請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52631完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳誠亮(Cheng-Liang Chen) | |
| dc.contributor.author | Yu-Yang Tsau | en |
| dc.contributor.author | 曹堉暘 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:21:06Z | - |
| dc.date.available | 2020-08-25 | |
| dc.date.copyright | 2020-08-25 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-07 | |
| dc.identifier.citation | 1 Pereira, C. S. M., Silva, V. M. T. M. Rodrigues, A. E. Ethyl lactate as a solvent: Properties, applications and production processes - a review. Green Chem. 13, 2658 (2011). 2 Global Ethyl Lactate Market Research Report 2016. (2016). 3 de Jong, E., Hisgson, A., Walsh, P. Wellisch, M. Bio-Based Chemicals: Value Added Products From Biorefineries. (IEA Bioenergy, 2013). 4 Asthana, N., Kolah, A., Vu, D. T., Lira, C. T. Miller, D. J. A Continuous Reactive Separation Process for Ethyl Lactate Formation. Org Process Res Dev 9, 599-607, doi:10.1021/op0500640 (2005). 5 Gao, J., Zhao, X. M., Zhou, L. Y. Huang, Z. H. Investigation of Ethyl Lactate Reactive Distillation Process. Chem Eng Res Des 85, 525-529, doi:https://doi.org/10.1205/cherd06026 (2007). 6 Miller, D. J. A., N.; Kolah, A.; Lira. Process for Production of Organic Acid Esters. US 7,652,167 (2010). 7 Dai, S.-B., Lee, H.-Y. Chen, C.-L. Design and Economic Evaluation for the Production of Ethyl Lactate via Reactive Distillation Combined with Various Separation Configurations. Ind. Eng. Chem. Res. 58, 6121-6132, doi:10.1021/acs.iecr.8b03343 (2019). 8 Asthana, N. S., Kolah, A. K., Vu, D. T., Lira, C. T. Miller, D. J. A Kinetic Model for the Esterification of Lactic Acid and Its Oligomers. Ind. Eng. Chem. Res. 45, 5251 (2006). 9 Su, C. Y., Yu, C. C., Chien, I. L. Ward, J. D. Plant-Wide Economic Comparison of Lactic Acid Recovery Processes by Reactive Distillation with Different Alcohols. Ind. Eng. Chem. Res. 52, 11070 (2013). 10 Delgado, P., Sanz, M. T. Beltrán, S. Isobaric vapor–liquid equilibria for the quaternary reactive system: Ethanol+water+ethyl lactate+lactic acid at 101.33 kPa. Fluid Phase Equilib. 255, 17 (2007). 11 Vu, D. T., Lira, C. T., Asthana, N. S., Kolah, A. K. Miller, D. J. Vapor− liquid equilibria in the systems ethyl lactate+ ethanol and ethyl lactate+ water. J. Chem. Eng. Data 51, 1220-1225 (2006). 12 Delgado, P., Sanz, M. T. Beltrán, S. Pervaporation of the quaternary mixture present during the esterification of lactic acid with ethanol. J. Membr. Sci. 332, 113-120, doi:10.1016/j.memsci.2009.01.044 (2009). 13 Sert, E. Atalay, F. S. n-Butyl acrylate production by esterification of acrylic acid with n-butanol combined with pervaporation. Chem. Eng. Process. 81, 41 (2014). 14 Luyben, W. L. Control of a Column/Pervaporation Process for Separating the Ethanol/Water Azeotrope. Ind. Eng. Chem. Res. 48, 3484-3495, doi:10.1021/ie801428s (2009). 15 Delgado, P., Sanz, M. T. Beltrán, S. Pervaporation of the quaternary mixture present during the esterification of lactic acid with ethanol. J. Membr. Sci. 332, 113 (2009). 16 Asthana, N., Kolah, A., Vu, D. T., Lira, C. T. Miller, D. J. A Continuous Reactive Separation Process for Ethyl Lactate Formation. Org. Process Res. Dev. 9, 599 (2005). 17 Tusel, G. F. Brüschke, H. E. A. Use of pervaporation systems in the chemical industry. Desalination 53, 327 (1985). 18 Santoso, A. Design and Control of Hybrid Distillation-Membrane Systems for Separating Azeotropic Mixtures. Master thesis, National Taiwan University, Taiwan, 2010. 19 Douglas, J. M. Conceptual Design of Chemical Processes. (McGraw Hill, 1988). 20 Szitkai, Z., Lelkes, Z., Rev, E. Fonyo, Z. Optimization of hybrid ethanol dehydration systems. Chem. Eng. Process. 41, 631-646, doi:https://doi.org/10.1016/S0255-2701(01)00192-1 (2002). 21 Seider, W. D.; Product and Process Design Principles: Synthesis, Analysis, and Evaluation,2010. 22 Woods, D. R. Cost Estimation for the Process Industries. (McMaster University, 1983). 23 Import and export statistics of lactic acid; CPT single window of Taiwan 2018 doi: https://portal.sw.nat.gov.tw/APGA/GA30_LIST 24 Import and export statistics of ethanol; CPT single window of Taiwan 2018 doi: https://portal.sw.nat.gov.tw/APGA/GA30_LIST | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52631 | - |
| dc.description.abstract | 本論文提出一種全新的乳酸乙酯商業化製程設計。動力學模型與熱力學模型均採用文獻數據及回歸而成,製程內可分為反應段與分離段,反應段主要由一根反應蒸餾塔構成,用於進行乳酸與乙醇的酯化反應,並在反應蒸餾塔間(第19板)將莫爾濃度0.99的乳酸乙酯產物提出,高沸點的副產物則會從塔底與進料混合回流入塔中,未反應的乙醇與過量的水則會由塔頂流向分離段進一步分離。分離段共有三種組態,分別是(1)先蒸餾塔後薄膜、(2)只用薄膜、與(3)先薄膜後蒸餾塔,薄膜是選用商業化薄膜PERVAP® 2201,其中組態(2)只用薄膜的組態雖然成本最低,但是乙醇進料量卻會增加導致進料成本較高,考量到這點,組態(3)先薄膜後蒸餾塔的成本最低。此組態是先由10個串連的薄膜將乙醇提濃到莫爾濃度0.91,再與乙醇進料混合後回流到反應段。過量的水與少量乙醇則從薄膜的滲透端流向一個較小的蒸餾塔以回收乙醇並排水,以減少乙醇的進料量。 針對第三種組態的最適化,以年總成本為目標函數,分別探討反應蒸餾塔、薄膜與蒸餾塔三者個別的操作參數對於各單元的影響以得到最佳化的組態。另外,乙醇進料方面,雖然進料成本不會被歸類在年總成本中,但由於進料成本也是製程成本的一環,因此本論文也探討純乙醇進料與共沸乙醇進料對於進料成本上的影響。 相較於近期文獻的研究成果,本製程能節省57.9%的年總成本。若採用共沸乙醇進料,則省下的進料成本相當於69.8%的年總成本。 | zh_TW |
| dc.description.abstract | A novel process for producing ethyl lactate (L1E) is proposed in this study. The rigorous thermodynamic model is verified by experiment data. The overall process can be divided into two parts: the reaction and separation sections. For the reaction section, only one reactive distillation column is used to produce the target product, ethyl lactate, through a sidedraw flow. For the separation section, a new hybrid separation system is composed of membranes in series and one distillation column. The purpose of membranes is to concentrate ethanol to high purity and recycle back to the reaction section., Moreover, one additional column is implemented to recover the loss of ethanol from the permeate of membrane. This hybrid separation arrangement can reduce a lot of energy consumption for ethanol recovery compared with the configuration by using a distillation first then membranes. Finally, ethanol feed concentration is changed from pure ethanol to azeotrope to elucidate its influence on the cost of the whole process. As a result, TAC of this novel process is $211.45×103/y, and 57.9% of TAC reduction is compared to the previous work. The azeotropic ethanol feed can save the raw material cost around 69.8% of TAC to pure ethanol feed case. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:21:06Z (GMT). No. of bitstreams: 1 U0001-0608202014313300.pdf: 5347460 bytes, checksum: 3ee62c1ca51702d2f495a9318701faee (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii Contents iv List of Figures vi List of Tables viii 1. Introduction 1 1.1. Review of ethyl lactate 1 1.2. Literature survey 2 1.3. Research motivation 6 1.4. Dissertation organization 7 2. Reaction Kinetics, Thermodynamics, and Pervaporation Model 8 2.1. Reaction kinetics 8 2.2. Updated model for thermodynamics properties 10 2.3. Pervaporation model 14 3. Process design 16 3.1. Previous study 16 3.2. Proposed design (a): remove hydrolysis column (RD+CD+M) 26 3.3. Proposed design (b): remove ethanol pre-concentrate column (RD+M) 30 3.4. Proposed design (c): add ethanol post-recovery column (RD+M+CD) 34 3.5. Process optimization for RD+M+CD 40 4. Membranes configuration and ethanol feed condition 51 4.1. Pervaporation membrane configuration study 51 4.2. Pure ethanol feed and azeotropic ethanol feed 54 5. Conclusion 59 Reference 60 Appendix 62 A. T-xy Diagram of other components 62 B. Equipment sizing 66 C. Cost formula 67 | |
| dc.language.iso | en | |
| dc.subject | 程序設計 | zh_TW |
| dc.subject | 乳酸乙酯 | zh_TW |
| dc.subject | 最適化 | zh_TW |
| dc.subject | 滲透蒸發 | zh_TW |
| dc.subject | 反應蒸餾 | zh_TW |
| dc.subject | Reactive distillation | en |
| dc.subject | Ethyl Lactate | en |
| dc.subject | Pervaporation | en |
| dc.subject | Optimization | en |
| dc.subject | Process design | en |
| dc.title | 乳酸乙酯反應蒸餾與薄膜/蒸餾塔混合分離製程之設計與經濟評估 | zh_TW |
| dc.title | Energy-Efficient Separation Design and Novel Ethyl Lactate Production Process Design using Reactive Distillation and Distillation-Pervaporation Configuration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 李豪業(Hao-Yeh Lee) | |
| dc.contributor.oralexamcommittee | 錢義隆(I-Lung Chien),吳哲夫(Jeffrey D. Ward),李瑞元(Jui-Yuan Lee) | |
| dc.subject.keyword | 乳酸乙酯,程序設計,反應蒸餾,滲透蒸發,最適化, | zh_TW |
| dc.subject.keyword | Ethyl Lactate,Process design,Reactive distillation,Pervaporation,Optimization, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU202002536 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0608202014313300.pdf 未授權公開取用 | 5.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
