Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52651
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李秀香(Hsiu-Hsiang Lee)
dc.contributor.authorYa-Chen Chengen
dc.contributor.author鄭雅貞zh_TW
dc.date.accessioned2021-06-15T16:21:53Z-
dc.date.available2020-09-25
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-08-15
dc.identifier.citationBerni, Jimena, Alistair M. Muldal, and Stefan R. Pulver. 2010. “Using Neurogenetics and the Warmth-Gated Ion Channel TRPA1 to Study the Neural Basis of Behavior in Drosophila.” Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience 9(1):A5–14. Retrieved
Bernstein, Jacob G., Paul a. Garrity, and Edward S. Boyden. 2012. “Optogenetics and Thermogenetics: Technologies for Controlling the Activity of Targeted Cells within Intact Neural Circuits.” Current Opinion in Neurobiology 22(1):61–71. Retrieved.
Van der Bliek A, Myerowitz E. 1991. “Dynamin-like Protein Encoded by the Drosophila Shibire Gene Associated with Vesicular Traffic.” Nature 351:411–14.
Brand, Andrea. 1995. “GFP In< I> Drosophila</i>.” Trends in genetics 11(8):324–25. Retrieved
Chen, M. S. et al. 1991. “Multiple Forms of Dynamin Are Encoded by Shibire, a Drosophila Gene Involved in Endocytosis.” Nature 351(6327):583–86.
Chien, Samson, Lawrence T. Reiter, Ethan Bier, and Michael Gribskov. 2002. “Homophila: Human Disease Gene Cognates in Drosophila.” Nucleic acids research 30(1):149–51.
Collins, C. and T. Miller. 1977. “Studies on the Action of Biogenic Amines on Cockroach Heart.” The Journal of experimental biology 67:1–15
Conrad, Thomas and Asifa Akhtar. 2012. “Dosage Compensation in Drosophila Melanogaster: Epigenetic Fine-Tuning of Chromosome-Wide Transcription.” Nature Reviews Genetics 13(2):123–34. Retrieved
Curtis D. R & Watkins J. C. 1960. “The Excitation and Depression of Spinal Neurones by Structurally Related Amino Acids.” Journal of neurochemistry.
Dasari, Sameera and Robin L. Cooper. 2006. “Direct Influence of Serotonin on the Larval Heart of Drosophila Melanogaster.” Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 176(4):349–57.
Duffy, Joseph B. 2002. “GAL4 System in Drosophila: A Fly Geneticist’s Swiss Army Knife.” Genesis (New York, N.Y. : 2000) 34(1-2):1–15. Retrieved November 8, 2013
Dulcis, Davide and Richard B. Levine. 2003. “Innervation of the Heart of the Adult Fruit Fly, Drosophila Melanogaster.” Journal of Comparative Neurology 465(4):560–78.
Dulcis, Davide and Richard B. Levine. 2005. “Glutamatergic Innervation of the Heart Initiates Retrograde Contractions in Adult Drosophila Melanogaster.” The Journal of neuroscience : the official journal of the Society for Neuroscience 25(2):271–80.
Edward S Boyden, et al. 1996. “Millisecond-Timescale, Genetically Targeted Optical Control of Neural Activity.” Nature Neuroscience 122(12):3929–38.
Ekman, P., R. W. Levenson, and W. V Friesen. 1983. “Autonomic Nervous System Activity Distinguishes among Emotions.” Science 221(4616):1208–10.
Ellegren, Hans. 2011. “Sex-Chromosome Evolution: Recent Progress and the Influence of Male and Female Heterogamety.” Nature reviews. Genetics 12(3):157–66.
Floras, John S. 2009. “Sympathetic Nervous System Activation in Human Heart Failure. Clinical Implications of an Updated Model.” Journal of the American College of Cardiology 54(5):375–85. Retrieved.
Fortini, M. E., M. P. Skupski, M. S. Boguski, and I. K. Hariharan. 2000. “A Survey of Human Disease Gene Counterparts in the Drosophila Genome.” The Journal of cell biology 150(2):F23–30.
Gompel, Nicolas. 2013. Atlas of Drosophila Morphology.
Hallacli, Erinc and Asifa Akhtar. 2009. “X Chromosomal Regulation in Flies: When Less Is More.” Chromosome Research 17(5):603–19.
Hamada, Fumika N. et al. 2008. “An Internal Thermal Sensor Controlling Temperature Preference in Drosophila.” Nature 454(7201):217–20.
Harvey, Richard P., Sigol&egrave;ne M. Meilhac, and Margaret E. Buckingham. 2009. “Editorial: Landmarks and Lineages in the Developing Heart.” Circulation Research 104(11):1235–37.
Hashimoto, Hideaki, Yoshiko Kikuchi, Yasuhisa Nogi, and Toshio Fukasawa. 1983. “Regulation of Expression of the Galactose Gene Cluster in Saccharomyces Cerevisiae - Isolation and Characterization of the Regulatory Gene GAL4.” MGG Molecular & General Genetics 191(1):31–38.
Hazelrigg, T., R. Levis, and G. M. Rubin. 1984. “Transformation of White Locus DNA in Drosophila: Dosage Compensation, Zeste Interaction, and Position Effects.” Cell 36(2):469–81.
Hwang, Richard Y. et al. 2007. “Nociceptive Neurons Protect Drosophila Larvae from Parasitoid Wasps.” Current Biology 17(24):2105–16.
Inada, Kengo, Hiroshi Kohsaka, Etsuko Takasu, Teruyuki Matsunaga, and Akinao Nose. 2011. “Optical Dissection of Neural Circuits Responsible for Drosophila Larval Locomotion with Halorhodopsin.” PLoS ONE 6(12):22–23.
Iyengar, B. G. et al. 2011. “Silencing Synaptic Communication between Random Interneurons during Drosophila Larval Locomotion.” Genes, Brain and Behavior 10(8):883–900.
J. Robbins, . et al. n.d. “Genetic Variation Affecting Heart Rate in Drosophila Melanogaster.”
Johnson, E., J. Ringo, and H. Dowse. 1997. “Modulation of Drosophila Heartbeat by Neurotransmitters.” Journal of Comparative Physiology - B Biochemical, Systemic, and Environmental Physiology 167(2):89–97.
Johnston, Mark. 1987. “A Model Fungal Gene Regulatory Mechanism:the GAL4 Genes of Saccharomyces Cerevisiae.” Microbiological Reviews. 51(4):458–76.
Kamimura, Keisuke et al. 2013. “Perlecan Regulates Bidirectional Wnt Signaling at the Drosophila Neuromuscular Junction.” Journal of Cell Biology 200(2):219–33.
Kuo, Po-Hung et al. 2014. “Non-Invasive Drosophila ECG Recording by Using Eutectic Gallium-Indium Alloy Electrode: A Feasible Tool for Future Research on the Molecular Mechanisms Involved in Cardiac Arrhythmia.” PLoS ONE 9(9):e104543. Retrieved.
Kwon Y, et al. 2008. “Control of Thermotactic Behavior via Coupling of a TRP Channel to a Phospholipase C Signaling Cascade.” Nature Neuroscience 11:871–73.
Lohr, D., P. Venkov, and J. Zlatanova. 1995. “Transcriptional Regulation in the Yeast GAL Gene Family: A Complex Genetic Network.” FASEB journal : official publication of the Federation of American Societies for Experimental Biology 9(9):777–87. Retrieved
Ma, J. and M. Ptashne. 1987. “The Carboxy-Terminal 30 Amino Acids of GAL4 Are Recognized by GAL80.” Cell 50(1):137–42.
Majeed, Zana R., Audra Stacy, and Robin L. Cooper. 2013. “Pharmacological and Genetic Identification of Serotonin Receptor Subtypes on Drosophila Larval Heart and Aorta.” Journal of Comparative Physiology B 184(2):205–19. Retrieved
Mank, Judith E., David J. Hosken, and Nina Wedell. 2011. “Some Inconvenient Truths about Sex Chromosome Dosage Compensation and the Potential Role of Sexual Conflict.” Evolution 65(8):2133–44.
Martin, D. S. and J. R. Haywood. 1992. “Sympathetic Nervous System Activation by Glutamate Injections into the Paraventricular Nucleus.” Brain research 577(2):261–67.
Medioni, Caroline et al. 2009. “The Fabulous Destiny of the Drosophila Heart.” Current Opinion in Genetics and Development 19(5):518–25.
Meldrum, B. S. 2000. “Glutamate as a Neurotransmitter in the Brain: Review of Physiology and Pathology.” The Journal of nutrition 130(4S Suppl):1007S – 15S.
Monier, Bruno, Martine Astier, Michel S&eacute;m&eacute;riva, and Laurent Perrin. 2005. “Steroid-Dependent Modification of Hox Function Drives Myocyte Reprogramming in the Drosophila Heart.” Development (Cambridge, England) 132(23):5283–93.
Morad, M. 1988. “The Calcium Channel:structure, Function and Implication.”
N&auml;ssel, Dick R., Lina E. Enell, Jonathan G. Santos, Christian Wegener, and Helena a D. Johard. 2008. “A Large Population of Diverse Neurons in the Drosophila Central Nervous System Expresses Short Neuropeptide F, Suggesting Multiple Distributed Peptide Functions.” BMC neuroscience 9:90.
Pauli, Andrea et al. 2008. “Cell-Type-Specific TEV Protease Cleavage Reveals Cohesin Functions in Drosophila Neurons.” Developmental Cell 14(2):239–51.
Perrin, Laurent, Bruno Monier, Romina Ponzielli, Martine Astier, and Michel Semeriva. 2004. “Drosophila Cardiac Tube Organogenesis Requires Multiple Phases of Hox Activity.” Developmental Biology 272(2):419–31.
Pfleger, Cathie M. and Lawrence T. Reiter. 2008. “Recent Efforts to Model Human Diseases in Vivo in Drosophila.” Fly 2(3):129–32.
Praefcke, Gerrit J. K. and Harvey T. McMahon. 2004. “The Dynamin Superfamily: Universal Membrane Tubulation and Fission Molecules?” Nature reviews. Molecular cell biology 5(2):133–47.
Pulver, Stefan R., Stanislav L. Pashkovski, Nicholas J. Hornstein, Paul a Garrity, and Leslie C. Griffith. 2009. “Temporal Dynamics of Neuronal Activation by Channelrhodopsin-2 and TRPA1 Determine Behavioral Output in Drosophila Larvae.” Journal of neurophysiology 101(6):3075–88.
Reiter, Lawrence T., Lorraine Potocki, Sam Chien, Michael Gribskov, and Ethan Bier. 2001. “A Systematic Analysis of Human Disease-Associated Gene Sequences In.” Genome Research 1114–25.
Robinson, By Brian F., Stephen E. Epstein, G. David Beiser, and Eugene Braunwald. 1966. “Control of Heart Rate by the Autonomic Nervous System.” Circulation Research XIX.
Roote, J. 2013. A Rough Guide to Drosophila Mating Scgemes.
Rosenzweig, Mark et al. 2005. “The Drosophila Ortholog of Vertebrate TRPA1 Regulates Thermotaxis.” Genes and Development 19(4):419–24.
S Tephen A. Bernard, et al. 2002. “TREATMENT OF COMATOSE SURVIVORS OF OUT-OF-HOSPITAL CARDIAC ARREST WITH INDUCED HYPOTHERMIA.” N Engl J Med 346(8):557–63.
Salvaterra, Paul M. and Toshihiro Kitamoto. 2001. “Drosophila Cholinergic Neurons and Processes Visualized with Gal4/UAS-GFP.” Gene Expression Patterns 1(1):73–82.
Scaife, Robin M. and Robert L. Margolis. 1997. “The Role of the PH Domain and SH3 Binding Domains in Dynamin Function.” Cellular Signalling 9(6):395–401.
Schwartz, Peter J. and Gaetano M. De Ferrari. 2011. “Sympathetic-Parasympathetic Interaction in Health and Disease: Abnormalities and Relevance in Heart Failure.” Heart Failure Reviews 16(2):101–7.
S&eacute;natore, S&eacute;bastien, Vatrapu Rami Reddy, Michel S&eacute;m&eacute;riva, Laurent Perrin, and Nathalie Lalev&eacute;e. 2010. “Response to Mechanical Stress Is Mediated by the TRPA Channel Painless in the Drosophila Heart.” PLoS Genetics 6(9).
Sokabe, Takaaki, Seiya Tsujiuchi, Tatsuhiko Kadowaki, and Makoto Tominaga. 2008. “Drosophila Painless Is a Ca2+-Requiring Channel Activated by Noxious Heat.” The Journal of neuroscience : the official journal of the Society for Neuroscience 28(40):9929–38.
Southall, Tony D., David a. Elliott, and Andrea H. Brand. 2008. “The GAL4 System: A Versatile Toolkit for Gene Expression in Drosophila.” Cold Spring Harbor Protocols 3(7).
Srivastava, D. and E. N. Olson. 2000. “A Genetic Blueprint for Cardiac Development.” Nature 407(6801):221–26.
Sun, B., P. Xu, and P. M. Salvaterra. 1999. “Dynamic Visualization of Nervous System in Live Drosophila.” Proceedings of the National Academy of Sciences of the United States of America 96(18):10438–43.
Tao, Ye and Robert a Schulz. 2007. “Heart Development in Drosophila.” Seminars in cell & developmental biology 18(1):3–15.
Tracey, W. Daniel et al. 2003. “Gene Essential for Nociception.” Cell 113:261–73.
Triposkiadis, Filippos et al. 2009. “The Sympathetic Nervous System in Heart Failure. Physiology, Pathophysiology, and Clinical Implications.” Journal of the American College of Cardiology 54(19):1747–62. Retrieved Waddell, Scott. 2014. “Neural Correlates of Water Reward in Thirsty.” 17(11).
Wolf, Matthew J. and Howard a. Rockman. 2011. “Drosophila, Genetic Screens, and Cardiac Function.” Circulation Research 109(7):794–806.
Wu, Ming-Chin et al. 2014. “Optogenetic Control of Selective Neural Activity in Multiple Freely Moving Drosophila Adults.” Proceedings of the National Academy of Sciences of the United States of America 111(14):5367–72. Retrieved
Xiang, Yang et al. 2010. “Light-Avoidance-Mediating Photoreceptors Tile the Drosophila Larval Body Wall.” Nature 468(7326):921–26. Retrieved
Yasuyama, Kouji and Paul M. Salvaterra. 1999. “Localization of Choline Acetyltransferase-Expressing Neurons in Drosophila Nervous System.” Microscopy Research and Technique 45(2):65–79.
Zornik, E., K. Paisley, and R. Nichols. 1999. “Neural Transmitters and a Peptide Modulate Drosophila Heart Rate.” Peptides 20(1):45–51.
曾正男. 2009. “如何製作胎心音器.” 1–5.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52651-
dc.description.abstract在動物中,心臟不須經由意識即可自行跳動,且具備維持正常生理作用的重要功能。許多心臟疾病例如冠狀動脈心臟病或心房顫動等,其發生原因源自於心臟正常跳動的功能受損。另外,人類神經系統會調控心臟跳動速率變動的現象也是廣為人知,但目前此調控機制仍未相當清楚。藉由果蠅剛蛹化 0-1hr APF (After Puparium Formation),其外皮仍呈半透明且身體已固定不動的特點,不經解剖即可直接觀察心跳。果蠅的心臟靠近背部呈長條管狀,因此稱為心管 (Cardiac Tube) 或背管 (Dorsal Vessel)。綜觀上述特點,果蠅非常適合提供我們用於研究神經種類對心跳速率 (Heart Rate, HR) 之間的調控關係。
為了解析神經系統對心臟跳動的影響,我們聚焦在果蠅剛蛹化APF 0-1hr時期,在25°C和29°C 兩種環境下心跳速率的變異程度。透過GAL4/UAS system將對溫度敏感的蛋白質 (shibirets , dTrpA1) 或對光敏感的離子通道 (ChR2, NpHR) 表現在特定神經種類中,藉此專一地增加或減少此類神經的活性。實驗結果發現利用GAL4/UAS system專一表現dTrpA1在果蠅剛蛹化0-1 hr APF的廣泛神經 (Pan-neuron) 中,會顯著提升心跳速率改變量 (∆HR)。另一方面使用dTrpA1突變型-shibirets (突變後對溫度敏感),以GAL4/UAS system專一表現shibirets在果蠅剛蛹化APF 0-1hr的廣泛神經中降低其神經活性,會顯著減少心跳速率改變量。增加膽鹼性神經元 (Cholinergic Neurons) 活性對心跳速率改變量無顯著影響,但減少膽鹼性神經元活性明顯降低心跳速率改變量。然而不論降低或增加glutamatergic neurons活性,其心跳速率改變量均不受影響。另外我們也針對心跳規律度 (Heart Rhythm) 各種異常心跳速率,包含心跳弛緩 (Slower HR, Bradycardia)、心跳過速 (Faster HR, Tachycardia)、心跳停止 (Pause) 進行分析。發現降低廣泛神經活性會減少心跳過速但會提高心跳弛緩的個體數,但增加其活性心跳規律度不會受太大影響。減少膽鹼性神經元活性時,心跳過速現象顯著提升,增加此神經活性無任何不影響。減少glutamatergic neurons活性明顯提升pause現象,但增加此神經活性則無影響。
綜觀上述結果,推測在果蠅剛蛹化0-1hr APF時,廣泛神經中存在某類群的神經可調控心跳速率,其中膽鹼性神經元為主要負責維持正常心跳速率以及維持正常心跳規律度的角色,而glutamatergic neurons則能保持心臟持續跳動。
zh_TW
dc.description.abstractCardiac automatism is critical for maintaining normal physiological function in animals. Several cardiac diseases, such as palpitations and atrial fibrillation, are caused by impairment of this process. Moreover, it has demonstrated that nervous system regulates cardiac automatism in human. However, the underlying mechanism of this regulation is unclear. The transparent surface of Drosophila at 0-1 hr APF (After Puparium Formation) makes it easy to directly examine the heart beating. The tubular-shaped dorsal vessel represents heart; therefore, it is plausible and suitable for us to identify how neurons regulate cardiac automatism.
To examine the influence of nervous system on heart beating, we focused on the heart rate difference between 25°C and 29°C in Drosophila at 0-1 hr APF. We took advantage of temperature-sensitive (shits, dTrpA1) or light-sensitive (ChR2, NpHR) genetic tools to acutely and specifically activate or inhibit target neurons in Drosophila by GAL4/UAS system. We found that activation of pan-neuron by dTrpA1 at 0-1 hr APF significantly accelerated the heart rate. On the contrary, inhibition of pan-neuron by shibire temperature-sensitive mutant slowed down the heart rate difference. Activating cholinergic neurons did not alter the heart rate difference, but inhibiting cholinergic neurons decreased the alteration of heart rate difference. However, activation or inhibition of glutamatergic neurons did not have effect on heart rate. Also, we focused on the heart rhythm. We found that when inhibiting pan-neuron enhaced the rate of slower HR and decreased the rate of faster HR. Otherwise, we found that when inhibiting cholinergic neurons caused abnormal heart rhythm, but activating cholinergic neurons did not alter heart rhythm. Moreover, inhibition of glutamatergic neurons decreased pause phenomenons, but activation of glutamatergic neurons did not work on heart rhythm.
Together, these results suggested some neurons exist in pan-neuron may regulate heart beating rate. And cholinergic neurons may play role in regulating heart rate and regular heart rhythm in Drosophila at 0-1 hr APF. The function of glutamatergic neurons is to maintain the heart beat in Drosophila at 0-1 hr APF 0hr.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:21:53Z (GMT). No. of bitstreams: 1
ntu-104-R02448011-1.pdf: 2758736 bytes, checksum: b7fcc086a61f389c661a4172472e7338 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 II
誌 謝 III
目 錄 V
摘要 IX
Abstract X
第一章 簡介 1
第二章 材料與方法 6
2.1 果蠅品系、飼養及交配 6
2.2 心管位置解剖 6
2.3 性別分辨 7
2.4 心跳測量 7
2.4.1 用溫度改變方式 7
2.4.2 用光刺激方式 8
2.5心跳數據分析 8
2.6 TrpA1功能測試 9
2.7 mhc-GAL80對膽鹼性神經元分布位置影響之測試 9
第三章 研究結果 10
3.1 廣泛神經活性對心跳速率改變量之調控 10
3.1.1 降低廣泛神經活性減少心跳速率改變量 10
3.1.2 增加廣泛神經活性提升心跳速率改變量 10
3.1.3 劑量補償效應增強廣泛神經活性影響心跳速率改變量之效果 10
3.2 膽鹼性神經元對心跳速率改變量之調控 11
3.2.1 降低膽鹼性神經元活性減少心跳速率改變量 11
3.2.2 增加膽鹼性神經元活性不影響心跳速率改變量 11
3.2.3 排除TrpA1失活導致心跳速率改變量不受影響 12
3.2.4 排除GAL4滲漏到肌肉而影響心跳速率的可能性 12
3.3 Glutamatergic Neurons對心跳速率改變量之調控 13
3.3.1 降低Glutamatergic Neurons活性不影響心跳速率改變量 13
3.3.2 增加Glutamatergic Neurons活性不影響心跳速率改變量 13
3.4 降低廣泛神經活性對心跳規律度之調控 13
3.4.1降低廣泛神經活性降低Normal HR平均值 14
3.4.2降低廣泛神經活性顯著提升異常心跳速率所占時間比率 14
3.4.3降低廣泛神經活性減少Pause短長度次數但略增平均每次長度 15
3.4.4降低廣泛神經活性顯著地增加Slower HR各長度次數及平均每次長度 15
3.4.5降低廣泛神經活性降低Faster HR長時間長度次數但不影響平均每次長度 15
3.4.6降低廣泛神經活性減少Faster HR及提高Slower HR之個體數發生率 16
3.4.7 w*基因提升Slower HR之個體數發生率 16
3.5增加廣泛神經活性對心跳規律度之調控 16
3.5.1增加廣泛神經活性不改變各異常心跳速率平均值 16
3.5.2增加廣泛神經活性不影響各異常心跳速率所占時間比率 17
3.5.3增加廣泛神經活性不影響Pause各長度次數及平均每次長度 17
3.5.4增加廣泛神經活性不影響Slower HR各長度次數及平均每次長度 17
3.5.5增加廣泛神經活性不影響Faster HR各長度次數及平均每次長度 18
3.5.6增加廣泛神經活性不影響各異常心跳速率個體數機率 18
3.6降低膽鹼性神經元活性對心跳規律度之調控 18
3.6.1降低膽鹼性神經元活性降低Normal及Faster HR心跳速率平均值 19
3.6.2降低膽鹼性神經元活性不影響各異常心跳速率所占時間比率 19
3.6.3降低膽鹼性神經元活性不影響Pause各長度次數及平均每次長度 19
3.6.4降低膽鹼性神經元活性不影響Slower HR各長度次數及平均每次長度 19
3.6.5降低膽鹼性神經元活性提升Faster HR短長度次數但降低平均每次長度 19
3.6.6降低膽鹼性神經元活性降低Faster HR及Pause之個體數機率 20
3.7增加膽鹼性神經元活性對心跳規律度之調控 20
3.7.1增加膽鹼性神經元活性降低Normal HR心跳速率平均值 20
3.7.2增加膽鹼性神經元活性不影響各異常心跳速率所占時間比率 20
3.7.3增加膽鹼性神經元活性不影響Pause各長度次數及平均每次長度 21
3.7.4增加膽鹼性神經元活性不影響Slower HR各長度次數及平均每次長度 21
3.7.5增加膽鹼性神經元活性不影響Faster HR各長度次數及平均每次長度 21
3.7.6增加膽鹼性神經元活性不影響各異常心跳速率個體數機率 21
3.8降低Glutamatergic Neurons活性對心跳規律度之調控 21
3.8.1降低Glutamatergic Neurons活性降低Normal HR與提高Slower HR心跳速率平均值 22
3.8.2降低Glutamatergic Neurons活性降低Faster HR及提高Pause心跳速率所占時間比率 22
3.8.3降低Glutamatergic Neurons活性增加Pause短長度次數及平均每次長度 22
3.8.4降低Glutamatergic Neurons活性不影響Slower HR各長度次數及平均每次長度 23
3.8.5降低Glutamatergic Neurons活性不影響Faster HR各長度次數與平均每次長度 23
3.8.6降低Glutamatergic Neurons活性提升Slower HR及Pause之個體數機率 23
3.9增加Glutamatergic Neurons活性對心跳規律度之調控 23
3.9.1增加Glutamatergic Neurons活性不改變各異常心跳速率平均值 24
3.9.2增加Glutamatergic Neurons活性不影響各異常心跳速率所占時間比率 24
3.9.3增加Glutamatergic Neurons活性不影響Pause各長度次數及平均每次長度 24
3.9.4增加Glutamatergic Neurons活性不影響Slower HR各長度次數及平均每次長度 24
3.9.5增加Glutamatergic Neurons活性不影響Faster HR各長度次數及平均每次長度 25
3.9.6增加Glutamatergic Neurons活性不影響各異常心跳速率個體數機率 25
第四章 討論 26
4.1. 正常生理和病理之心跳變異程度需提高N值才能顯現差異 26
4.2. 廣泛神經和離體心臟節律點對心跳之調控差異 26
4.4. 高頻率的心跳暫停現象,暗示果蠅心管尚未進化完全 27
4.5. 神經與神經傳遞物質兩者對果蠅心跳速率改變量之影響具一致性 28
4.6. 增加或降低神經活性之方法 (optogenetics) 29
4.7. 心跳改變量更進階之分析 29
4.8. 果蠅神經和心跳關聯之研究可供日後深究 29
參考文獻 31
圖 38
表 118
附錄 124
dc.language.isozh-TW
dc.subject果蠅zh_TW
dc.subject心管zh_TW
dc.subject神經系統zh_TW
dc.subject心跳速率zh_TW
dc.subject膽鹼性神經元zh_TW
dc.subjectHeart rateen
dc.subjectCardiac tubeen
dc.subjectNervous systemen
dc.subjectCholinergic neuronsen
dc.subjectDrosophilaen
dc.title探討果蠅神經系統對心管跳動速率之調控zh_TW
dc.titleInvastigating on the Regulation of Nervous System to Cardiac Tube Beating Rate in Drosophilaen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor何奕倫(Yi-Lwun Ho),吳君泰(June-Tai Wu)
dc.subject.keyword果蠅,心管,神經系統,心跳速率,膽鹼性神經元,zh_TW
dc.subject.keywordDrosophila,Cardiac tube,Nervous system,Heart rate,Cholinergic neurons,en
dc.relation.page125
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
Appears in Collections:分子醫學研究所

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
2.69 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved