請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52674完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃鵬林(Pung-Ling Huang),杜宜殷(Yi-Ying Do) | |
| dc.contributor.author | Hsin-Yuan Fang | en |
| dc.contributor.author | 方信淵 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:22:47Z | - |
| dc.date.available | 2020-08-28 | |
| dc.date.copyright | 2015-08-28 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-15 | |
| dc.identifier.citation | 1. Andersson, S.G.E. and C.G. Kurland. 1991. An extreme codon preference strategy codon reassignment. Mol. Biol. Evol. 8:530-544. 2. Barnes, H.J., M.P. Arlotto, and M.R. Waterman. 1991. Expression and enzymatic-activity of recombinant cytochrome-P450 17-alpha-hydroxylase in Escherichia coli. P. Natl. Acad. Sci. USA 88:5597-5601. 3. Blixt, O., K. Allin, L. Pereira, A. Datta, and J.C. Paulson. 2002. Efficient chemoenzymatic synthesis of O-linked sialyl oligosaccharides. J. Am. Chem. Soc. 124:5739-5746. 4. Blowers, A.D., G.S. Ellmore, U. Klein, and L. Bogorad. 1990. Transcriptional analysis of endogenous and foreign genes in chloroplast transformants of chlamydomonas. Plant Cell 2:1059-1070. 5. Briza, J., J. Vlasak, S. Ryba, V. Ludvikova, and H. Niedermeierova. 2013. Transformation of tobacco CPdna with fusion E7GGG/GUS gene and homologous recombination mediated elimination of the marker gene. Biotechnol. Biotech. 27:3644-3648. 6. Chen, H.C. and A. Melis. 2013. Marker-free genetic engineering of the chloroplast in the green microalga Chlamydomonas reinhardtii. Plant Biotechnol. J. 11:818-828. 7. Clarke, J.L. and H. Daniell. 2011. Plastid biotechnology for crop production: present status and future perspectives. Plant Mol. Biol. 76:211-220. 8. Croft, M.T., M. Moulin, M.E. Webb, and A.G. Smith. 2007. Thiamine biosynthesis in algae is regulated by riboswitches. P. Natl. Acad. Sci. USA 104:20770-20775. 9. Dale, P.J., B. Clarke, and E.M.G. Fontes. 2002. Potential for the environmental impact of transgenic crops. Nat. Biotechnol. 20:567-574. 10. Daniell, H., S. Chebolu, S. Kumar, M. Singleton, and R. Falconer. 2005. Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779-1783. 11. Day, A. and M. Goldschmidt-Clermont. 2011. The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol. J. 9:540-553. 12. Demurtas, O.C., S. Massa, P. Ferrante, A. Venuti, R. Franconi, and G. Giuliano. 2013. A Chlamydomonas-Derived Human Papillomavirus 16 E7 Vaccine Induces Specific Tumor Protection. PLOS One 8. DOI: 10.1371/journal.pone.0061473 13. 14. Dhingra, A., A.R. Portis, and H. Daniell. 2004. Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. P. Natl. Acad. Sci. USA 101:6315-6320. 15. Fischer, R., K. Hoffmann, S. Schillberg, and N. Emans. 2000. Antibody production by molecular farming in plants. J. Biol. Reg. Homeos. Ag. 14:83-92. 16. Franconi, R., O.C. Demurtas, and S. Massa. 2010. Plant-derived vaccines and other therapeutics produced in contained systems. Expert. Rev. Vaccines 9:877-892. 17. Franklin, S., B. Ngo, E. Efuet, and S.P. Mayfield. 2002. Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J. 30:733-744. 18. Fuhrmann, M., W. Oertel, and P. Hegemann. 1999. A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J. 19:353-361. 19. Gaffron, H. 1939. Reduction of carbon dioxide with molecular hydrogen in green algae. Nature 143:204-205. 20. Gangl, D., J.A.Z. Zedler, A. Wlodarczyk, P.E. Jensen, S. Purton, and C. Robinson. 2015. Expression and membrane-targeting of an active plant cytochrome P450 in the chloroplast of the green alga Chlamydomonas reinhardtii. Phytochemistry 110:22-28. 21. Georgianna, D.R., M.J. Hannon, M. Marcuschi, S.Q. Wu, K. Botsch, A.J. Lewis, J. Hyun, M. Mendez, and S.P. Mayfield. 2013. Production of recombinant enzymes in the marine alga Dunaliella tertiolecta. Algal Res. 2:2-9. 22. Goldschmidtclermont, M. 1991. Transgenic Expression of Aminoglycoside adenine transferase in the chloroplast - a selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res. 19:4083-4089. 23. Gouy, M. and C. Gautier. 1982. Codon usage in bacteria-correlation with gene expressivity. Nucleic Acids Res. 10:7055-7074. 24. Gregory, J.A., F.W. Li, L.M. Tomosada, C.J. Cox, A.B. Topol, J.M. Vinetz, and S. Mayfield. 2012. Algae-produced pfs25 elicits antibodies that inhibit malaria transmission. Plos One 7. 25. Griesbeck, C., I. Kobl, and M. Heitzer. 2006. Chlamydomonas reinhardtii. Mol. Biotechnol. 34:213-223. 26. Hajdukiewicz, P.T.J., L.A. Allison, and P. Maliga. 1997. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J. 16:4041-4048. 27. Harwood, W.A., S.M. Ross, P. Cilento, and J.W. Snape. 2000. The effect of DNA/gold particle preparation technique, and particle bombardment device, on the transformation of barley (Hordeum vulgare). Euphytica 111:67-76. 28. He, D.M., K.X. Qian, G.F. Shen, Z.F. Zhang, Y.N. Li, Z.L. Su, and H.B. Shao. 2007. Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. Colloid. Surface B. Biointerfaces. 55:26-30. 29. Iida, A., T. Yamashita, Y. Yamada, and H. Morikawa. 1991. Efficiency of particle-bombardment-mediated transformation is influenced by cell-cycle stage in synchronized cultured-cells of tobacco. Plant Physiol. 97:1585-1587. 30. Ishikura, K., Y. Takaoka, K. Kato, M. Sekine, K. Yoshida, and A. Shinmyo. 1999. Expression of a foreign gene in Chlamydomonas reinhardtii chloroplast. J. Biosci. Bioeng. 87:307-314. 31. Juntadech, T., K. Yokthongwattana, S. Tangphatsornruang, Y-K. Yap, G. Katzenmeier, and C. Angsuthanasombat. 2012. Efficient transcription of the larvicidal cry4Ba gene from Bacillus thuringiensis in transgenic chloroplasts of the green algal Chlamydomonas reinhardtii. Adv. Biosci. Biotechnol. 03:362-369. 32. Klein, T.M., L. Kornstein, J.C. Sanford, and M.E. Fromm. 1989. Genetic transformation of maize cells by particle bombardment. Plant Physiol. 91:440-444. 33. Klein, U., J.D. Decamp, and L. Bogorad. 1992. Two types of chloroplast gene promoters in Chlamydomonas reinhardtii. P. Natl. Acad. Sci. USA 89:3453-3457. 34. Kuroda, H. and P. Maliga. 2001. Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol. 125:430-436. 35. Lagali, P.S., D. Balya, G.B. Awatramani, T.A. Munch, D.S. Kim, V. Busskamp, C.L. Cepko, and B. Roska. 2008. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat. Neurosci. 11:667-675. 36. Lentz, E.M., M.E. Segretin, M.M. Morgenfeld, S.A. Wirth, M.J.D. Santos, M.V. Mozgovoj, A. Wigdorovitz, and F.F. Bravo-Almonacid. 2010. High expression level of a foot and mouth disease virus epitope in tobacco transplastomic plants. Planta 231:387-395. 37. Li, X.M., Z.F. Xu, Y.N. He, Q.X. Yao, K.S. Zhang, M.L. Jin, H.C. Chen, and P. Qian. 2006. Genome comparison of a novel classical swine fever virus isolated in China in 2004 with other CSFV strains. Virus Genes 33:133-142. 38. Liu, C.W., C.C. Lin, J.J.W. Chen, and M.J. Tseng. 2007. Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep. 26:1733-1744. 39. Magee, E.A., R. Curno, L.M. Edmond, and J.H. Cummings. 2004. Contribution of dietary protein and inorganic sulfur to urinary sulfate: toward a biomarker of inorganic sulfur intake. Am. J. Clin. Nutr. 80:137-142. 40. Mayfield, S.P., A.L. Manuell, S. Chen, J. Wu, M. Tran, D. Siefker, M. Muto, and J. Marin-Navarro. 2007. Chlamydomonas reinhardtii chloroplasts as protein factories. C. opinion biotechnol. 18:126-133. 41. Merchant, S.S., S.E. Prochnik, O. Vallon. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245-251. 42. Meyers, A., E. Chakauya, E. Shephard, F.L. Tanzer, J. Maclean, A. Lynch, A.L. Williamson, and E.P. Rybicki. 2008. Expression of HIV-1 antigens in plants as potential subunit vaccines. Bmc. Biotechnol. 8. 43. Meyers, B., A. Zaltsman, B. Lacroix, S.V. Kozlovsky, and A. Krichevsky. 2010. Nuclear and plastid genetic engineering of plants: Comparison of opportunities and challenges. Biotechnol. Adv. 28:747-756. 44. Nadai, M., J. Bally, M. Vitel, C. Job, G. Tissot, J. Botterman, and M. Dubald. 2009. High-level expression of active human alpha1-antitrypsin in transgenic tobacco chloroplasts. Transgeni.c Res. 18:173-183. 45. Nagel, G., D. Ollig, M. Fuhrmann, S. Kateriya, A.M. Mustl, E. Bamberg, and P. Hegemann. 2002. Channelrhodopsin-1: A light-gated proton channel in green algae. Science 296:2395-2398. 46. Oey, M., M. Lohse, L.B. Scharff, B. Kreikemeyer, and R. Bock. 2009. Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins. P. Natl. Acad. Sci. USA 106:6579-6584. 47. Oey, M., I.L. Ross, and B. Hankamer. 2014. Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae. PLOS One 9. 48. Oldenhof, H., V. Zachleder, and H. Van den Ende. 2006. Blue- and red-light regulation of the cell cycle in Chlamydomonas reinhardtii (Chlorophyta). Eur. J. Phycol. 41:313-320. 49. Quesada-Vargas, T., O.N. Ruiz, and H. Daniell. 2005. Characterization of heterologous multigene operons in transgenic chloroplasts. Plant Physiol. 138:1746-1762. 50. Ramesh, V.M., S.E. Bingham, and A.N. Webber. 2011. A simple method for chloroplast transformation in Chlamydomonas reinhardtii. Methods in molecular biology 684:313-20. 51. Ramundo, S., M. Rahire, O. Schaad, and J.D. Rochaix. 2013. Repression of essential chloroplast genes reveals new signaling pathways and regulatory feedback loops in Chlamydomonas. Plant Cell 25:167-186. 52. Reifschneider-Wegner, K., A. Kanygin, and K.E. Redding. 2014. Expression of the [FeFe] hydrogenase in the chloroplast of Chlamydomonas reinhardtii. Int J Hydrogen Energ. 39:3657-3665. 53. Ruhlman, T., R. Ahangari, A. Devine, M. Samsam, and H. Daniell. 2007. Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts - oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol. J. 5:495-510. 54. Rybicki, E.P. 2010. Plant-made vaccines for humans and animals. Plant Biotechnol. J. 8:620-637. 55. Sager, R. and S. Granick. 1954. Nutritional control of sexuality in Chlamydomonas reinhardtii. J. Gen. Physiol. 37:729-742. 56. Sakamoto, W., K.L. Kindle, and D.B. Stern. 1993. Invivo analysis of chlamydomonas chloroplast petd gene-expression using stable transformation of beta-glucuronidase translational fusions. P. Natl. Acad. Sci. USA 90:497-501. 57. Salvador, M.L., L. Suay, I.L. Anthonisen, and U. Klein. 2004. Changes in the 5'-untranslated region of the rbcL gene accelerate transcript degradation more than 50-fold in the chloroplast of Chlamydomonas reinhardtii. Curr. Genet. 45:176-182. 58. Silhavy, D. and P. Maliga. 1998. Mapping of promoters for the nucleus encoded plastid RNA polymerase (NEP) in the maize mutant. Curr. Genet. 33:340-344. 59. Sivamani, E., R.K. DeLong, and R.D. Qu. 2009. Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Rep. 28:213-221. 60. Sriraman, P., D. Silhavy, and P. Maliga. 1998. The phage-type PclpP-53 plastid promoter comprises sequences downstream of the transcription initiation site. Nucleic Acids Res. 26:4874-4879. 61. Stern, D.B., D.C. Higgs, and J.J. Yang. 1997. Transcription and translation in chloroplasts. Trends in plant science 2:308-315. 62. Svab, Z., P. Hajdukiewicz, and P. Maliga. 1990. Stable Transformation of plastids in higher-plants. P. Natl. Acad. Sci. USA 87:8526-8530. 63. Svab, Z. and P. Maliga. 2007. Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. P. Natl. Acad. Sci. USA 104:7003-7008. 64. Tasaki, T. and Y.T. Kwon. 2007. The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem. Sci. 32:520-528. 65. Tasaki, T., R. Sohr, Z. Xia, R. Hellweg, H. Hortnagl, A. Varshavsky, and Y.T. Kwon. 2007. Biochemical and genetic studies of UBR3, a ubiquitin ligase with a function in olfactory and other sensory systems. J. Biol. Chem. 282:18510-18520. 66. Travella, S., S.M. Ross, J. Harden, C. Everett, J.W. Snape, and W.A. Harwood. 2005. A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep. 23:780-789. 67. Twyman, R.M., E. Stoger, S. Schillberg, P. Christou, and R. Fischer. 2003. Molecular farming in plants: host systems and expression technology. Trends in biotechnology 21:570-578. 68. Vafaee, Y., A. Staniek, M. Mancheno-Solano, and H. Warzecha. 2014. A Modular cloning toolbox for the generation of chloroplast transformation vectors. PLOS One 9. 69. Verma, D. and H. Daniell. 2007. Chloroplast vector systems for biotechnology applications. Plant Physiol. 145:1129-1143. 70. Wolfe, R.M. and L.K. Sharp. 2002. Anti-vaccinationists past and present. Brit Med J 325:430-432. 71. Zerges, W. and J.D. Rochaix. 1994. The 5' leader of a chloroplast messenger-RNA mediates the translational requirements for 2 nucleus-encoded functions in Chlamydomonas reinhardtii. Mol. Cell Biol. 14:5268-5277. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52674 | - |
| dc.description.abstract | 葉綠體基因組具有多拷貝數之特性,將目標基因以基因槍法 (particle bombardment) 送入葉綠體,經同源重組 (homologous recombination) 後可嵌入葉綠體基因組大量表達。本研究期望透過含篩選標誌基因 (selection marker gene) 或不含篩選標誌基因 (marker free) 兩種方法篩選擬轉殖系後,得到具有多拷貝數之轉殖基因組,以達到大量表現目標蛋白之目的。披衣藻 (Chlamydomonas reinhardtii) 生命週期較其他高等植物短,因此可以縮短篩選擬轉殖系的時間,同時披衣藻葉綠體亦具有可正確表現需正常摺疊之複雜構造蛋白,因此是作為生產外源蛋白之理想平台。將豬生殖與呼吸綜合症病毒 (porcine reproductive and respiratory syndrome virus, PRRSV) 之封套醣蛋白 (GP5)、膜蛋白 (GP6) 以及大腸桿菌忌熱性腸毒素B次單元 (heat-labile enterotoxin B subunit, LTB) 基因構築至轉殖載體中,以基因槍轉殖法 (biolistic bombardment) 轉殖至披衣藻葉綠體中。經反覆繼代與篩選進行均質化,以四組特異性引子對進行聚合酶連鎖反應分析,顯示目標基因已嵌入披衣藻葉綠體基因組中,惟尚未達均質狀態,且藍光下未見報導基因綠色螢光蛋白之表達。以反轉錄聚合酶連鎖反應分析,顯示目標基因確實進行轉錄作用。以LTB以及PRRSV專ㄧ性抗體進行西方免疫轉漬分析目標蛋白表達,結果顯示無目標蛋白累積之現象。因此本研究以影響葉綠體表達外源蛋白之因素作深入探討,期望以披衣藻作為大量表現外源蛋白之平台,以生產植物性口服疫苗。 | zh_TW |
| dc.description.abstract | Chloroplast genome occurs in high copy numbers. High levels transgene expression can be achieved by target gene integration to chloroplasts through site-specific homologous recombination. Presumably, chloroplasts also have the ability to express eukaryotic proteins with correct folding leading to biologically active proteins. The life cycle of Chlamydomonas reinhardtii is shorter than other higher plants. Therefore, C. reinhardtii provides an ideal platform for foreign protein production. In this study, the transplastomic lines were obtained after selection with or without marker. The envelope glycoprotein GP5 and non-glycoprotein GP6 from porcine reproductive and respiratory syndrome virus (PRRSV) were fused with heal-labile enterotoxin B subunit gene and transformed into chloroplast genome of C. reinhardtii by particle bombardment. Attempts were made for obtaining homoplasmic transplastomic cell lines after several rounds of subcultures. Polymerase chain reaction was carried out with four specific primer pairs to confirm the insertion of target genes. The transcription of target gene was then analyzed by reverse transcription polymerase chain reaction. Western blot analysis of target protein using anti-LTB monoclonal antibody and anti-PRRSV polyclonal antibody showed there were no target protein accumulated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:22:47Z (GMT). No. of bitstreams: 1 ntu-104-R02628136-1.pdf: 2083271 bytes, checksum: 0ebac28ca748debf3fdeffad0af9b48e (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目錄 摘要 I ABSTRACT II 目錄 III 圖表目錄 IV 壹、 前言 1 貳、 前人研究 2 一、 植物性疫苗的發展 2 1. 口服疫苗 2 2. 利用植物表達外源重組蛋白之潛力 3 二、 葉綠體基因轉殖 4 1. 葉綠體基因轉殖之優勢 4 2. 葉綠體基因轉殖之篩選方法 5 3. 葉綠體轉殖於植物性疫苗的應用 5 三、 披衣藻葉綠體基因轉殖 6 1. 披衣藻簡介 6 2. 利用披衣藻葉綠體生產植物性疫苗之潛力 7 3. 以披衣藻葉綠體表達外源基因之研究 7 參、 材料與方法 9 一、 試驗材料 9 二、 試驗方法 9 (三) 質體構築方法 11 (四) 利用基因槍法進行披衣藻葉綠體基因轉殖 14 (五) 葉綠體擬轉殖株之分子驗證 16 (六) 披衣藻葉綠體擬轉殖株之目標蛋白分析 18 肆、 結果 31 一、 披衣藻葉綠體轉殖結果分析 31 (一) 披衣藻基因槍轉殖法之結果 31 (二) 披衣藻葉綠體轉殖系之分子驗證 31 伍、 討論 44 1. 影響披衣藻葉綠體轉殖效率之因素 44 2. 影響葉綠體外源基因表達量之因素 46 陸、 結語 50 柒、 參考文獻 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 植物性口服疫苗 | zh_TW |
| dc.subject | 葉綠體基因轉殖 | zh_TW |
| dc.subject | 披衣藻 | zh_TW |
| dc.subject | 豬生殖與呼吸綜合症 | zh_TW |
| dc.subject | chloroplast transformation | en |
| dc.subject | plant-based vaccines | en |
| dc.subject | porcine reproductive and respiratory syndrome | en |
| dc.subject | Chlamydomonas reinhardtii | en |
| dc.title | 披衣藻葉綠體表達外源蛋白系統之建立 | zh_TW |
| dc.title | Establishment of chloroplast protein expression system in Chlamydomonas reinhardtii | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李昆達(Kung-Ta Lee),劉祖惠(Tsu-Hwei Liu) | |
| dc.subject.keyword | 葉綠體基因轉殖,披衣藻,豬生殖與呼吸綜合症,植物性口服疫苗, | zh_TW |
| dc.subject.keyword | chloroplast transformation,Chlamydomonas reinhardtii,porcine reproductive and respiratory syndrome,plant-based vaccines, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
