributor.author | Fan-Sian Lin | en |
| dc.contributor.author | 林梵絃 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:23:14Z | - |
| dc.date.available | 2015-08-17 | |
| dc.date.copyright | 2015-08-17 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-15 | |
| dc.identifier.citation | References
Adams GL, Pichler DE, Cox EJ, O'Gorman EJ, Seeney A, Woodward G, Reuman DC (2013) Diatoms can be an important exception to temperature–size rules at species and community levels of organization. Glob Change Biol 19:3540-3552 Álvarez E, López-Urrutia Á, Nogueira E, Fraga S (2011) How to effectively sample the plankton size spectrum? A case study using FlowCAM. J Plankton Res 33:1119-1133 Álvarez E, Moyano M, López-Urrutia Á, Nogueira E, Scharek R (2013) Routine determination of plankton community composition and size structure: a comparison between FlowCAM and light microscopy. J Plankton Res 36:170-184 Atkinson D (1994) Temperature and organism size—a biological law for ectotherms? Advances in Ecological Research 25:1-58 Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37:257-272 Brown JH, Gillooly JF (2003) Ecological food webs: high-quality data facilitate theoretical unification. Proc Natl Acad Sci USA 100:1467-1468 Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771-1789 Calbet A (2001) Mesozooplankton grazing effect on primary production: a global comparative analysis in marine ecosystems. Limnol Oceanogr 46:1824-1830 Cavender-Bares KK, Rinaldo A, Chisholm SW (2001) Microbial size spectra from natural and nutrient enriched ecosystems. Limnol Oceanogr 46:778-789 Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York Damuth J (1987) Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy‐use. Biol J Linnean Soc 31:193-246 Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci USA 106:12788-12793 Emmrich M, Pédron S, Brucet S, Winfield IJ, Jeppesen E, Volta P, Argillier C, Lauridsen TL, Holmgren K, Hesthagen T (2014) Geographical patterns in the body‐size structure of European lake fish assemblages along abiotic and biotic gradients. J Biogeogr 41:2221-2233 García-Muñoz C, García CM, Lubián LM, López-Urrutia Á, Hernández-León S, Ameneiro J (2014) Metabolic state along a summer north–south transect near the Antarctic Peninsula: a size spectra approach. J Plankton Res 36:1074-1091 Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248-2251 Gong G-C, Shiah F-K, Liu K-K, Wen Y-H, Liang M-H (2000) Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrography in the southern East China Sea. Cont Shelf Res 20:411-436 Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment1. Limnol Oceanogr 33:796-822 Huete-Ortega M, Calvo-Díaz A, Graña R, Mouriño-Carballido B, Marañón E (2011) Effect of environmental forcing on the biomass, production and growth rate of size-fractionated phytoplankton in the central Atlantic Ocean. J Mar Syst 88:203-213 Huete-Ortega M, Cermeño P, Calvo-Díaz A, Marañón E (2012) Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton. Proc R Soc B 279:1815-1823 Ide K, Takahashi K, Kuwata A, Nakamachi M, Saito H (2008) A rapid analysis of copepod feeding using FlowCAM. J Plankton Res 30:275-281 Irwin AJ, Finkel ZV, Schofield OME, Falkowski PG (2006) Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. J Plankton Res 28:459-471 Jan S, Yang YJ, Wang J, Mensah V, Kuo TH, Chiou MD, Chern CS, Chang MH, Chien H (2015) Large variability of the Kuroshio at 23.75° N east of Taiwan. J Geophys Res Jennings S (2005) Size-based analyses of aquatic food webs. In: Belgrano A, Scharler UM, Dunne J, Ulanowicz RE (eds) Aquatic food webs: an ecosystem approach. Oxford, Oxford University Press Juhl AR, Murrell MC (2005) Interactions between nutrients, phytoplankton growth, and microzooplankton grazing in a Gulf of Mexico estuary. Aquat Microb Ecol 38:147-156 Ki?rboe T (1993) Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv Mar Biol 29:1-72 Lewandowska AM, Boyce DG, Hofmann M, Matthiessen B, Sommer U, Worm B (2014) Effects of sea surface warming on marine plankton. Ecol Lett 17:614-623 Li WKW (2002) Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419:154-157 Liu K-K, Pai S-C, Liu C-T (1988) Temperature-nutrient relationships in the Kuroshio and adjacent waters near Taiwan. Acta Oceanographica Taiwanica:1-17 Maranón E, Cermeno P, Latasa M, Tadonléké RD (2012) Temperature, resources, and phytoplankton size structure in the ocean. Limnol Oceanogr 57:1266-1278 Marquet PA, Quiñones RA, Abades S, Labra F, Tognelli M, Arim M, Rivadeneira M (2005) Scaling and power-laws in ecological systems. J Exp Biol 208:1749-1769 Matsuno K, Yamaguchi A, Imai I (2012) Biomass size spectra of mesozooplankton in the Chukchi Sea during the summers of 1991/1992 and 2007/2008: an analysis using optical plankton counter data. ICES J Mar Sci 69:1205-1217 Maury O, Shin Y-J, Faugeras B, Ari TB, Marsac F (2007) Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 2: Simulations. Prog Oceanogr 74:500-514 Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569-579 Montagnes DJS, Berges JA, Harrison PJ, Taylor FJR (1994) Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol Oceanogr 39:1044-1060 Morán XAG, LÓPEZ‐URRUTIA Á, CALVO‐DÍAZ A, Li WKW (2010) Increasing importance of small phytoplankton in a warmer ocean. Glob Change Biol 16:1137-1144 Mousing EA, Ellegaard M, Richardson K (2014) Global patterns in phytoplankton community size structure-evidence for a direct temperature effect. Mar Ecol Prog Ser 497:25-38 O'Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7:e1000178 Parsons TR (1969) The use of particle size spectra in determining the structure of a plankton community. J Oceanogr Soc Japan 25:172-181 Peter KH, Sommer U (2012) Phytoplankton cell size: intra-and interspecific effects of warming and grazing. PLoS ONE 7:e49632 Peter KH, Sommer U (2013) Phytoplankton cell size reduction in response to warming mediated by nutrient limitation. PLoS ONE 8:e71528 Pitcher GC, Brown PC, Mitchell-Innes BA (1992) Spatio-temporal variability of phytoplankton in the southern Benguela upwelling system. S Afr J Mar Sci 12:439-456 Platt T, Denman K (1977) Organisation in the pelagic ecosystem. Helgoländ Wiss Meer 30:575-581 Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097-1103 Quinones RA, Platt T, Rodríguez J (2003) Patterns of biomass-size spectra from oligotrophic waters of the Northwest Atlantic. Prog Oceanogr 57:405-427 Rüger T, Sommer U (2012) Warming does not always benefit the small–results from a plankton experiment. Aquat Bot 97:64-68 Reul A, Rodríguez V, Jiménez-Gómez F, Blanco JM, Bautista B, Sarhan T, Guerrero F, Ruíz J, Garcia-Lafuente J (2005) Variability in the spatio-temporal distribution and size-structure of phytoplankton across an upwelling area in the NW-Alboran Sea,(W-Mediterranean). Cont Shelf Res 25:589-608 San Martin E, Irigoien X, Harris PR, Urrutia ÂL, Zubkov MV, Heywood JL (2006) Variation in the transfer of energy in marine plankton along a productivity gradient in the Atlantic Ocean. Limnol Oceanogr 51:2084-2091 Sheldon RW, Prakash A, Sutcliffe WH (1972) The size distribution fo particles in the ocean. Limnol Oceanogr 17:327-340 Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nature Clim Change 1:401-406 Sommer U (1985) Comparison between steady state and non‐steady state competition: experiments with natural phytoplankton. Limnol Oceanogr 30:335-346 Sprules WG, Munawar M (1986) Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can J Fish Aquat Sci 43:1789-1794 Thygesen UH, Farnsworth KD, Andersen KH, Beyer JE (2005) How optimal life history changes with the community size-spectrum. Proc R Soc B 272:1323-1331 Verity PG, Lagdon C (1984) Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J Plankton Res 6:859-868 Vidondo B, Prairie YT, Blanco JM, Duarte CM (1997) Some aspects of the analysis of size spectra in aquatic ecology. Limnol Oceanogr 42:184-192 Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, Warren PH (2005) Body size in ecological networks. Trends Ecol Evol 20:402-409 Yvon‐Durocher G, Montoya JM, Trimmer M, Woodward G (2011) Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob Change Biol 17:1681-1694 Zarauz L, Irigoien X, Fernandes JA (2009) Changes in plankton size structure and composition, during the generation of a phytoplankton bloom, in the central Cantabrian sea. J Plankton Res 31:193-207 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52685 | - |
| dc.description.abstract | 本研究,探究海洋生態系中植物性浮游生物(phytoplankton; 以下簡稱植浮)之大小結構變動與環境因子時空變化之相關性。本研究中以體型大小頻譜之斜率作為植浮群集變動的指標,探究臺灣東部貧營養鹽之黑潮流域(Kuroshio)的表層海域中,植浮大小頻譜的時空變化。然而,在黑潮水域中的營養鹽濃度除冬季外,濃度非常低,原因是受到強烈的海水成層效應及生物快速利用營養鹽。因此,在本研究中使用植浮總生物量作為可用資源量指標。研究結果指出,黑潮水溫變動有明顯季節性變化,水溫與植浮大小頻譜斜率呈現負相關,與前人研究結果相異。可用資源量與植浮大小頻譜之相關性則隨季節變動而有所不同:小個體因有相對高的個體表面積與體積比值,吸收可用資源量的速度快於大個體,因此小生物個體先爆發;到夏秋兩季,由於環境中可用資源量已累積,且大個體贏得可用資源量競爭,因此大個體較佔優勢。但隨著溫度升高,可用資源量逐漸減少,大小頻譜之斜率也隨之下降,此時是依循著可用資源量與大小之相關性理論,當可用資源量減低時,小個體會越佔優勢;但到冬季,水溫再度變冷,可用資源量再次升高時,小個體生物會再次佔有優勢,大小頻譜斜率呈現較傾斜。簡而言之,我們發現在黑潮水域中,植浮大小頻譜之變動主要受到可用資源量之變動影響。 | zh_TW |
| dc.description.abstract | We examined the relationship between phytoplankton normalized biovolume size spectral (NBSS) slopes versus hydrographic variables in the Kuroshio region east of Taiwan and tested two classic hypotheses. First, phytoplankton size structure follows temperature-size relationship that the NBSS slopes become steeper with increasing temperature. Second, resource-size relationship prevails for phytoplankton, of which NBSS slopes become shallower with nutrient enrichment. Here, we used total biomass of phytoplankton community as a proxy for resource supply instead of more commonly used inorganic nutrients because inorganic nutrients are deplete and cannot be a reliable proxy for resource supply in oligotrophic oceans. Our results do not support the temperature-size relationship, as NBSS slopes became shallower with increasing temperature. In contrast, we found a positive relationship between NBSS slopes versus total biomass, generally supporting the resource-size relationship. The only exception occurred in spring, during which the NBSS slopes deviated downward from the regression. In spring, we observed that small cells were dominant as nutrient pulses in the Kuroshio region, which is contrast to expectation from the resource-size relationship. This discrepancy can be explained by the none-steady state theory, where in the initial stage of nutrient enrichments in oligotrophic regions in spring, that small cells with a high surface-area-to-volume ratio uptake nutrients faster than the larger ones. Later in summer and early autumn, NBSS slopes became shallower because large phytoplankton won the competition after nutrient enrichments and/or predators ate small phytoplankton. In autumn and winter, NBSS slopes became steeper again when nutrients were barren. In general, phytoplankton size structures in the Kuroshio east of Taiwan can be explained by the resource-size relationship; nevertheless, the none-equilibrium condition needs to be taken into consideration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:23:14Z (GMT). No. of bitstreams: 1 ntu-104-R01241202-1.pdf: 4275281 bytes, checksum: 52933b4676716ec89a8a64309e0318e2 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目 錄
口試委員會審定書 ii 致謝 iii 中文摘要 iv Abstract v 1. Introduction 1 2. Methods and Materials 4 2.1 Phytoplankton Sampling 4 2.2 Environmental variables 4 2.3 FlowCAM® analysis 5 2.4 Data analysis 6 3. Result 7 3.1 Scaling of phytoplankton size spectrum 7 3.2 Phytoplankton size spectra in relation to temperature and resource availability 7 4. Discussion 9 4.1 Resource-size relationship, but not Temperature-size relationship, is supported in the Kuroshio east of Taiwan 9 4.2 Seasonal cycle of phytoplankton size structure in the Kuroshio east of Taiwan and speculation of top-down control on phytoplankton community 10 4.3 Compare the scaling of phytoplankton NBSS slopes in the Kuroshio east of Taiwan with previous studies 11 4.4. Change of NBSS slope as a consequence of shift in phytoplankton community 12 5. Conclusion 13 6. Reference 14 圖目錄 Figure 1. Map illustrating study sites in the Kuroshio east of Taiwan. …………………………….18 Figure 2. Temporal and spatial variation of (a) NBSS slopes, (b) temperature, (c) DIN, (d) PO4 and (e) SiO2 in the Kuroshio east of Taiwan from the most inshore station (0 km in x-axis) to the most offshore station (200 km) …………………………………………………………………………. 19 Figure 3. Seasonal variation of nutrient conditions for (a) DIN, (b) PO4, and (c) SiO2.……………20 Figure 4. An example of Normalized biovolume size spectrum (NBSS)..……………………….21 Figure 5. The relationship between NBSS slopes versus mean temperature .…………………...22 Figure 6. The relationship between NBSS slopes against resource availability……………………23 Figure 7. Seasonal variation of resource availability, temperature, and NBSS slope .......................24 Figure 8. The relationship between NBSS slopes against the percentage of diatom in the microphytoplankton community.........................……………………………………………...……25 表目錄 Table 1. Comparison of NBSS slopes at various locations reported in the literature…………......26 附件目錄 Appendix 1. Sampling cruises………………………………………………………………………29 Appendix 2. Depth-integrated average of environmental variables above the mixed layer depth..30 Appendix 3. Conversion factors from the cell volume to carbon used in this study…..……………32 Appendix 4. NBSS slopes and results of regression analyses for the phytoplankton size structure..33 Appendix 5. Mixed layer depth and coordinates of each sampling station………………....………35 Appendix 6. The relationship between NBSS slopes versus (a) DIN, (b) PO4, and (c) SiO2…….37 Appendix 7. T-S diagram for the sampling sites in the Kuroshio east of Taiwan…………….……38 | |
| dc.language.iso | en | |
| dc.subject | 個體大小結構 | zh_TW |
| dc.subject | 浮游植物 | zh_TW |
| dc.subject | 體型大小頻譜 | zh_TW |
| dc.subject | 營養鹽限制 | zh_TW |
| dc.subject | 貧營養鹽海域 | zh_TW |
| dc.subject | 溫度與個體大小之關係 | zh_TW |
| dc.subject | 可用資源量與個體大小之關係 | zh_TW |
| dc.subject | oligotrophic oceans | en |
| dc.subject | size structure | en |
| dc.subject | normalized biovolume size spectrum | en |
| dc.subject | temperature-size relationship | en |
| dc.subject | resource-size relationship | en |
| dc.subject | nutrient limitation | en |
| dc.subject | phytoplankton | en |
| dc.title | 可利用資源量對臺灣東部黑潮區植物性浮游生物體型大小結構季節性變化之影響 | zh_TW |
| dc.title | Resource availability determines seasonal variation of phytoplankton size structure in the Kuroshio east of Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳仲吉,蔣國平,夏復國,仲澤剛史 | |
| dc.subject.keyword | 浮游植物,個體大小結構,體型大小頻譜,溫度與個體大小之關係,可用資源量與個體大小之關係,營養鹽限制,貧營養鹽海域, | zh_TW |
| dc.subject.keyword | phytoplankton,size structure,normalized biovolume size spectrum,temperature-size relationship,resource-size relationship,nutrient limitation,oligotrophic oceans, | en |
| dc.relation.page | 38 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
