Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52663
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江昭皚(Joe-Air Jiang)
dc.contributor.authorChing-Yun Wuen
dc.contributor.author吳靖筠zh_TW
dc.date.accessioned2021-06-15T16:22:22Z-
dc.date.available2018-08-17
dc.date.copyright2015-08-17
dc.date.issued2015
dc.date.submitted2015-08-16
dc.identifier.citation北京華普泰科技發展有限公司。2013。MP60 與 MP70監護儀。北京: 北京华普泰科技发展有限公司。網址: http://s12.clxw.com/viewcp.aspx?id=324。上網日期: 2015-04-16。[BEIJING HUAPUTAL SCIENCE & TECHNOLOGY CO., LTD. (2013). MP60 and MP70 monitoring devices. Available at: http://s12.clxw.com/viewcp.aspx?id=324. Accessed 16 April 2015.]
翁根本、何慈育、歐善福、林竹川、謝凱生。2009。心律變動性分析。臺灣醫界 52(6): 290-293. [Weng, K. P., Ho, T. Y., Ou S. F., Lin, C. C., Hsieh, K. S. (2009) Heart_rate_variability_analysis. Taiwan Medical Journal, 52(6): 290-293.]
劉昌祐。2006。居家型心電圖診斷系統之發展。碩士論文。臺北:國立陽明大學醫學工程學研究所。[Liu, C. Y. (2006). Development of a Electrocardiogram Interpretation System in Homecare. (Master’s thesis). National Yang Ming University, Taiwan, ROC.]
臺灣睡眠醫學學會。2010。全國睡眠檢查地點。臺北:臺灣睡眠醫學學會。網址:http://www.tssm.org.tw/check.php。上網日期:2015-02-04。[Taiwan Society of Sleep Medicine (TSSM), ROC. (2010). The place to check the sleep situation in Taiwan. Available at: http://www.tssm.org.tw/check.php. Accessed 04 February 2015.]
臺大醫院睡眠中心。2009。整夜睡眠多項生理檢查。台北:國立臺灣大學醫學院附設醫院。網址:http://www.ntuh.gov.tw/SLP/ser/DocLib1/自費項目.aspx。上網日期:2014-08-26。[National Taiwan University Hospital Sleep Center, ROC. (2009). Services of Sleep center. Available at: http://www.ntuh.gov.tw/SLP/ser/DocLib1/自費項目.aspx. Accessed 26 August 2014.]
臺大醫院睡眠中心。2009。睡眠中心簡介。臺北:國立臺灣大學醫學院附設醫院。網址:http://www.ntuh.gov.tw/SLP/DocLib9/首頁.aspx。上網日期:2015-02-04。[National Taiwan University Hospital Sleep Center, ROC. (2009). Introduce of Sleep center. Available at: http://www.ntuh.gov.tw/SLP/DocLib9/首頁.aspx. Accessed 04 February 2015.]

臺灣睡眠醫學學會。2013。2013台灣睡眠醫學學會最新調查,平均每 5 人就有 1 人失眠!。台北:臺灣睡眠醫學學會。網址:http://www.skh.org.tw/download/2013國人睡眠大調查%20-%20每5人就有1人失眠.pdf。上網日期:2014-08-20。[Taiwan Society of Sleep Medicine (TSSM), ROC. (2013). 2013 statistical report: situation of sleep in Taiwan. Available at: http://www.skh.org.tw/download/2013國人睡眠大調查%20-%20每5人就有1人失眠.pdf. Accessed 20 August 2014.]
Akselrod S., D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Barger, and R. J. Cohen. 1981. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 213(10): 220–222.
Bonnft M. H., and D. L. Arand. 1998. Heart Rate Variability in Insomniacs and Matched Normal Sleepers. Psychosom Med. 60(5): 610-5.
Chan H. L., S. C. Fang, Y. L. Ko, M. A. Lin, H. H. Huang, and C. H. Lin. 2006. Heart Rate Variability Characterization in Daily Physical Activities Using Wavelet Analysis and Multilayer Fuzzy Activity Clustering. IEEE Trans Biomed Eng. 53(1): 133-139.
Critical Care Assessment. 2014. heart-rate-variability-analysis. Available at: http://criticalcareassessment.com/introduction/heart-rate-variability-analysis. Accessed 15 September.
De jonckheere J., D. Rommel, JL. Nandrino, M. Jeanne, and R. Logier. 2012. Heart rate variability analysis as an index of emotion regulation processes: Interest of the Analgesia Nociception Index (ANI). In 'Proc. 34th Annual International Conference of the IEEE EMBS', 3432 – 3435.
Demaree HA., JL. Robinson, DE. Everhart, and BJ. Schmeichel. 2004. Resting RSA is associated with natural and self-regulated responses to negative emotional stimuli. Brain Cogn. 56(1): 14-23.
Estrada E., and H. Nazeran. 2010. EEG and HRV signal features for automatic sleep staging and apnea detection. In 'Proc. 20th International Conference Electron. Commun. Comput.', 142 – 147.

Fraiwan L., K. Lweesy, N. Khzazwneh, H. Wenz, and H. Dickhaus. 2011. Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Comput. Methods Program. Biomed. 108(1): 10-19.
Gouin JP., Kerstin W., Soufiane B., Jordan O’B., Ali S., and Thien T. D.-V. 2015. High-frequency heart rate variability during worry predicts stress-related increases in sleep disturbances. Sleep Medicine. 16(5):659-64.
Hori T., Y. Suqita, E. Koqa, S. Shirakawa, K. Inoue, S. Uchida, H. Kuwahara, M. Kousaka, T. Kobayashi, Y. Tsuji, M. Terashima, K. Fukuda, and N. Fukuda. 2001. Proposed supplements and amendments to 'A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects', the Rechtschaffen & Kales (1968) standard. Psychiatry Clin Neurosci. 55(3): 305-10.
Jeanne M., R. Logier, J. De Jonckheere, and B. Tavernier. 2009. Validation of a graphic measurement of heart rate variability to assess analgesia/nociception balance during general anesthesia. In 'Proc. 31st Annual International Conference of the IEEE EMBS', 1840 – 3.
Jeanne M., C. Clément, J. De Jonckheere, R. Logier, and B. Tavernier. 2012. Variations of the analgesia nociception index during general anaesthesia for laparoscopic abdominal surgery. J Clin Monit Comput. 26(4): 289-294.
Khandoker A. H., Gubbi J. and Palaniswami M. 2009. Automated Scoring of Obstructive Sleep Apnea and Hypopnea Events Using Short-Term Electrocardiogram Recordings. IEEE Trans on Information Technology in Biomedicine. 13(6): 1057 – 1067.
Le Guen M., M. Jeanne, K. Sievert, M. A. Moubarik, T. Chazot, P. A. Laloe, J. F. Dreyfus, and M. Fischler. 2012 The Analgesia Nociception Index: a pilot study to evaluation of a new pain parameter during labor. International Journal of Obstetric Anesthesia. 21(2): 146-151.

Logier R., M. Jeanne, J. De jonckheere, and B. Tavernier. 2006. Pain/analgesia evaluation using heart rate variability analysis. In Conf Proc IEEE Eng Med Biol Soc. 4303 – 6.
Logier R, M. Jeanne, J. De jonckheere, A. Dassonneville, M. Delecroix and B. Tavernier. 2010. PhysioDoloris: a monitoring device for Analgesia / Nociception balance evaluation using Heart Rate Variability analysis. In 'Proc. 32nd Annual International Conference of the IEEE EMBS', 1194 – 7.
Merck Manuals 2013. Overview of the Autonomic Nervous System. Available at: http://www.merckmanuals.com/home/brain_spinal_cord_and_nerve_disorders/autonomic_nervous_system_disorders/overview_of_the_autonomic_nervous_system.html. Accessed 2 February 2015.
Michael E., and MD. Thase. 2006. Depression and sleep pathophysiology and treatment. Dialogues Clin Neurosci. 8(2): 217-26.
Miu AC., RM. Heilman, and M. Miclea. 2009. Reduced heart rate variability and vagal tone in anxiety: trait versus state, and the effects of autogenic training. Auton Neurosci. 145: 99-103.
Moser D., P. Anderer, G. Gruber, S. Parapatics, E. Loretz, M. Boeck, G. Kloesch, E. Heller, A. Schmidt, H. Danker-Hopfe, B. Saletu, J. Zeitlhofer and G. Dorffner. 2009. Sleep classification according to AASM and Rechtschaffen & Kales: effects on sleep scoring parameters. Sleep. 32(2): 139-49.
NIH. 2015. National Institutes of Health: what to expect during a sleep study. U. S. Department of Health & Human Services. Available at: http://www.nhlbi.nih.gov/health/health-topics/topics/slpst/during. Accessed 31 January 2015.
Penzel T., J. W. Kantelhardt, L. Grote, J. H. Peter., Bunde and Armin. 2003. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans on Biomed Eng. 50(10): 1143–1151.

Pichot V., JM. Gaspoz, S. Molliex, A. Antoniadis, T. Busso, F. Roche, F. Costes, L. Quintin, JR. Lacour, and JC. Barthélémy. 1999. Wavelet transform to quantify Heart Rate Variability and to assess its instantaneous changes. J Appl Physiol. 86(3): 1081-91.
Pichot V., S. Buffière, JM. Gaspoz, F. Costes, S. Molliex, D. Duverney, F. Roche, and JC. Barthélémy. 2001. Wavelet transform of heart rate variability to assess autonomous system activity does not predict arousal from general anesthesia. Can J Anaesthesia. 48(9): 859-63.
Porges S. W. 2001. The polyvagal theory: phylogenetic substrates of a social nervous system. International Journal of Psychophysiology. 42(2): 123-146.
Porges S. W. 1997. Emotion: an evolutionary by-product of the neural regulation of the autonomic nervous system. Annals of the New York Academy of Sciences. 807: 62-77.
Redmond SJ., and C. Heneghan. 2006. Cardiorespiratory-based sleep staging in subjects with obstructive sleep apnea. IEEE Trans. Biomed. Eng. 53(3): 485-496.
Samy L., M. C. Huang, J. J. Liu, W. Wu, and M. Sarrafzadeh. 2014. Unobtrusive Sleep Stage Identification Using a Pressure-Sensitive Bed Sheet. IEEE SENSORS JOURNAL. 14(7): 2092-2101.
Silber M., S. Ancoli-Israel, M. Bonnet, S. Chokroverty, M. Grigg-Damberger, M. Hirshkowitz, S. Kapen, S. A. Keenan, M. H. Kryger, T. Penzel, M. R. Pressman, and C. Iber. 2007. The visual scoring of sleep in adults. J. Clin. Sleep Med. 3(2): 121-131.
Simply Health Natural Care Center. 2014. Autonomic nervous system. Available at: http://www.simplyhealth.hk/hrv_intro. Accessed 20 March 2015.
Sleep Medicine at Harvard Medical School and WGBH Educational Foundation. 2007. Natural Patterns of sleep. Available at: http://healthysleep.med.harvard.edu/healthy/science/what/sleep-patterns-rem-nrem. Accessed 07 February 2015.
SLEEPPAID SOUNDS. 2012. The Sleep Cycle. Available at: http://sleepaidsounds.com/product-index-2/. Accessed 07 February 2015.
Tanida K., Masashi S., and Margaret M. H. 2013. Sleep Stage Assessment Using Power Spectral Indices of Heart Rate Variability With a Simple Algorithm Limitations Clarified From Preliminary Study. Biological Research for Nursing. vol. 15 no. 3 264-272.
Wikipedia (a). 2014. Heart rate variability. Available at: http://en.wikipedia.org/wiki/Heart_rate_variability. Accessed 15 September 2014
Wikipedia (b). 2014. ANS. Available at: http://zh.wikipedia.org/wiki/ANS. Accessed 17 September 2014.
Wikipedia (c). 2015. Epworth Sleepiness Scale. Available at: https://en.wikipedia.org/wiki/Epworth_Sleepiness_Scale. Accessed 15 July 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52663-
dc.description.abstract由於身體大部分修復和再生的工作,都發生在睡眠中,若欠缺適量的睡眠,將有可能導致一些後遺症,如嗜睡症、憂鬱症、記憶力下降、性功能障礙、心臟病、中風、糖尿病、癌症…等,因此有效率的監測睡眠情況是必須的;然而,想要完整地監測睡眠情況,目前只能透過部分設立在醫院中的睡眠中心所提供的睡眠多項生理檢查得知,但檢測除了價錢昂貴以及排隊民眾眾多導致等待時間延長之外,最大的缺點是必須監測大量的生理訊號,例如: 腦電圖、心跳、血壓、眼電圖、肌電圖…等,造成受試者因穿戴過多的監測裝置,伴隨而來的不舒適感,進而可能影響睡眠監測結果的正確性,因此,本研究透過提出的睡眠階段評估指標演算法,從心電圖中擷取出心率變異訊號,並且利用心率變異訊號具有代表自主神經系統活性的特性,進而求得睡眠評估指標來觀察睡眠的階段,達到有效率監測睡眠的目的以及扮演提供一個參考指標的輔助角色。
本研究中使用PhysioNet網站所提供的資料庫來進行驗證,彙整總共32筆資料,其中包括患有睡眠呼吸中止症的19位病患以及13位健康者,也將睡眠階段分為三大類,分別為清醒、淺眠以及熟睡,其中淺眠包含睡眠階段一和睡眠階段二;熟睡則為睡眠階段三和睡眠階段四,來檢視本研究所提出的睡眠評估指標與各個睡眠階段的關聯性。研究結果顯示: 睡眠評估指標與三大睡眠階段呈現正相關性,當人從清醒階段進入到熟睡期時,睡眠評估指標也會隨之成長,並且使用無母數統計分析檢測,本研究所提出的睡眠評估指標在三大睡眠階段中,皆具有顯著差異 (p < 0.05),顯示本研究所提出的睡眠評估指標是可視為檢測清醒階段、淺眠期與熟睡期的一個輔助工具。此外,為了更嚴謹的檢視本研究開發的睡眠評估指標的可信度,將其與高頻心率變異訊號做比對,高頻心率變異訊號已經被許多研究證實為可用於判斷睡眠的指標,結果顯示睡眠評估指標具有與高頻心率變異訊號相同的評估效用 (p < 0.05),且睡眠評估指標與高頻心率變異訊號在清醒階段呈現中度相關 (r = 0.6),在淺眠期與熟睡期皆呈現高度相關 (r > 0.9)。
另一方面,本研究針對不同病症的族群做睡眠階段檢視,將睡眠評估指標分別應用於睡眠呼吸中止症病患、嗜睡症病患與健康人中,研究結果顯示: 睡眠階段評估指標能夠清楚地檢測健康人與睡眠呼吸中止症病患的清醒階段、淺眠期與熟睡期 (p < 0.05),但是對於嗜睡症病患僅能夠檢測清醒與睡著兩階段,沒辦法分辨淺眠期或熟睡期,本研究推測由於愛普渥斯嗜睡度量表屬於病人自主評估表,評估結果會因個人主觀意識而有落差,因此可能影響本研究所提出的睡眠階段評估指標的評估結果。
zh_TW
dc.description.abstractSleeping well brings good quality of life, because human body does most of its repair and regeneration work in sleeping. Without sufficient sleep for a long time, many diseases may occur, such as, hypersomnia, melancholia, memory decrease, sexual dysfunction, cardiovascular diseases, stroke, diabetes, and cancers. Thus, it is necessary and helpful to have a better understanding of sleep. Sleep stages are largely monitored and determined by polysomnography (PSG). The PSG is generally administrated by sleep centers in large hospitals, such as the National Taiwan University Hospital. Not only is taking PSG expensive, but also is the waiting line long (patients generally have to wait for two or three months). Another major disadvantage is that subjects have to wear many sensors to collect vital signs, such as electrocardiography (ECG), electroencephalography (EEG), electromyography (EMG), and blood pressure. This may lead to some misleading results caused by uncomfortable factors (e.g. getting nervous in the hospital and wearing many sensors).
The ECG is a basic vital sign. Related to sleep stages, heart rate variability (HRV), can represent the parasympathetic activities of the autonomic nervous system (ANS). Therefore, this research creates an algorithm to extract the HRV from the ECG signals to acquiring the sleep stage assessment index (SSAI). Finally, the SSAI is used to determine sleep stages using the relationship between the SSAI and sleep stages. This research also utilizes the data from the PhysioNet database to verify the HRV algorithm and the process of calculating SSAI. The physical data of 32 subjects (19 subjects with sleep apnea and 13 healthy subjects) are drawn from the database. Then, the data are divided into three phases: wake, light sleep (sleep stage 1 and stage 2), and deep sleep (sleep stage 3 and stage 4) according to hypnogram. The relationship between SSAI and sleep stags is explored through analyzing the data from PhysioNet. It is found that the SSAI is positively correlated with the three sleep phases (wake, light sleep, and deep sleep). The SSAI increases when people enter the phase of deep sleep from the phase of wake. Additionally, a Wilcoxon non-parametric statistical test is employed to determine the usefulness of the SSAI. In conclusion, the SSAI is proven to be a good reference index to inspecting sleep stages (p < 0.05).
The SSAI is compared with the high frequency of HRV (HF) which has been verified as a sleep stage assessment index to examine the reliability of SSAI. The results show that SSAI could serve as a sleep stage assessment index, like HF. The correlation between SSAI and HF is moderate in wake (r = 0.6) and high in light sleep and deep sleep (r > 0.9).
Moreover, SSAI is applied to healthy people, patients with sleep apnea and patients with hypersomnia. It finds that SSAI can successfully determine three phases of sleep for healthy people and patients with sleep apnea (p < 0.05). Moreover, SSAI can determine wake and sleep for the patients with hypersomnia. However, SSAI scores of light sleep and deep sleep are undifferentiated in patients with hypersomnia, because the Epworth Sleepiness Score (ESS) is a self-appraisal questionnaire. Therefore, the results might be affected by personal opinions.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:22:22Z (GMT). No. of bitstreams: 1
ntu-104-R02631007-1.pdf: 2192466 bytes, checksum: 5a4ba974e6419cb5cc7d6627da474e24 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
Table of Contents vii
List of Illustrations ix
List of Tables xi
Chapter 1 Introduction 1
1.1. BACKGROUND 1
1.2. MOTIVATION 4
1.3. PURPOSE 6
1.4. THESIS ORGANIZATION 6
Chapter 2 Literature Review 7
2.1. POLYSOMNOGRAM (PSG) 7
2.2. SLEEP STAGES AND SLEEP CYCLE 10
2.3. AUTONOMIC NERVOUS SYSTEM (ANS) 13
2.4. HEART RATE VARIABILITY (HRV) 14
2.5. RESEARCH REVIEW 16
Chapter 3 Materials and Methods 20
3.1. PHYSICAL DATA COLLECTION AND MONITORING DEVICE 21
3.2. EXTRACTING HEART RATE VARIABILITY (HRV) 25
3.3. THE SLEEP STAGE ASSESSMENT INDEX (SSAI) ALGORITHM 28
Chapter 4 Results and Discussion 32
4.1. ACQUIRING HRV FROM ECG 32
4.2. THE RELATIONSHIP BETWEEN SSAI AND SLEEP STAGES 36
4.3. VERIFYING RELIABILITY OF SSAI AND APPLICATION 41
4.3.1. VERIFYING RELIABILITY OF SSAI 41
4.3.2. THE SSAI APPLICATION 43
Chapter 5 Conclusions and Future work 45
5.1. CONCLUSIONS 45
5.2. FUTURE WORK 47
References 48
Appendix 54
dc.language.isoen
dc.subject睡眠多項生理檢查zh_TW
dc.subject心電圖zh_TW
dc.subject睡眠多維圖zh_TW
dc.subject睡眠階段評估指標zh_TW
dc.subject心率變異zh_TW
dc.subjectHeart rate variability (HRV)en
dc.subjectsleep stage assessment index (SSAI)en
dc.subjectHypnogramen
dc.subjectPolysomnography (PSG)en
dc.subjectElectrocardiography (ECG)en
dc.title基於心率變異分析之睡眠階段評估指標建立zh_TW
dc.titleDevelopment of a sleep stage assessment index based on heart rate variabilityen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝建興(Jiann-Shing Shieh),周呈霙,張文典
dc.subject.keyword心電圖,心率變異,睡眠多項生理檢查,睡眠多維圖,睡眠階段評估指標,zh_TW
dc.subject.keywordElectrocardiography (ECG),Heart rate variability (HRV),Polysomnography (PSG),Hypnogram,sleep stage assessment index (SSAI),en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2015-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved