請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52655完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭仁傑(Jen-Chieh Shiao) | |
| dc.contributor.author | Pin-Ren Fang | en |
| dc.contributor.author | 方品仁 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:22:03Z | - |
| dc.date.available | 2015-08-17 | |
| dc.date.copyright | 2015-08-17 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-16 | |
| dc.identifier.citation | References
Bianchi G., Gislason H., Graham K., Hill L., Jin X., Koranteng K., Manickchand-Heileman S., Payá I., Sainsbury K., Sanchez F., Zwanenburg K. (2000) Impact of fishing on size composition and diversity of demersal fish communities. ICES Journal of Marine Science: Journal du Conseil 57 (3): 558 - 571. Bulman C., Althaus F., He X., Bax N. J., Walliams A. (2001) Diets and trophic guilds of demersal fish of the south-eastern Australian shelf. Marine and freshwater research 52 (4): 537 - 548. Chang N. N. (2009) Biodiversity and biological-environmental relationships of the demersal fish assemblage in the East China Sea in 2008 summer. Master thesis, National Taiwan University. Chang N. N., Shiao J. C., Gong G. C., (2012) Diversity of demersal fish in the East China Sea: implication of eutrophication and fishery. Continental Shelf Research 47: 42 - 54. Chang N. N. (2013) Relationship between environmental conditions and assemblage structures of demersal fish in the East China Sea: impacts of eutrophication. Ph. D. thesis, National Taiwan University. Chang N. N., Shiao J. C., Gong G. C., Kao S. J., Hsieh C. H., (2014) Stable isotope ratios reveal food source of benthic fish and crustaceans along a gradient of trophic status in the East China Sea. Continental Shelf Research 84: 23-34. Chen Y. Q., Shen X. Q. (1995) Changes in the biomass of the East China Sea ecosystem. In: Tang Q. S., Sherman K. (Eds), The Large Marine Ecosystem of the Pacific Rim: A marine conservation and development report. IUCN publication, Gland, pp. 91 - 112. Chen C. T. A. (2003) New vs. export production on the continental shelf. Deep-Sea Res Pt. II 50: 1327 - 1333. Chen C. C., Gong G. C., Shiah F. K. (2007) Hypoxia in the East China Sea: one of the largest coastal low-oxygen areas in the world. Mar Environ Res 64: 399-408. Chiu Y. T. (2013) Assemblage composition of demersal fish in the East China Sea in summer 2009 to 2011. Master thesis, National Taiwan University. Chou W. C., Gong G. C., Sheu D. D., Jan S., Hung C. C., Chen C. C. (2009) Reconciling the paradox that the heterotrophic waters of the East China Sea shelf act as a significant CO2 sink during the summertime: Evidence and implications. Geo Res Lett 36: L15607. Clarke K. R., Warwick R. M. (2001) A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine ecology Progress series 216: 265 - 278. Clarke K. R., Gorley R. N., (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth, 192pp. Corbisier T. N., Petti M. A. V., Soares L. S. H., Muto E. Y., Bromberg S., Valiela I. (2014) Trophic structure of benthic communities in the Cabo Frio upwelling system (southeastern Brazilian shelf): a temporal study using stable isotope analysis. Mar Ecol Prog Ser 512: 23 - 38. Dai G. L., Zhu Q. Q., Yang H. S. (1991) Contamination of the metal and pesticide on the marine organisms in the Mouth of Yangtze River and the adjacent areas. Marine Environment Science 10 (3): 20 - 26. Dayton P. K., Thrush S. F., Agardy T. M. Hofman R. J. (1995) Environmental effects of fishing. Aquatic Conservation: Marine and Freshwater Ecosystems 5: 205 - 232. Dagg M., Benner R., Lohrenz S., Lawrence D. (2004) Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: Plume processes. Continental Shelf Research 24: 833 - 858. Deng J. Y., Meng T. X., Ren S. M., Qin X. Y., Zhu J. Y. (1988) Species composition, abundance and distribution of fish in the Bohai Sea. Mar Fish Res 9: 11 - 89. Diaz R. J. (2001) Overview of hypoxia around the world. J environ qual 30: 275 - 281. Diaz R. J., Rosenberg R. (2008) Spreading the dead zones and consequences for marine ecosystems. Science 321: 926 - 929. Dupont J. M., Hallock P., Jaap W. C. (2010) Ecological impacts of the 2005 red tide on artificial reef epibenthic macroinvertebrate and fish communities in the eastern Gulf of Mexico. Mar Ecol Prog Ser 415: 189 - 200. FAO (1999) Marine resources, their status of exploitation and management in the People’s Republic of China. FAO Fisheries Circular No. 950. Fox S. E., Teichberg M., Olsen Y. S., Heffner L., Valiela I. (2009) Restructuring of benthic communities in eutrophic estuaries: low abundance of prey leads to trophic shift from omnivory to grazing. Mar Ecol Prog Ser 380: 43 - 57. Gaston T. F., Kostoglidis A., Suthers I. M. (2004) The d13C, d15N and d34S signatures of a rocky reef planktivorous fish indicate different coastal discharges of sewage. Marine and Freshwater Research 55: 689 - 699. Gao S., Wang Y. P. (2008) Changes in material fluxes from the ChangJiang River and their implications on the adjoining continental shelf ecosystem. Continental Shelf Research 28: 1490 - 1500. Gong G. C. (1992) Chemical hydrography of the Kuroshio front in the sea northeast of Taiwan. Ph.D. Dissertation, National Taiwan University, Taipei. Gong G. C., Chen Y. L., Liu K. K., (1996) Summer time hydrography and chlorophyll a distribution in the East China Sea in summer: implications of nutrient dynamics. Continental Shelf Research 16: 1561 - 1590. Gong G. C., Shiah F. K., Liu K. K., Wen Y. H., Liang M. H. (2000) Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrography in the southern East China Sea. Continental Shelf Research 20 (4): 411 - 436. Gong G. C., Wen W. H., Wang B. W., Liu G. J. (2003) Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Res Part II 50: 1219 - 1236. Gong G. C., Liu K. K., Chiang K. P., Hsiung T. M., Chang J., Chen C. C., Hung C. C., Chou W. C. Chung C. C., Chen H. Y., Shiah F. G., Tsai A. Y., Hsieh C. H., Shiao J. C., Tseng C. M., Hsu S. C., Lee H. J., Lee M. A., Lin I. I., Tsai F. (2011) Yangtze River floods enhance coastal ocean phytoplankton biomass and potential fish production. Geophysical Research Letters: 38 (13). Gregg W. W., Conkright M. E., Ginoux P., O'Reilly J. E., Casey N. W. (2003) Ocean primary production and climate: Global decadal changes. Geophysical Research Letters 30(15). Hall S. J. (1994) Physical disturbance and marine benthic communities: Life in unconsolidated sediment. Oceanogr. Mar. Biol. Annu. Rev 32: 179 - 239. Ichikawa H., Beardsley R. C. (2002) The current system in the Yellow and East China Seas. Journal of Oceanography 58: 77 - 92. Irizuki T., Ito H., Sako M., Yoshioka K., Kawano S., Nomura R., Tanaka Y. (2015) Anthropogenic impacts on meiobenthic Ostracoda (Crustacea) in the moderately polluted Kasado Bay, Seto Inland Sea, Japan, over the past 70 years. Marine pollution bulletin 91(1): 149 - 159. Jiang H., Cheng H. Q., Xu H. G., Arreguín-Sánchez F., Zetina-Rejo, M. J., Luna P. D. M., Le Quesne, W. J. (2008) Trophic controls of jellyfish blooms and links with fisheries in the East China Sea. Ecological Modelling 212 (3): 492 - 503. Jiang Y. Z., Cheng J. H., Li S. F. (2008) Variation in fish community structure and biodiversity in the north of the East China Sea between two periods. Journal of Fishery Science of China 15 (3): 453 - 459. Jiang Y. Z., Cheng J. H., Li S. F. (2009) Temporal changes in the fish community resulting from a summer fishing moratorium in the northern East China Sea. Mar Ecol Prog Ser 387: 265 - 273. Jiang Y., Ling J., Li, J., Yang L., Li, S. (2014) Seasonal changes in the demersal nekton community off the Changjiang River estuary. Chinese Journal of Oceanology and Limnology 32: 278 - 289. Jin X. (2004) Long-term changes in fish community structure in the Bohai Sea, China. Estuarine, Coastal and Shelf Science 59 (1): 163 - 171. Layman C. A., Araujo M. S., Boucek R., Hammerschlag‐Peyer C. M., Harrison E., Jud Z. R., Matich P., Rosenblatt A. E., Vaudo J. J., Yeager L. A., Post D. M., Bearhop S. (2012) Applying stable isotopes to examine food‐web structure: an overview of analytical tools. Biological Reviews 87(3): 545 - 562. Lehman P. W., Kendall C., Guerin M. A., Young M. B., Silva S. R., Boyer G. L., Teh S. J. (2015) Characterization of the Microcystis Bloom and Its Nitrogen Supply in San Francisco Estuary Using Stable Isotopes. Estuaries and Coasts 38: 165 - 178. Leonard D. R. P., Clarke K. R., Somerfield P. J., Warwick R. M. (2006) The application of an indicator based on taxonomic distinctness for UK marine biodiversity assessments. Journal of Environmental Management 78 (1): 52 - 62. Li D., Daler D. (2004) Ocean pollution from land-based sources: East China Sea, China. Ambio 33: 107 - 113. Li J. S., Li S. F., Cheng J. H. (2006) The composition and diversity of fishes on fishing grounds of Changjiang estuary. Marine Fisheries 1: 006. Li S. F., Cheng J. H., Yan L. P. (2007) Spatial structures of fish communities on the continental shelf of the East China Sea. Acta Ecological Sinica 27 (11): 4377 - 4386. Li S. L., Liu C. Q., Li J., Liu X., Chetelat B., Wang B., Wang F. (2010) Assessment of the sources of nitrate in the Changjiang River, China: using a nitrogen and orxygen isotopic approach. Environ Sci Technol 44: 1573 - 1578. Lin L. S., Zheng. Y. J., Liu Y., Zhang H. Y. (2006) The ecological study of small sized fish in the East China Sea: the species composition and seasonal variation of small sized fish. Mar Sci 30: 58 - 63. Liu W. H., Zhan B. Y. (1999) The dynamic analysis on the fishery stocks in the East China Sea. Journal of Shanghai Fisheries University 8: 19 - 24. Liu X. C., Shen H. T., Huang Q. H. (2002) Concentration variation and flux estimation of dissolved inorganic nutrients from the ChangJiang River into its estuary. Oceanologia et Linnologia Sinica 33: 332 - 340. Liu X., Yu Z., Song X., Cao X. (2009) The nitrogen isotopic composition of dissolved nitrate in the Yangtze River (Changjiang) estuary, China. Estuar Coast Shelf S 85: 641 - 650. Margalef R. (1969) Diversity and stability: a practical proposal and a model of interdependence. Brookhaven Symp. Biol. 22: 25 - 37. Minagawa M., Wada E. (1986) Nitrogen isotope ratios of red tide organisms in the East China Sea: a characterization of biological nitrogen fixation. Marine chemistry 19 (3): 245 - 259. Nakabo T. (2013) Fishes of Japan with pictorial keys to the species, third edition. Ning, X., Liu Z., Cai Y., Fang M., Chai, F. (1998) Physicobiological oceanographic remote sensing of the East China Sea: satellite and in situ observation. Journal of Geophysical Research 103: 21623 - 21635. Nilsson G. E., Hobbs J. P., Munday P. L., Östlund-Nilsson S. (2004) Coward or braveheart: extreme habitat fidelity through hypoxia tolerance in a coral-dwelling goby. Journal of Experimental Biology 207 (1): 33 - 39. Nordstrom M., Aarnio K., Bonsdorff E. (2009) Temporal variability of a benthic food web: patterns and processes in low-diversity system. Mar Ecol Prog Ser 378: 13 - 26. Odum E. P. (1985) Trends expected in stressed ecosystems, BioScience 35: 419 - 422. Pai S.C., Yang C. C., Riley J. P. (1990) Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonyl molybdenum blue complex. Analytica Chimica Acta 229: 115 - 120. Pai S. C., Gong G. C., Liu K. K. (1993) Determination of dissolved oxygen in seawater by direct spectrophotometry of total iodine. Marine Chemistry 41: 343 - 351. Pai S. C., Tsau Y. J., Yang T. I. (2001) pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Analytica Chimica Acta 434 (2): 209 - 216. Parnell A., Inger R., Bearhop S., Jackson A. L. (2008) SIAR: stable isotope analysis in R. (http://cran.r-project.org/web/packages/siar/index.html). Peterson B. J., Fry B. (1987) Stable isotope in ecosystem studies. Ann. Rev. Ecol. Syst. 18: 293 - 320. Pielou E. C. (1966) The measurement of diversity in different types of biological collections. J. Theor. Biol. 13:131 - 144. Pienkowski M. W., Watkinson A. R., Kerby G., Clarke K. R., Warwick R. M. (1998) A taxonomic distinctness index and its statistical properties. Journal of applied ecology 35 (4): 523 - 531. Post D. M. (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703 - 718. Rabalais N. N., Turner R. E., Diaz R. J., Justic D. (2009) Global change and eutrophication of coastal waters. ICES Journal of Marine Science, 66: 1528 - 1537. Savoye N., Aminot A., Tréguer P., Fontugne M., Naulet N., Kérouel R. (2003) Dynamics of particulate organic matter d15N and d13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France). Mar Ecol Prog Ser 255: 27 - 41. Schindler D. E., Carpenter S. R., Cole J. J., kitchell J. E., Pace M. L. (1997) Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277: 248 - 250. Shan X. J., Jin X. S., Yuan W. (2010) Fish assemblage structure in the hypoxic zone in the Changjiang (Yangtze River) estuary and its adjacent waters. Chin J Oceanol Limnol 28: 459 - 469. Shannon C. E. (1949) A mathematical theory of communication. Bell System Technical Journal 27 (4): 623 - 656. Smith G. B. (1975) The 1971 red tide and its impact on certain communities in the mid-eastern Gulf of Mexico. Environ Lett 9: 141 - 152. Smith V. H. (2003) Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environmental Science and Pollution Research 10: 1 - 14. Soares L. S. H., Muto E. Y., Lopez J. P., Clauzet G. R. V., Valiela I. (2014) Seasonal variability of δ13C and δ15N of fish and squid in the Cabo Frio upwelling system of the southwestern Atalntic. Mar Ecol Prog Ser 512: 9 - 21. Sweeting C. J., Barry J. T., Polunin N. V. C., Jennings S. (2007) Effects of body size and environment on diet-tissue d13C fractionation in fishes. Journal of Experimental Marine Biology and Ecology 352(1): 165 - 176. Sweeting C. J., Barry J., Barnes C., Polunin N. V. C., Jennings, S. (2007) Effects of body size and environment on diet-tissue d15N fractionation in fishes. Journal of Experimental Marine Biology and Ecology 340(1): 1 - 10. Tian S. J. (1995) Assessment of ground fish resources in the southeastern part of the East China Sea. Vander Zanden M.J., Rasmussen J.B. (2001) Variation in d15N and d13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46: 2061 - 2066. Vaquer-Sunyer R., Duarte C. M. (2008) Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. USA 105: 15452 - 57. Wang B. D. (2006) Cultural eutrophication in the Changjiang (Yangtze River) plume: History and perspective. Estuarine, Coastal and Shelf Science 69 (3): 471 - 477. Wang B. D., Wei Q. S., Chen J. F. Xie L. P. (2012) Annual cycle of hypoxia off the Changjiang (Yangtze River) Estuary. Marine Environmental Research 77: 1 - 5. Warwick, R. M., Clarke, K. R. (1991) A comparison of some methods for analysing changes in benthic community structure. Journal of the Marine Biological Association of the United Kingdom 71 (1): 225 - 244. Wei X.W., Tong J.A. (1993) Environment contamination status and its effects on the ecosystem in the Bohai and Yellow Sea. Journal of Oceanography of Huanghai and Bohai Seas 11(3): 76 - 82. Wei H., He Y., Li Q., Liu Z., Wang H. (2007) Summer hypoxia adjacent to the Changjiang Estuary. J Mar Syst 67: 292 - 303. Wu Y., Zhang J., Li D. J., Wei H., Lu R. H. (2003) Isotope variability of particulate organic matter at the PN section in the East China Sea. Biogeochemistry 65: 31 - 49. Wu Y., Dittmar T., Ludwichowski K.U., Kattner G., Zhang J., Zhu Z.Y., Koch B.P. (2007a) Tracing suspended organic nitrogen from the Yangtze River catchment into the East China Sea. Mar. Chem. 107: 367 - 377. Wu Y., Zhang J., Liu S. M., Zhang Z. F., Yao Q. Z., Hong G. H., Copper L. (2007b) Sources and distribution of carbon within the Yangtze River system. Est Cont Shelf Sci 71: 13 - 25. Xu K., Milliman J. D. (2009) Seasonal variation of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam (TGD). Geomorphology 104: 276 - 283. Xu Z. L., Shen X. M., Gao Q. (2015) Marine biology of the Changjiang (Yangtze River) estuary and adjacent East China Sea shelf. In ecological continuum from the Changjiang (Yangtze River) watersheds to the East China Sea continental margin (pp. 161 - 180). Yamada U., Tokimura M., Horikawa H., Nakado T. (2007) Fish and fishery of the East China and Yellow Seas. Yan L. P., Li S. F., Ding F. Y. (2004) The preliminary studies on the dynamics of macro-jellyfish resources and their relationship with fisheries in the East China Sea and Yellow Sea. Marine Fisheries 26 (1): 9 - 12. Yu H. C., Xian W. W. (2009) The environment effect on fish assemblage structure in waters adjacent to the Changjiang (Yangtze) River estuary (1998-2001). Chinese Journal of Oceanology and Limnology 27: 443 - 456. Yu H., Yu Z., Song X., Cao X., Yuan Y., Lu G. (2015) Seasonal variations in the nitrogen isotopic composition of dissolved nitrate in the Changjiang River estuary, China. Estuarine, Coastal and Shelf Science 155: 148 - 155. Zajac R. N., Whitlatch, R. B., Thrush, S. F. (1998). Recolonization and succession in soft-sediment infaunal communities: the spatial scale of controlling factors. Hydrobiologia (pp. 227 - 240). Zhu D.K. (1994) Effects of the environment contamination on the Zhoushan Fishing Ground. Marine Fisheries 16 (6): 257 - 262. Zhou M. J., Shen Z. L., Yu R. C. (2008) Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research 28: 1483 - 1489. 沈世傑、吳高逸 (2011) Fishes of Taiwan台灣魚類圖鑑。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52655 | - |
| dc.description.abstract | 本研究於2010-2012年間,藉由海研一號研究船以底拖網採集東海底棲魚類,並分析魚類群聚與環境因子之相關性。魚類群聚不論季節皆依近岸離岸而有明顯分別,且與深度和鹽度梯度相關,溫度在春秋兩季可能是影響群聚組成的主要環境因子。生物多樣性、物種豐富度和均勻度等生物指數皆與葉綠素濃度、表層營養鹽呈現負相關而與溶氧呈現正相關,近岸的缺氧區域主要優勢物種為小型鰕虎魚(Amblychaeturichthys hexanema),顯示大多數魚種無法存活於缺氧環境。魚類群聚在季節上的變動於離岸區域相較穩定,近岸區域則在夏秋兩季有明顯差異,其物種組成的改變主要來自於鰕虎科之優勢物種A. hexanema的比例降低,而舌鰨科與石首魚科比例升高。特別是在2011年夏季低氧的區域,生物指標於秋季時略為上升且單一物種A. hexanema的優勢比例下降,顯示魚類群聚在低氧影響過後,物種組成逐漸趨向多樣化,但短暫恢復期對於整體底棲魚類資源的回復仍是不足。穩定碳氮同位素的分析顯示,在初級生產力較低的秋季,底棲魚類仍主要仰賴海洋表面的基礎生產力而非陸源的有機碎屑。魚體碳同位素值在近岸較離岸高,此結果反映了在夏秋兩季底棲魚類利用海洋表層的藻華。氮同位素值在空間上的變異較小而秋季略高於夏季,此結果可能顯示在夏季營養鹽供應充足,浮游植物同化作用過程中對於氮同位素的選擇性利用,而較低的氮同位素值再經由食物鏈反映至底棲魚類。本研究透過底棲魚類群聚與碳氮同位素值的分析,連結環境變動與魚類群聚的變化,可對於東海區域底棲魚類資源與環境變動之關係提供更多資訊。 | zh_TW |
| dc.description.abstract | In order to understand the demersal fish assemblages and its link to the environments, beam trawl surveys and hydrographic measurements were conducted across the East China Sea continental shelf in 2010 - 2012. The results suggested that the fish assemblages varied with the depth and salinity gradients with significant difference in composition between inshore and offshore areas. Water temperature might be an important factor in shaping the spatial pattern during spring and autumn periods. Bio-indices (e.g. diversity, richness and evenness) showed negative correlations with Chl. a concentrations and nutrients levels and positively correlated with dissolved oxygen. The eutrophication and subsequent hypoxia in the inshore area during summer periods favored the high dominance of opportunistic species (Amblychaeturichthys hexanema). These results suggested the negative impacts of eutrophication and hypoxia on the demersal fish assemblages. Seasonal changes of fish compositions were only found in the inshore area, which may attribute to the succession of dominant species. In addition, we found moderate recovery of fish communities after summer hypoxia but the short-periods of alleviation from stressful condition might not be adequate to compensate the simplified assemblages during hypoxia. Despite the variation of primary productions in different seasons, d13C value of fish muscle suggested that in situ primary production was the main food sources to the demersal fish rather than the terrestrial POM. d15N of demersal fish were higher in autumn than in summer, which might attribute to the preferential uptake of isotopic lighter N source or the shift in baseline rather than elongation of food chain. Our results provided further insights into the demersal fish assemblages in the ECS, and the influences of environmental parameters on fish compositions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:22:03Z (GMT). No. of bitstreams: 1 ntu-104-R01b45024-1.pdf: 4263129 bytes, checksum: dfab19ff83e791a293937a231b70f0d4 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iv Chapter 1: Introductions 1 1.1 East China Sea 1 1.1.1 Spatial-temporal pattern of environmental characteristics 2 1.2 Demersal fish in the ECS 5 1.3 Stable isotope ratio 7 1.4 Objective of the study 9 Chpater2: Materials and Methods 10 2.1 Study area 10 2.2 Hydrographic measurement 10 2.3 Fish sample collection 11 2.4 Stable isotopic compositions 12 2.5 Statistical analysis 14 Chpater3: Results 18 3.1 Environmental characteristics of the study area 18 3.2 Assemblage structures of demersal fish 19 3.2.1 Biological indices 21 3.2.2 Spatial pattern of fish assemblages 22 3.2.3 Seasonal pattern of fish assemblages 24 3.3 Relationship between environmental properties and fish assemblages ………………………………………………………..……………26 3.4 Isotopic compositions of demersal fish 27 3.4.1 Potential food sources of fish 27 3.4.2 Spatial variation of fish isotopic compositions 28 3.4.3 Seasonal variations of fish isotopic compositions 28 3.4.4 Relationship between fish isotope ratio and environmental variables ……………………………………………………………………..30 Chapter4: Discussions 32 4.1 Spatiotemporal pattern of environmental factors in the ECS 32 4.2 Fish assemblages 33 4.2.1 Variation of dominant species: implication for disturbances and potential impacts 33 4.2.2 Variations of bio-indices influenced by environmental factors 34 4.2.3 Environmental variables in structuring spatial pattern of fish assemblages 36 4.2.4 Seasonal pattern of fish assemblages: succession of dominant species…………………………………………………………… 38 4.2.5 Potential stress on the fish assemblages in the ECS 40 4.3 Variations of fish isotopic compositions 42 4.3.1 Carbon isotope ratio 42 4.3.2 Nitrogen isotope ratio 44 Chapter5: Summary 47 References 49 Figures …………………………………...…………………………..…………...….61 Tables ...………………………………………………………………………………80 | |
| dc.language.iso | en | |
| dc.subject | 東海 | zh_TW |
| dc.subject | 缺氧 | zh_TW |
| dc.subject | 時空變化 | zh_TW |
| dc.subject | 底棲魚類群聚 | zh_TW |
| dc.subject | 穩定碳氮同位素 | zh_TW |
| dc.subject | 優養化 | zh_TW |
| dc.subject | Stable carbon and nitrogen isotope | en |
| dc.subject | Eutrophication | en |
| dc.subject | Hypoxia | en |
| dc.subject | Demersal fish assemblags | en |
| dc.subject | Spatial-temporal variations | en |
| dc.subject | East China Sea | en |
| dc.title | 2010-2012年間東海底棲性魚類群聚之時空變化 | zh_TW |
| dc.title | Spatial and temporal variations of demersal fish assemblages in the East China Sea in 2010 to 2012 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉信明(Hsin-Ming Yeh),張至維(Chih-Wei Chang),王佳惠(Chia-Hui Wang) | |
| dc.subject.keyword | 東海,優養化,缺氧,底棲魚類群聚,時空變化,穩定碳氮同位素, | zh_TW |
| dc.subject.keyword | East China Sea,Eutrophication,Hypoxia,Demersal fish assemblags,Spatial-temporal variations,Stable carbon and nitrogen isotope, | en |
| dc.relation.page | 126 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-16 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
