Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52673
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張雅君(Ya-Chun Chang)
dc.contributor.authorKhong-Sam Chiaen
dc.contributor.author謝光森zh_TW
dc.date.accessioned2021-06-15T16:22:45Z-
dc.date.available2020-08-28
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-15
dc.identifier.citation1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K, 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63-78.
2. Abel PP, Nelson RS, De B, et al., 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738-43.
3. Adamczyk BJ, Lehti-Shiu MD, Fernandez DE, 2007. The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J 50, 1007-19.
4. Alazem M, Lin KY, Lin NS, 2014. The abscisic acid pathway has multifaceted effects on the accumulation of Bamboo mosaic virus. Mol Plant Microbe Interact 27, 177-89.
5. Asano M, Satoh R, Mochizuki A, et al., 2005. Tobamovirus-resistant tobacco generated by RNA interference directed against host genes. FEBS Lett 579, 4479-84.
6. Ashby J, Boutant E, Seemanpillai M, et al., 2006. Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J Virol 80, 8329-44.
7. Bazzini AA, Asurmendi S, Hopp HE, Beachy RN, 2006. Tobacco mosaic virus (TMV) and potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively. J Gen Virol 87, 1005-12.
8. Brady SM, Sarkar SF, Bonetta D, Mccourt P, 2003. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. The Plant Journal 34, 67-75.
9. Chen CE, Yeh KC, Wu SH, Wang HI, Yeh HH, 2013. A vicilin-like seed storage protein, PAP85, is involved in tobacco mosaic virus replication. J Virol 87, 6888-900.
10. Chinnusamy V, Ohta M, Kanrar S, et al., 2003. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes development 17, 1043-54.
11. Chitra T, Prakash H, Albrechtsen S, Shetty H, Mathur S, 2002. Indexing of leaf and seed samples of tomato and bell pepper for tobamoviruses. Indian Phytopathology 55, 84-6.
12. Creager AN, Scholthof KB, Citovsky V, Scholthof HB, 1999. Tobacco mosaic virus. Pioneering research for a century. Plant Cell 11, 301-8.
13. Dai J, Cheng J, Huang T, Zheng X, Wu Y, 2012. A multiplex reverse transcription PCR assay for simultaneous detection of five tobacco viruses in tobacco plants. J Virol Methods 183, 57-62.
14. Dawson W, Bubrick P, Grantham G, 1988. Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement, and symptomatology. Phytopathology 78, 783-9.
15. Den Boon JA, Ahlquist P, 2010. Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annu Rev Microbiol 64, 241-56.
16. Deom CM, Oliver MJ, Beachy RN, 1987. The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237, 389-94.
17. Fofana IBF, Sangaré A, Ndunguru J, Kahn K, Fauquet CM, 2003. Principles for control of virus diseases in developing countries. In: Loebenstein G, Thottappilly G, eds. Virus and Virus-like Diseases of Major Crops in Developing Countries. Springer Netherlands, 31-54.
18. Guenoune-Gelbart D, Elbaum M, Sagi G, Levy A, Epel BL, 2008. Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol Plant Microbe Interact 21, 335-45.
19. Hagiwara Y, Komoda K, Yamanaka T, et al., 2003. Subcellular localization of host and viral proteins associated with tobamovirus RNA replication. The EMBO Journal 22, 344-53.
20. Hanssen IM, Lapidot M, Thomma BP, 2010. Emerging viral diseases of tomato crops. Mol Plant Microbe Interact 23, 539-48.
21. Heinlein M, Padgett HS, Gens JS, et al., 1998. Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. The Plant Cell 10, 1107-20.
22. Hilf ME, Dawson WO, 1993. The tobamovirus capsid protein functions as a host-specific determinant of long-distance movement. Virology 193, 106-14.
23. Hwang J, Oh CS, Kang BC, 2013. Translation elongation factor 1B (eEF1B) is an essential host factor for Tobacco mosaic virus infection in plants. Virology 439, 105-14.
24. Hyodo K, Okuno T, 2014. Host factors used by positive-strand RNA plant viruses for genome replication. Journal of General Plant Pathology 80, 123-35.
25. Ishikawa M, Naito S, Ohno T, 1993. Effects of the tom1 mutation of Arabidopsis thaliana on the multiplication of tobacco mosaic virus RNA in protoplasts. J Virol 67, 5328-38.
26. Kang HG, Singh KB, 2000. Characterization of salicylic acid‐responsive, Arabidopsis Dof domain proteins: overexpression of OBP3 leads to growth defects. The Plant Journal 21, 329-39.
27. Kopek BG, Perkins G, Miller DJ, Ellisman MH, Ahlquist P, 2007. Three-dimensional analysis of a viral RNA replication complex reveals a virus-induced mini-organelle. PLoS Biol 5, e220.
28. Kramer SR, Goregaoker SP, Culver JN, 2011. Association of the Tobacco mosaic virus 126 kDa replication protein with a GDI protein affects host susceptibility. Virology 414, 110-8.
29. Kumar S, Udaya Shankar AC, Nayaka SC, Lund OS, Prakash HS, 2011. Detection of Tobacco mosaic virus and Tomato mosaic virus in pepper and tomato by multiplex RT-PCR. Lett Appl Microbiol 53, 359-63.
30. Kung Y-J, Bau H-J, Wu Y-L, Huang C-H, Chen T-M, Yeh S-D, 2009. Generation of Transgenic Papaya with Double Resistance to Papaya ringspot virus and Papaya leaf-distortion mosaic virus. Phytopathology 99, 1312-20.
31. L J-L, L J, N X-Y, C J-L, C D-X, A D-R, 2013. Detection and analysis of main tobacco viruses and viruliferous plants in Shaanxi Province. Journal of Northwest A F University(Natural Science Edition) 1.
32. Lee LY, Fang MJ, Kuang LY, Gelvin SB, 2008. Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Methods 4, 24.
33. Lewandowski DJ, Dawson WO, 2000. Functions of the 126- and 183-kDa Proteins of Tobacco Mosaic Virus. Virology 271, 90-8.
34. Li Z, Pogany J, Panavas T, et al., 2009. Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology 385, 245-60.
35. Liu C, Nelson RS, 2013. The cell biology of Tobacco mosaic virus replication and movement. Front Plant Sci 4, 12.
36. Liu JZ, Blancaflor EB, Nelson RS, 2005. The tobacco mosaic virus 126-kilodalton protein, a constituent of the virus replication complex, alone or within the complex aligns with and traffics along microfilaments. Plant Physiol 138, 1853-65.
37. Más P, Beachy RN, 1999. Replication of Tobacco Mosaic Virus on Endoplasmic Reticulum and Role of the Cytoskeleton and Virus Movement Protein in Intracellular Distribution of Viral RNA. The Journal of Cell Biology 147, 945-58.
38. Mackenzie JM, Jones MK, Young PR, 1996. Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220, 232-40.
39. Mazier M, Flamain F, Nicolai M, Sarnette V, Caranta C, 2011. Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLoS One 6, e29595.
40. Mine A, Okuno T, 2012. Composition of plant virus RNA replicase complexes. Curr Opin Virol 2, 669-75.
41. Mizoguchi T, Wheatley K, Hanzawa Y, et al., 2002. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell 2, 629-41.
42. Nishikiori M, Mori M, Dohi K, et al., 2011. A host small GTP-binding protein ARL8 plays crucial roles in tobamovirus RNA replication. PLoS Pathog 7, e1002409.
43. Osman TA, Buck KW, 1997. The tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-binding subunit of yeast eIF-3. J Virol 71, 6075-82.
44. Pérez-Benlloch L, Prohens J, Soler S, Nuez F, 2001. Yield and fruit quality losses caused by ToMV in pepino (Solanum muricatum L.) and search for sources of resistance. Euphytica 120, 247-56.
45. Pathak KB, Sasvari Z, Nagy PD, 2008. The host Pex19p plays a role in peroxisomal localization of tombusvirus replication proteins. Virology 379, 294-305.
46. Pogue GP, Lindbo JA, Garger SJ, Fitzmaurice WP, 2002. Making an ally from an enemy: plant virology and the new agriculture. Annu Rev Phytopathol 40, 45-74.
47. Prohens J, Soler S, Pérez-Benlloch L, Nuez F, 1998. Tomato Mosaic Tobamovirus, Causal Agent of a Severe Disease of Pepino (Solanum muricatum). Plant Disease 82, 1281-.
48. Qu J, Ye J, Fang R, 2007. Artificial microRNA-mediated virus resistance in plants. J Virol 81, 6690-9.
49. Reddy DV, Sudarshana MR, Fuchs M, Rao NC, Thottappilly G, 2009. Genetically engineered virus-resistant plants in developing countries: current status and future prospects. Adv Virus Res 75, 185-220.
50. Restrepo-Hartwig M, Ahlquist P, 1999. Brome mosaic virus RNA replication proteins 1a and 2a colocalize and 1a independently localizes on the yeast endoplasmic reticulum. J Virol 73, 10303-9.
51. Restrepo-Hartwig MA, Ahlquist P, 1996. Brome mosaic virus helicase- and polymerase-like proteins colocalize on the endoplasmic reticulum at sites of viral RNA synthesis. J Virol 70, 8908-16.
52. Sakai H, Aoyama T, Oka A, 2000. Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J 24, 703-11.
53. Sanders PR, Sammons B, Kaniewski W, et al., 1992. Field resistance of transgenic tomatoes expressing the tobacco mosaic virus or tomato mosaic virus coat protein genes. Phytopathology 82, 683-90.
54. Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R, 2010. Viral mutation rates. J Virol 84, 9733-48.
55. Scholthof K-BG, 2004. TOBACCO MOSAIC VIRUS: A Model System for Plant Biology. Annual Review of Phytopathology 42, 13-34.
56. Schwartz M, Chen J, Janda M, Sullivan M, Den Boon J, Ahlquist P, 2002. A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol Cell 9, 505-14.
57. Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK, 2006. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant molecular biology 61, 897-915.
58. Stanley WM, 1935. Isolation of a Crystalline Protein Possessing the Properties of Tobacco-Mosaic Virus. Science 81, 644-5.
59. Taylor DN, Carr JP, 2000. The GCD10 subunit of yeast eIF-3 binds the methyltransferase-like domain of the 126 and 183 kDa replicase proteins of tobacco mosaic virus in the yeast two-hybrid system. Journal of General Virology 81, 1587-91.
60. Tsujimoto Y, Numaga T, Ohshima K, et al., 2003. Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J 22, 335-43.
61. Turner KA, Sit TL, Callaway AS, Allen NS, Lommel SA, 2004. Red clover necrotic mosaic virus replication proteins accumulate at the endoplasmic reticulum. Virology 320, 276-90.
62. Vinayarani G, Madhusudhan K, Deepak S, Niranjana S, Prakash H, 1996. Detection of mixed infection of tobamoviruses in tomato and bell pepper by using RT-PCR and Duplex RT-PCR. Int J Plant Pathol. ISSN 719.
63. Wang L, Hua D, He J, et al., 2011. Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet 7, e1002172.
64. Wang RY-L, Stork J, Nagy PD, 2009. A key role for heat shock protein 70 in the localization and insertion of tombusvirus replication proteins to intracellular membranes. Journal of virology 83, 3276-87.
65. Welsch S, Miller S, Romero-Brey I, et al., 2009. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5, 365-75.
66. Wolf S, Deom CM, Beachy RN, Lucas WJ, 1989. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246, 377-9.
67. Wu CJ, Yeh HH, 2011. Establishment of the promoter assay system of arabidopsis gene PAP85 involved in replication of Tobacco mosaic virus.
68. Xiong R, Wang A, 2013. SCE1, the SUMO-conjugating enzyme in plants that interacts with NIb, the RNA-dependent RNA polymerase of Turnip mosaic virus, is required for viral infection. J Virol 87, 4704-15.
69. Yamaji Y, Sakurai K, Hamada K, et al., 2010. Significance of eukaryotic translation elongation factor 1A in tobacco mosaic virus infection. Arch Virol 155, 263-8.
70. Yamanaka T, Imai T, Satoh R, et al., 2002. Complete inhibition of tobamovirus multiplication by simultaneous mutations in two homologous host genes. J Virol 76, 2491-7.
71. Yamanaka T, Ohta T, Takahashi M, et al., 2000. TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc Natl Acad Sci U S A 97, 10107-12.
72. Yan-Bing W, Zhen-Min Y, Li-Yan X, Qi-Yng L, Lian-Hui X, 2008. Recent Development in Research of Natural Anti-TMV Big Molecular Substances. Microbiology China 35, 1096-101.
73. Yoo S-D, Cho Y-H, Sheen J, 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protocols 2, 1565-72.
74. Zhang Y, Cao G, Qu LJ, Gu H, 2009. Characterization of Arabidopsis MYB transcription factor gene AtMYB17 and its possible regulation by LEAFY and AGL15. J Genet Genomics 36, 99-107.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52673-
dc.description.abstract複製是病毒感染過程中首要且關鍵的步驟,擁有RNA基因體階段的病毒需要調節寄主內膜系統完成複製過程。前人研究中顯示PAP85 基因在菸草嵌紋病毒 (Tobacco mosaic virus,TMV) 侵染阿拉伯芥原生質體時會被誘導,且參與調節寄主內膜系統。但單獨表現TMV主要複製酶P126時不會誘導PAP85。另外,在阿拉伯芥原生質體中表現 PAP85 和P126會使得細胞內質網結構產生變化。利用Membrane-Based Yeast-Two Hybrid系統和雙螢光分子互補系統 (Bimolecular fluorescence complementation) 探討PAP85和P126之交互作用,目前在這兩種方法中並沒有觀察到交互作用的訊號。為了研究PAP85基因是由病毒何者蛋白/基因所誘導,建立以35S為啟動子的二元載體 (binary vector)來表現TMV (p35S::U1)之感染性克隆 (infectious clone)。另外,也修改p35S::U1得到P126突變株 (p35S::Rep*)和MP/CP突變株 (p35S::MP*/CP*)。結果顯示p35S::U1和p35S::MP*/CP*可以在農桿菌注入後1天誘導PAP85基因的表現,顯示TMV replicase (P126/P128) PAP85 之誘導有關。本研究也利用PAP85啟動子區域連結β-葡糖醛酸糖酶報導基因 (GUS)的轉基因阿拉伯芥探討PAP85啟動子區域調節的情況。結果顯示PAP85基因的RNA合成起始點上游107-1227 bp為主要調控區域,而1227-2000 bp為次重要的調控區域。此外,在阿拉伯芥上轉殖一個可利用雌二醇 (Estradiol)誘導的起動子來表現PAP85反向重複序列(921-1050 bp)。此轉殖植株可以在雌二醇施加後表現髮夾 (hairpin)RNA,結果顯示在病毒接種前或後施加雌二醇可有效抑制病毒的累積。zh_TW
dc.description.abstractReplication is the first infection process during virus infection, and viruses with RNA genome stage need to modify the host intracellular membrane for replication. Previous study indicated, Arabidopsis PAP85 is induced by Tobacco mosaic virus (TMV) infection in protoplasts and involved in modification of endoplasmic reticulum (ER) for TMV replication. Overexpression of P126 (TMV main replicase) cannot induce the expression of PAP85, and co-expression of PAP85 and TMV-P126 but not either protein expressed alone induced ER modification in protoplasts. Membrane-Based Yeast-Two Hybrid (Y2H) system and Bimolecular fluorescence complementation (BiFC) systems were used for analyze the interaction between PAP85 and TMV-P126; however, no interaction were observed between PAP85 and P126 in these two approaches. In order to identify the viral open reading frame responsible for the induction of PAP85, TMV infectious clones (p35S::U1) was constructed to a binary vector (pCAMBIA-1301) under 35S promoter for agroinoculation and two other clones with mutation on TMV P126 (p35S::Rep*) and CP/MP (p35S::MP*/CP*) were used. Result indicated that PAP85 expression is induced by p35S::U1 and p35S::MP*/CP*. Besides, transgenic Arabidopsis with different length of PAP85 promoter fused with GUS (β-glucuronidase) gene were generated. Inoculation of TMV to the transgenic Arabidopsis allowed us to identify the important region responsible for induction of PAP85. The results showed that the most important regulating region located at 107-1227 bp upstream of transcription start site and the minor regulation located at 1227-2000 bp upstream of transcription start site. Arabidoipsis with Estradiol-induced promoter fused with PAP85 directed repeat DNA segment (921-1050 bp) was constructed to express hairpin RNA of PAP85. Result showed that transgenic arabidopsis sprayed with Estradiol before or after TMV inoculation showed reduction of TMV accumulation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:22:45Z (GMT). No. of bitstreams: 1
ntu-104-R02633024-1.pdf: 1576769 bytes, checksum: 097a63cb3f38f785285be402ce6caf3c (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要 i
Abstract ii
Table of Content iv
Chapter I 1
Introduction 1
Chapter II 10
Material and Methods 10
Plant Growth Condition 10
Clone construction 10
In Vitro Transcription 12
Agrobacterium-mediated transient expression assays 13
Real-time RT-PCR 14
Transgenic plants preparation 14
Histochemical GUS staining 15
Yeast two-hybrid assay 15
Protoplast isolation and PEG transfection 16
Bimolecular fluorescence complementation 17
Confocal microscopy 17
Estradiol Treatment 18
Chapter III 19
Result 19
PAP85 showed no interaction with P126 as assayed by Membrane Yeast Two-Hybrid (MYTH) and Bimolecular fluorescence complementation(BiFC) 19
TMV 126/183 replicase induce the expression of PAP85 20
In silico promoter analysis of PAP85 21
Promoter region of PAP85 response to TMV 22
Transgenic plant express PAP85 hairpin RNA regulated by Estradiol 23
Transgenic plants transformed with pK2GW7-PAP85-GFP 24
Chapter IV 25
Discussion 25
Chapter V 30
Reference 30
Table 36
Table 1. The possible transcription factors binding site (TFBS) on PAP85 analysis by AtPAN database. 36
Table 2. Primer used in this study. 44
Figure 46
Figure 1(a). PAP85 and P126 protein interaction evaluated by the yeast two-hybrid assay 46
Figure 1(b). PAP85 and P126 protein interaction evaluated by the yeast two-hybrid assay. 47
Figure 2(a). BiFC analysis of PAP85 and P126 protein. PAP85 and P126 fused with N-terminal or C-terminal tagged half protein fragment of yellow fluorescent protein (YFP), different combination of two protein were tested. 48
Figure 2(b). BiFC analysis of PAP85 and P126 protein. 49
Figure 2(c). BiFC analysis of PAP85 and P126 protein. 50
Figure 3. Schematic representation of Tobacco mosaic virus (TMV) and derived construct.. 51
Figure 4. Relative expression of PAP85 after 1,2 and 3 day post infection by agro-infiltration with pCAMBIA 1301(vector only) and p35S::U1. 52
Figure 5. Relative expression of PAP85 after 1 day post infection by agro-infiltration with pCMABIA 1301(vector only), p35S::Rep*, p35S::MP*/CP* and p35S::U1. 53
Figure 7. Schematic representation of different length of PAP85 promoter region fused with GUS gene. 55
Figure 8(a). Histochemical detection of GUS in transgenic Arabidopsis plants. 56
Figure 8(b). Histochemical detection of GUS in transgenic Arabidopsis plants 56
Figure 8(c). Histochemical detection of GUS in transgenic Arabidopsis plants. 57
Figure 9. GUS activity of 4-week-old transgenic Arabidopsis plants 1 day after agro-infiltration with p35S::U1. 58
Figure 10. Schematic diagram of pER8-GW-PAP85i vector. 59
Figure 11. Relative expression of PAP85 after 1, 2, 3 and 4 days post treatment with 20μM Estradiol. 60
Figure 12. Virus accumulation of transgenic plant (pER8-GW-PAP85i) with Estradiol treatment after TMV inoculation. 61
Figure 13. Virus accumulation of transgenic plant (pER8-GW-PAP85i) with Estradiol treatment before TMV inoculation. 62
Figure 14. Subcellular localization of PAP85-GFP overexpression transgenic plant. 63
dc.language.isoen
dc.subject抗病毒zh_TW
dc.subject阿拉伯芥zh_TW
dc.subjectP126蛋白zh_TW
dc.subject菸草嵌紋病毒zh_TW
dc.subjectPAP85zh_TW
dc.subjectArabidopsisen
dc.subjectAntivirusen
dc.subjectTMV-P126en
dc.subjectTMV replicationen
dc.subjectPAP85en
dc.title探討阿拉伯芥PAP85與菸草嵌紋病毒P126之交互作用及其在抗病毒之應用zh_TW
dc.titleInvestigation of the interaction between Arabidopsis PAP85 and Tobacco mosaic virus (TMV) P126 and application of PAP85 in antiviral strategyen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor葉信宏(Hsin-Hung Yeh)
dc.contributor.oralexamcommittee劉瑞芬(Ruey-Fen Liou),陳仁治(Jen-Chih Chen)
dc.subject.keywordPAP85,菸草嵌紋病毒,P126蛋白,阿拉伯芥,抗病毒,zh_TW
dc.subject.keywordPAP85,TMV replication,TMV-P126,Arabidopsis,Antivirus,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2015-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved