Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52648
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳林祈
dc.contributor.authorChih-Hao Chenen
dc.contributor.author陳志豪zh_TW
dc.date.accessioned2021-06-15T16:21:46Z-
dc.date.available2020-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-16
dc.identifier.citation林國甯。2005。直接離子選擇性電極及間接離子選擇性電極測量人體血清電解質鈉、鉀及氯離子比較之探討。碩士論文。台北:台北醫藥大學醫學檢驗生物技術學研究所
Adrogue, H. J. and N. E. Madias (2000). 'Hypernatremia.' New England Journal of Medicine 342(20): 1493-1499.
Alaviuhkola, T., J. Bobacka, M. Nissinen, K. Rissanen, A. Ivaska and J. Pursiainen (2005). 'Synthesis, characterization, and complexation of tetraarylborates with aromatic cations and their use in chemical sensors.' Chemistry-a European Journal 11(7): 2071-2080.
AlZahrani, A., R. Sinnert and J. Gernsheimer (2013). 'Acute kidney injury, sodium disorders, and hypercalcemia in the aging kidney: diagnostic and therapeutic management strategies in emergency medicine.' Clinics in Geriatric Medicine 29(1): 275-319.
Anderson, R. J., H. M. Chung, R. Kluge and R. W. Schrier (1985). 'Hyponatremia: a prospective analysis of its epidemiology and the pathogenetic role of vasopressin.' Ann Internal Medicine 102(2): 164-168.
Badr, I. H., J. Feiler and L. G. Bachas (2005). 'Response behavior of sodium-selective electrodes modified by surface attachment of the anticoagulant polysaccharides heparin and chondroitin sulfate.' Talanta 65(1): 261-266.
Badr, I. H., M. Gouda, R. Abdel-Sattar and H. E. Sayour (2014). 'Reduction of thrombogenicity of PVC-based sodium selective membrane electrodes using heparin-modified chitosan.' Carbohydrate Polymers 99: 783-790.
Bakker, E., P. Buhlmann and E. Pretsch (1997). 'Carrier-based ion-selective electrodes and bulk optodes. 1. General Characteristics.' Chemical Reviews 97(8): 3083-3132.
Bakker, E., P. Buhlmann and E. Pretsch (1999). 'Polymer Membrane Ion-Selective Electrodes±What are the Limits?' Electroanalysis 11(13): 915–933.
Berrocal, M. J., R. D. Johnson, I. H. A. Badr, M. Liu, D. Gao and L. G. Bachas (2002). 'Improving the blood compatibility of ion-selective electrodes by employing poly(MPC-co-BMA), a copolymer containing phosphorylcholine, as a membrane coating.' Analytical Chemistry 74: 3644-3648.
Bobacka, J. (1999). 'Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as Ion-to-Electron Transducers.' Analytical Chemistry 71: 4932-4937.
Bobacka, J. (1999). 'Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as Ion-to-Electron Transducers.' Anal Chem 71(21): 4932-4937.
Bobacka, J. (2006). 'Conducting Polymer-Based Solid-State Ion-Selective Electrodes.' Electroanalysis 18(1): 7-18.
Bobacka, J., T. Alaviuhkola, V. Hietapelto, H. Koskinen, A. Lewenstam, M. Lamsa, J. Pursiainen and A. Ivaska (2002). 'Solid-contact ion-selective electrodes for aromatic cations based on pi-coordinating soft carriers.' Talanta 58(2): 341-349.
Bobacka, J., T. Lahtinen, H. Koskinen, K. Rissanen, A. Lewenstam and A. Ivaska (2002). 'Silver ion-selective electrodes based on pi-coordinating ionophores without heteroatoms.' Electroanalysis 14(19-20): 1353-1357.
Brash, J. L. (2000). 'Exploiting the current paradigm of blood-material interactions for the rational design of blood-compatible materials.' J Biomater Sci Polym Ed 11(11): 1135-1146.
Buck, R. P. and E. Lindner (2001). 'Tracing the history of selective ion sensors.' Analytical Chemistry 73: 88A-97A.
Buhlmann, P. and L. D. Chen (2012). 'Ion-Selective Electrodes With Ionophore-Doped Sensing Membranes.' Supramolecular Chemistry: From Molecules to Nanomaterials.: 2539-2579.
Cadogan, A., Z. Gao, A. Lewenstam, A. Ivaska and D. Diamond (1992). 'All-Solid-state Sodium-Selective Electrode Based on a Calixarene Ionophore in a Poly(viny1 chloride) Membrane with a Polypyrrole Solid Contact.' Anal Chem 64: 2496-2501.
Cattrall, R. W. and H. Freiser (1971). 'Coated wire ion-selective electrodes.' Analytical Chemistry 43: 1905-1906.
Cha, G. S., D. Liu, M. E. Meyerhoff, H. C. Cantor, A. R. Midgley, H. D. Goldberg and R. B. Brown (1991). 'Electrochemical Performance, Biocompatibility, and Adhesion of New Polymer Matrices for Solid-State Ion Sensors.' Analytical Chemistry 63(17): 1666-1672.
Cha, M. J., J. H. Shin, B. K. Oh, C. Y. Kim, G. S. Cha, D. S. Shin and B. Kim (1995). 'Asymmetric Cellulose-Acetate Membrane-Based Carbonate-Selective and Chloride-Selective Electrodes.' Analytica Chimica Acta 315(3): 311-319.
Deyhimi, F. (1999). 'A method for the determination of potentiometric selectivity coefficients of ion selective electrodes in the presence of several interfering ions.' Talanta 50: 1129-1134.
Espadas-Torre, C. and M. E. Meyerhoff (1995). 'Thrombogenic Properties of Untreated and Poly(ethylene oxide)-Modified Polymeric Matrices Useful for Preparing intraarterial ion-Selective Electrodes.' Anal. Chem. 67: 3108-3114.
Gavalas, V. G., M. J. Berrocal and L. G. Bachas (2006). 'Enhancing the blood compatibility of ion-selective electrodes.' Anal Bioanal Chem 384(1): 65-72.
Gyurcsanyi, R. E., N. Rangisetty, S. Clifton, B. D. Pendley and E. Lindner (2004). 'Microfabricated ISEs: critical comparison of inherently conducting polymer and hydrogel based inner contacts.' Talanta 63(1): 89-99.
Han, W. S., K. C. Chung, M. H. Kim, H. B. Ko, Y. H. Lee and T. K. Hong (2004). 'A hydrogen ion-selective poly(aniline) solid contact electrode based on dibenzylpyrenemethylamine ionophore for highly acidic solutions.' Analytical Sciences 20(10): 1419-1422.
Han, W. S., S. J. Yoo, S. H. Kim, T. K. Hong and K. C. Chung (2003). 'Behavior of a polypyrrole solid contact pH-selective electrode based on tertiary amine ionophores containing different alkyl chain lengths between nitrogen and a phenyl group.' Analytical Sciences 19(3): 357-360.
Hsiue, G. H., S. D. Lee, P. C. Chang and C. Y. Kao (1998). 'Surface characterization and biological properties study of silicone rubber membrane grafted with phospholipid as biomaterial via plasma induced graft copolymerization.' J Biomed Mater Res 42(1): 134-147.
J.Y. Kim, J.H. Jung, D.E. Lee and J. Joo (2002). 'Enhancement of electrical conductivity of poly(3 4-ethylenedioxythiophene)-poly(4-styrenesulfonate) by a change of solvents.' synthetic metals(126): 311-316.
Kelly A. Brooks, John R. Allen, Pamela W. Feldhoff and L. G. Bachas (1996). 'Effect of Surface-Attached Heparin on the Response of Potassium-Selective Electrodes.' Anal. Chem. 68: 1439-1443.
Kingshott, P. and H. J. Griesser (1999). 'Surfaces that resist bioadhesion.' Current Opinion in Solid State & Materials Science 4(4): 403-412.
Konopka, A., T. Sokalski, A. Michalska, A. Lewenstam and M. Maj-Zurawska (2004). 'Factors affecting the potentiometric response of all-solid-state solvent polymeric membrane calcium-selective electrode for low-level measurements.' Analytical Chemistry 76(21): 6410-6418.
Li, X., Y. Yu, Q. Ji and L. Qiu (2015). 'Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles.' Nanomedicine 11(1): 175-184.
Lindfors, T., S. Ervela and A. Ivaska (2003). 'Polyaniline as pH-sensitive component in plasticized PVC membranes.' Journal of Electroanalytical Chemistry 560: 69-78.
Lindfors, T. and A. Ivaska (2004). 'Stability of the inner polyaniline solid contact layer in all-solid-state K+-selective electrodes based on plasticized poly(vinyl chloride).' Analytical Chemistry 76(15): 4387-4394.
Lindfors, T., P. SjoEberg, J. Bobacka, A. Lewenstam and A. Ivaska (1998). 'Characterization of a single-piece all-solid-state lithium-selective electrode based on soluble conducting polyaniline.' Analytica Chimica Acta 385: 163-173.
Lindner, E. and R. E. Gyurcsanyi (2008). 'Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes.' Journal of Solid State Electrochemistry 13(1): 51-68.
Lindner, E. and B. D. Pendley (2013). 'A tutorial on the application of ion-selective electrode potentiometry: an analytical method with unique qualities, unexplored opportunities and potential pitfalls; tutorial.' Anal Chim Acta 762: 1-13.
Liu, B., C. Chen, W. Zhang, J. Crittenden and Y. Chen (2012). 'Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additives on properties and performance.' Desalination 307: 26-33.
Maria J. Berrocal, R. Daniel Johnson, Ibrahim H. A. Badr, Mingdong Liu, Dayong Gao and L. G. Bachas (2002). 'Improving the blood compatibility of ion-selective electrodes by employing poly(MPC-co-BMA), a copolymer containing phosphorylcholine, as a membrane coating.' Anal. Chem. 74: 3644-3648.
Michalska, A. (2012). 'All-Solid-State Ion Selective and All-Solid-State Reference Electrodes.' Electroanalysis 24(6): 1253-1265.
Michalska, A., J. Dumanska and K. Maksymiuk (2003). 'Lowering the detection limit of ion-selective plastic membrane electrodes with conducting polymer solid contact and conducting polymer potentiometric sensors.' Analytical Chemistry 75(19): 4964-4974.
Michalska, A. and K. Maksymiuk (2004). 'All-plastic, disposable, low detection limit ion-selective electrodes.' Analytica Chimica Acta 523(1): 97-105.
Michalska, A. J., C. Appaih-Kusi, L. Y. Heng, S. Walkiewicz and E. A. H. Hall (2004). 'An experimental study of membrane materials and inner contacting layers for ion-selective K+ electrodes with a stable response and good dynamic range.' Analytical Chemistry 76(7): 2031-2039.
Murphy, S. M., C. J. Hamilton, M. L. Davies and B. J. Tighe (1992). 'Polymer membranes in clinical sensor applications.' Biomaterials 13: 979-990.
Murphy, S. M., C. J. Hamilton, M. L. Davies and B. J. Tighe (1992). 'Polymer membranes in clinical sensor applications. II. The design and fabrication of permselective hydrogels for electrochemical devices.' Biomaterials 13(14): 979-990.
Natalie Wisniewski, M. R. (2000). 'Methods for reducing biosensor membrane biofouling.' Colloids and Surfaces B: Biointerfaces: 197-219.
O’Connor, S. M., A. P. DeAnglis, S. H. Gehrke and G. S. Retzinger (2000). 'Adsorption of plasma proteins on to PEO PPO triblock copolymer films a focus on fibrinogen.' Biotechnol. Appl. Biochem. 31: 185-196.
Oh, E. J., K. S. Jang and A. G. MacDiarmid (2002). 'High molecular weight soluble polypyrrole.' synthetic metals 125: 267-272.
Olsson, P., J. Sanchez, T. E. Mollnes and J. Riesenfeld (2000). 'On the blood compatibility of end-point immobilized heparin.' J Biomater Sci Polym Ed 11(11): 1261-1273.
Pandey, P. C., G. Singh and P. K. Srivastava (2002). 'Electrochemical synthesis of tetraphenylborate doped polypyrrole and its applications in designing a novel zinc and potassium ion sensor.' Electroanalysis 14(6): 427-432.
Pawlak, M. and E. Bakker (2014). 'Chemical Modification of Polymer Ion-Selective Membrane Electrode Surfaces.' Electroanalysis 26(6): 1121-1131.
Pawlak, M., E. Grygolowicz-Pawlak, G. A. Crespo, G. Mistlberger and E. Bakker (2013). 'PVC-Based Ion-Selective Electrodes with Enhanced Biocompatibility by Surface Modification with “Click” Chemistry.' Electroanalysis 25(8): 1840-1846.
Puntener, M., M. Fibbioli, E. Bakker and E. Pretsch (2002). 'Response and diffusion behavior of mobile and covalently immobilized H+-ionophores in polymeric membrane ion-selective electrodes.' Electroanalysis 14(19-20): 1329-1338.
Ratner, B. D. (1993). 'New ideas in biomaterials science--a path to engineered biomaterials.' J Biomed Mater Res 27(7): 837-850.
Renneboog, B., W. Musch, X. Vandemergel, M. U. Manto and G. Decaux (2006). 'Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits.' Am J Med 119(1): 71 e71-78.
Tom Lindfors, P. S., Johan Bobacka, Andrzej Lewenstam, Ari Ivaska (1999). 'Characterization of a single-piece all-solid-state lithium-selective electrode based on soluble conducting polyaniline.' Analytica Chimica Acta 385: 163-173.
Truesdell, A. H. (1968). 'Activity Coefficient of Aqueous Sofiom Chloride from 15 degree to 50 degree Measured with a Glass Electrode.' Science 161: 884-886.
Truesdell, A. H. (1968). 'activity coefficients of aqueous sodium chloride from 15 degree to 50 degree measured with a glass electrode.' science 161: 884-885.
Urs Oesch, D. A., Wilhelm Simon (1986). 'Ion-Selective Membrane Electrodes for Clinical Use.' Clinical Chemistry 32(8): 1448-1459.
Vazquez, M., J. Bobacka, A. Ivaska and A. Lewenstam (2002). 'Influence of oxygen and carbon dioxide on the electrochemical stability of poly(3,4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes.' Sensors and Actuators B-Chemical 82(1): 7-13.
Vazquez, M., J. Bobacka, A. Ivaska and A. Lewenstam (2004). 'Small-volume radial flow cell for all-solid-state ion-selective electrodes.' Talanta 62(1): 57-63.
Vazquez, M., P. Danielsson, J. Bobacka, A. Lewenstam and A. Ivaska (2004). 'Solution-cast films of poly(3,4-ethylenedioxythiophene) as ion-to-electron transducers in all-solid-state ion-selective electrodes.' Sensors and Actuators B-Chemical 97(2-3): 182-189.
Yan-qiang Wang, Ting Wang, Yan-lei Su, Fu-bing Peng, Hong Wu and Z.-y. Jiang (2005). 'Remarkable Reduction of Irreversible Fouling and Improvement of the Permeation Properties of Poly(ether sulfone) Ultrafiltration Membranes by Blending with Pluronic F127.' Langmuir 21: 11856-11862.
Yan-Qiang Wang, T. W., Yan-Lei Su, Fu-bing Peng, Hong Wu, and Zhong-yi Jiang (2005). 'Remarkable Reduction of Irreversible Fouling and Improvement of the Permeation Properties of Poly(ether sulfone) Ultrafiltration Membranes by Blending with Pluronic F127.' Langmuir 21: 11856-11862.
Yu, J., S. Sundaram, D. Weng, J. M. Courtney, C. R. Moran and N. B. Graham (1991). 'Blood interactions with novel polyurethaneurea hydrogels.' Biomaterials 12(2): 119-120.
Zhao, W., Y. Su, C. Li, Q. Shi, X. Ning and Z. Jiang (2008). 'Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent.' Journal of Membrane Science 318(1-2): 405-412.
Zhao, Y.-P. and Y. Wang (2013). 'Fundamentals and Applications of Electrowetting.' Reviews of Adhesion and Adhesives 1(1): 114-174.
Zhu, J., X. Li, Y. Qin and Y. Zhang (2010). 'Single-piece solid-contact ion-selective electrodes with polymer–carbon nanotube composites.' Sensors and Actuators B: Chemical 148(1): 166-172.
Zielinska, R., E. Mulik, A. Michalska, S. Achmatowicz and M. Maj-Zurawska (2002). 'All-solid-state planar miniature ion-selective chloride electrode.' Analytica Chimica Acta 451(2): 243-249.
MedicineNet. 2014. What are electrolytes? Available at: http://www.medicinenet.com. Accessed 20 May 2015.
Acutecaretesting. 2007. Direct ISE versus indirect ISE plasma sodium measurement in the critically ill. Available at: http://acutecaretesting.org. Accessed 23 May 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52648-
dc.description.abstract人體血液內的電解質監測在臨床醫學上一向是不可或缺的指數,在許多偵測方式中離子選擇電極扮演極關鍵的要角。但在實際應用中,若能將離子選擇電極化為貼片或是可植入人體形式以達連續監測,對於一些重症患者可以減少高頻率地抽血分析離子強度。然而當感測器長時間與血液接觸時,血液中蛋白質會吸附於表面,並且根據不同的蛋白質特性會引發不同的後續生物反應,此些吸附過程將大幅影響感測器之穩定度。是故為實踐貼片或可植入式之應用,本篇論文提出以Pluronic F127作為離子選擇薄膜之添加物以增加電極之生物相容性減少表面的蛋白質吸附,進而降低後續不利感測器之生物反應。除此之外,為建立此全固態網印式鈉離子選擇電極,必須在電極與離子選擇薄膜之間引入一離子電子傳導層以穩定訊號。整體而言本論文將分為二部分深入討論:第一部分為離子電子轉換層之討論,屬於電極系統的建立。本論文所採用之全固態網印式離子選擇電極雖可大幅減少電極之體積,然而移除傳統電極之內溶液將造成離子與電子之間轉換發生障礙,進而導致電極訊號之不穩定。是故,必須要導入一層離子電子轉換層(例如導電高分子)以取代內溶液之角色維持其轉換效率並穩定訊號。本論文針對三種導電高分子(PANI: DiOHP、PEDOT: PSS和PPy: DEHESSA)分析電化學特性並比較其應用於此電極系統之可行性。第二部分根據建立之系統,進一步針對電極表面離子選擇薄膜討論抗蛋白質吸附修飾,本篇論文係首次提出以Pluronic F127作為離子選擇薄膜之添加物可降低蛋白質吸附並且詳細分析其修飾對電化學特性影響。在人類血清白蛋白的吸附實驗中,修飾過之電極比起原先未處理可大幅減少96%的蛋白質吸附量。此外,在模擬人類血液的蛋白質溶液中,其電極穩定度可提升78%。儘管結果顯示在薄膜內加入過多的Pluronic F127 會改變薄膜的微結構使其孔隙變得緻密,因而部分妨礙離子及電子的轉移過程,但是電極之選擇性及電位響應比起未修飾電極都沒有明顯的下降,尤其是選擇性依然符合臨床使用之要求,此亦說明了Pluronic F127並不會妨礙薄膜內離子載體與其特定離子之結合。zh_TW
dc.description.abstractIn vivo monitoring of electrolyte in human blood is important for clinical use. Among this detection, ion-selective electrodes (ISEs) have played a vital role. From the practical use, especially for serious illness, it is pleasing to make ISEs implantable for continuously monitoring physiological analytes. However, it is generally believed that if sensors had long-term contact with protein in human blood, it would cause adverse effect because protein would first adhere on the surface of sensors, and following sequences depended on the properties of the protein. In this work, pluronic F-127 was utilized as an additive to enhance biocompatibility of poly(vinyl chloride) (PVC)-based screen-printed sodium-selective electrodes by reducing levels of protein adsorption. What’s more, to make all-solid-state screen-printed sodium-selective electrodes realized, it is needed to introduce an ion-to-electron transducer (IET) between ion-selective membrane and carbon electrode. Generally, this thesis can be separated into two sections to discuss. First section is to verify the electrode system. To minimize the size of ISEs, this work adopted screen-printed ISEs. However, without inner solution, the process of ion-to-electron transfer would be hindered and the signal is going to be unstable. Therefore, it is needed to introduce an IET such as conducting polymer to facilitate the transfer process. This work compared electrochemical properties of PANI:DiOHP, PEDOT:PSS, and PPy: DEHESSA and chose an adequate material as an IET. Second, based on the electrode system with IET, this thesis further discussed the ion-selective membrane modification against protein adsorption. Biocompatibility of Pluronic F-127 modified sodium-selective electrodes was evaluated by a human serum albumin (HSA) adsorption study. Such modification was able to decrease protein-adsorption by 96% compared to the unmodified PVC membrane, resulting in a signal stability that substantially increased by 78% in human fluids. Although the Pluronic F-127 did somewhat hinder the process of ion-to-electron transfer due to its influence on surface structure, the potentiometric response and the selectivity of modified sodium-selective electrodes were found to be comparable to the untreated sodium-selective electrodes. Selectivity of the modified sodium-selective electrodes still met the requirement for sodium analysis in physiological fluids. These results indicate that Pluronic F-127 did not alter the binding behavior between the ions and ionophores.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:21:46Z (GMT). No. of bitstreams: 1
ntu-104-R01631048-1.pdf: 13703298 bytes, checksum: 372548504d6be5a5bda00b51103840f2 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
目錄 vi
圖目錄 xi
表目錄 xiii
第一章 緒論 1
1.1前言 1
1.2 研究動機 2
1.3研究目的 3
1.4研究架構 5
第二章 文獻探討 6
2.1 人體電解質 6
2.1.1 人體重要電解質簡介 6
2.1.2 高低血鈉症 8
2.1.3 常見電解質量測方式 9
2.2 離子選擇電極 10
2.2.1 離子選擇電極感測原理 10
2.2.2 離子選擇電極發展 13
2.2.3 離子電子轉換層介紹 15
2.3 離子選擇電極表面修飾 19
2.3.1 蛋白質表面吸附對感測器影響 19
2.3.2 離子選擇電極表面抗蛋白修飾 21
2.3.3 Pluronic 共聚物介紹 26
第三章 材料與實驗方法 28
3.1實驗材料與儀器 28
3.1.1 實驗材料 28
3.1.2 實驗儀器 30
3.2 離子電子轉換層 31
3.2.1網版印刷碳膠電極製備 31
3.2.2 離子電子轉換層製備 32
3.2.3鈉離子選擇薄膜製備 33
3.2.4 電化學阻抗頻譜法分析阻抗 33
3.2.5 接觸角量測 33
3.2.6 電化學阻抗頻譜法分析離子選擇電極電子轉移阻抗 34
3.2.7 計時電位法量測離子選擇電極總電阻 34
3.2.8 開環電位法量測離子選擇電極靈敏度及偵測下限 35
3.3 Pluronic F127修飾離子選擇薄膜 36
3.3.1 Pluronic F127修飾之離子選擇薄膜製備 36
3.3.2 高解析度生物晶片掃描儀分析螢光影像 36
3.3.3 接觸角量測 37
3.3.4 電化學阻抗頻譜法分析離子選擇電極電子轉移阻抗 37
3.3.5 計時電位法量測離子選擇電極總電阻 38
3.3.6 開環電位法量測離子選擇電極靈敏度及偵測下限 38
3.3.7 開環電位法量測離子選擇電極響應時間 38
3.3.8 開環電位法量測離子選擇電極於人工血清液中電位穩定度 38
3.3.9 離子選擇電極選擇性係數量測 39
第四章 結果與討論 40
4.1 離子型導電高分子在離子電子轉換層的應用篩選 40
4.1.1 低頻電容值 40
4.1.2電荷轉移阻抗 42
4.1.3導電高分子接觸角測試 44
4.1.4離子選擇電極穩定度 46
4.1.5 離子選擇電極靈敏度測試 48
4.1.6離子電子轉換層總結 50
4.2 Pluronic F127修飾薄膜之親疏水性對抵抗蛋白質影響 52
4.2.1接觸角影像分析 52
4.2.2高解析度生物晶片掃描儀影像 54
4.3 Pluronic F127修飾薄膜微結構變化對電化學特性影響 57
4.3.1 Pluronic F127修飾離子選擇薄膜之電荷轉移阻抗 57
4.3.2 Pluronic F127修飾薄膜之掃描式電子顯微鏡影像 59
4.3.3 Pluronic F127修飾薄膜電極之響應時間 64
4.3.4 Pluronic F127修飾離子選擇電極穩定度及總電阻 66
4.3.5 Pluronic F127修飾薄膜電極之靈敏度 68
4.3.5修飾薄膜抗蛋白質吸附能力及電極靈敏度綜合比較 71
4.4 Pluronic F127修飾薄膜電極於蛋白質溶液實測 73
4.4.1蛋白質吸附對離子選擇電極活性之影響 73
4.4.2蛋白質吸附對離子選擇電極穩定度之影響 76
4.4.3臨床上離子選擇電極選擇性係數要求 78
第五章 結論與未來展望 81
5.1結果摘要 81
5.2 結論 85
5.3未來展望 86
參考文獻 87
附錄 97
附錄ㄧ:平面網印式氯化銀參考電極 97
附錄二:網版印刷碳膠電極尺寸對電化學特性之影響 98
dc.language.isozh-TW
dc.subject人體電解質zh_TW
dc.subject網印式離子選擇電極zh_TW
dc.subject離子電子轉換層zh_TW
dc.subjectPluronic F127zh_TW
dc.subject抗蛋白質吸附zh_TW
dc.subjectphysiological electrolyteen
dc.subjectscreen-printed ion-selective electodes (ISEs)en
dc.subjection-to-electron transducer (IET)en
dc.subjectPluronic F127en
dc.subjectanti-biofoulingen
dc.title以共聚物Pluronic F127修飾網版印刷式鈉離子選擇電極之研究zh_TW
dc.titleStudy of Screen-Printed Sodium Selective Electrodes with Copolymer Pluronic F127 Modificaionen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭宗記,盧彥文,侯詠德,謝博全
dc.subject.keyword人體電解質,網印式離子選擇電極,離子電子轉換層,Pluronic F127,抗蛋白質吸附,zh_TW
dc.subject.keywordphysiological electrolyte,screen-printed ion-selective electodes (ISEs),ion-to-electron transducer (IET),Pluronic F127,anti-biofouling,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
13.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved