Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5262
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章(Fi-John Chang)
dc.contributor.authorPin-An Chenen
dc.contributor.author陳品安zh_TW
dc.date.accessioned2021-05-15T17:54:36Z-
dc.date.available2019-08-12
dc.date.available2021-05-15T17:54:36Z-
dc.date.copyright2014-08-12
dc.date.issued2014
dc.date.submitted2014-07-24
dc.identifier.citation1) Agalbjorn, S., Koncar, N., Jones, A. J., 1997. A note on the gamma test, Neural Comput. Appl. 5 131-133.
2) Agricultural Engineering Research Center, 2008. Survey, analysis and assessment of groundwater quality in Taiwan area. Water Resource Agency, Taiwan.
3) Ahmad, Z., Jie, Z., 2002. Improving long range prediction for nonlinear process modelling through combining multiple neural networks Control Applications. Proc. IEEE Conf. Control Appl., 962, 966-971.
4) Alvisi, S., Mascellani, G., Franchini, M., Bardossy, A., 2006. Water level forecasting through fuzzy logic and artificial neural network approaches. Hydro. Earth Syst. Sci. 10(1), 1-17.
5) Anawar, H.M., Akai, J., Sakugawa, H., 2004. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere. 54(6), 753-762.
6) Antar, M.A., Elassiouti, I., Allam, M.N., 2006. Rainfall-runoff modelling using artificial neural networks technique: a Blue Nile catchment case study. Hydrol. Processes. 20, 1201-1216.
7) APHA (American Public Health Association), 1992. Standard Methods for the Examination of Water and Waste Water, 18th ed., APHA, American Water Works Association, and Water Pollution Control Federation, Washington, DC.
8) Appelo, C.A.J., Van Der Weiden, M.J.J., Tournassat, C., Charlet, L., 2002. Surface Complexation of Ferrous Iron and Carbonate on Ferrihydrite and the Mobilization of Arsenic. Environ. Sci. Technol. 36(14), 3096-3103.
9) Ardalani-Farsa, M., Zolfaghari, S., 2010. Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks. Neurocomput. 73(13-15), 2540-2553.
10) Assaad, M., Bone, R., Cardot, H., 2005. Study of the behavior of a new boosting algorithm for recurrent neural networks. Lect. Notes Comput. Sci., pp. 169-174.
11) Austin, N. R., Prendergast, J. B., Collins, M. D., 1996. Phosphorus losses in irrigation runoff from fertilized pasture. J. Environ. Qual. 25(1), 63-68.
12) Ayotte, J.D., Montgomery, D.L., Flanagan, S.M., Robinson, K.W., 2003. Arsenic in Groundwater in Eastern New England: Occurrence, Controls, and Human Health Implications. Environ. Sci. Technol. 37(10), 2075-2083.
13) Azevedo, L. B., Henderson, A. D., van Zelm, R., Jolliet, O., Huijbregts, M.A., 2013. Assessing the importance of spatial variability versus model choices in life cycle impact assessment: the case of freshwater eutrophication in Europe. Environ. Sci. Technol. 47 (23), 13565-13570.
14) Bargaouia, Z.K., Chebbib, A., 2009. Comparison of two kriging interpolation methods applied to spatiotemporal rainfall. J. Hydrol. 365(1-2), 56-73.
15) Bauer, M., Fulda, B., Blodau, C., 2008. Groundwater derived arsenic in high carbonate wetland soils: Sources, sinks, and mobility. Sci. Total Environ. 401, 109-120.
16) Bauser, G., Franssen, H.-J. H., Kaiser, H.-P., Kuhlmann, U., Stauffer, F., Kinzelbach, W., 2010. Real-Time management of an urban groundwater well field threatened by pollution. Environ. Sci. Technol. 44(17), 6802-6807.
17) Bertin, M. J., Moeller, P., Guillette, Jr. L. J., Chapman, R. W., 2013. Using machine learning tools to model complex toxic interactions with limited sampling regimes. Environ. Sci. Technol. 47(6), 2728-2736.
18) Besaw, L.E., Rizzo, D.M., Bierman, P.R., Hackett, W.R., 2010. Advances in ungauged streamflow prediction using artificial neural networks. J. Hydrol. 386(1-4), 27-37.
19) BGS-DPHE, 2001. Arsenic Contamination of Groundwater in Bangladesh; BGS Technical Report WC/00/19. British Geological Survey, Keyworth, UK.
20) Bothe, J.V., Brown, P.W., 1999. The stabilities of calcium arsenates at 23±1 ◦C. J. Hazard.Mater. 69, 197-207.
21) Bowes M. J., House W. A., Hodgkinson R. A., 2003. Phosphorus dynamics along a river continuum. Sci. Total Environ. 313, 199-212.
22) Brockwell, P.J., Davis, R.A., 1991. Time Series: Theory and Methods. Springer-Verlag, New York.
23) Bruen, M., Yang, J.Q., 2006. Combined hydraulic and black-box models for flood forecasting in urban drainage systems, J. Hydrol. Eng. 11(6), 589-596.
24) Cao, L., 1997. Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D. 110(1-2), 43-50.
25) Carpenter S. R., Caraco N. F., Correll D. L., Howarth R. W., Sharpley A. N., Smith V. H., 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8(3), 559-568.
26) Central Geological Survey, 1999. Project of groundwater monitoring network in Taiwan during first stage-research report of Chou-Shui River alluvial fan, Taiwan. Water Resource Agency, Taiwan.
27) Chakraborti, D., Rahman, M.M., Das, B., Murrill, M., Dey, S., Mukherjee, S.C., Dhar, R.K., Biswas, B.K., Chowdhury, U.K., Roy, S., Sorif, S., Selim, M., Rahman, M., Quamruzzaman, Q., 2010. Status of groundwater arsenic contamination in Bangladesh:A 14-year study report. Water Res. 44, 5789-5802.
28) Chang, F. J., Chang, L.C., Huang, H.L., 2002, Real time recurrent learning neural network for streamflow forecasting. Hydrol. Processes. 16(13), 2577-2588.
29) Chang, F. J., Chen, P. A., Liu, C. W., Liao, V. H. C., Liao, C. M., 2013. Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling. J. Hydrol. 499, 265-274.
30) Chang, F. J., Chiang, Y. M., Ho, Y. H., 2013. Multi-step-ahead flood forecasts by neuro-fuzzy networks with effective rainfall-runoff patterns. J. Flood Risk Manage..
31) Chang, F. J., Chiang, Y. M., Tsai, M. J, Shieh, M. C., Hsu, K. L., Sorooshian, S., 2014. Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information. J. Hydrol. 508, 374-384.
32) Chang, F. J., Kao, L.S., Kuo, Y.M., Liu, C.W., 2010. Artificial neural networks for estimating regional arsenic concentrations in a blackfoot disease area in Taiwan. J. Hydrol. 388, 65-76.
33) Chang, F. J., Wang, K. W., 2013. A systematical water allocation scheme for drought mitigation. J. Hydrol. 507, 124-133.
34) Chang, F.J., Sun, W., 2013. Modeling regional evaporation through ANFIS incorporated solely with remote sensing data. Hydrol. Earth Syst. Sci. Discuss. 10, 6153-6192.
35) Chang, F.J., Sun, W., Chung, C. H., 2013. Dynamic factor analysis and artificial neural network for estimating pan evaporations at multiple stations in northern Taiwan. Hydrol. Sci. J. 58(4), 813-825.
36) Chang, L. C., Chen, P. A., Chang, F. J., 2012. A reinforced two-step-ahead weight adjustment technique for on-line training of recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 23(8), 1269-1278.
37) Chen, C.J., Hsueh, Y.M., Lai, M.S., Shyu, M.P., Chen, S.Y., Wu, M.M., Kuo, T.L., Tai, T.Y., 1995. Increased prevalence of hypertension and long-term arsenic exposure. Hypertension. 25,53-600.
38) Chen, C.S., Chen, B.P.T., Chou, F.N.F., Yang, C.C., 2010. Development and application of a decision group Back-Propagation Neural Network for flood forecasting. J. Hydrol. 385(1-4), 173-182.
39) Chen, P. A., Chang, L. C., Chang, F. J., 2013. Reinforced recurrent neural networks for multi-step-ahead flood forecasts. J. Hydrol. 497, 71-79.
40) Chiang, Y. M., Chang, L. C., Chang, F. J., 2004. Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling. J. Hydrol. 290, 297-311.
41) Chiang, Y. M., Chang, L. C., Tsai, M. J., Wang, Y. F., Chang, F. J., 2010. Dynamic Neural Networks for Real-Time Water Level Predictions of Sewerage Systems-covering gauged and unguaged sites. Hydrol. Earth Syst. Sci., 14, 1309-1319.
42) Chiang, Y. M., Hsu, K. L., Chang, F. J., Yang, H., Soroosh, S., 2007. Merging multiple precipitation sources for flash flood forecasting. J. Hydrol., 340, 183-196.
43) Chiou, H. Y., Hsueh, Y. M., Hsieh, L. L., Hsu, L. I., Hsu, Y. H., Hsieh, F. I., Wei, M. L., Chen, H. C., Yang, H. T., Leu, L. C., 1997. Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan. Mutat.Res. 386, 197-207.
44) Cho, K. H., Kao, S. S., Pachepsky Y. A., Kim, K. W., Kim. J. H., 2011. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network. Water Res. 45(17) , 5535-5544.
45) Correll, D. L., 1998. The role of phosphorus in the eutrophication of receiving waters: A review. J. Environ. Qual. 27(2), 261-266.
46) Coulibaly, P. Baldwin, C. K., 2005. Nonstationary hydrological time series forecasting using nonlinear dynamic methods. J. Hydrol., 307, 164-174
47) Coulibaly, P., 2010. Reservoir computing approach to Great Lakes water level forecasting. J. Hydrol. 381, 76-88.
48) Coulibaly, P., Evora, N.D., 2007. Comparison of neural network methods for infilling missing daily weather records. J. Hydrol. 341(1-2), 27-41.
49) Davis, J. R., Koop, K., 2006. Eutrophication in Australian rivers, reservoirs and estuariesa- A southern hemisphere perspective on the science and its implications. Hydrobiologia 559(1), 23-76.
50) Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J., Schloesser, J. T., Thornbrugh, D. J., 2009. Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 43(1), 12-19.
51) DSD, Drainage Services Department, 2000. Stormwater drainage manual - planning, design and management, third ed. Hong Kong.
52) Duda A. M., 1993. Addressing nonpoint sources of water-pollution must become an international priority. Water Sci. Technol. 28(3–5), 1-11.
53) Durrant, P.J., 2001. winGamma: a Non-linear Data Analysis and Modeling Tool with Applications to Flood Prediction. PhD thesis. Department of Computer Science, Cardiff University, Wales, UK.
54) Elman, J.L., 1990. Finding structure in time. Cognit. Sci. 14, 179-211.
55) Ford, R.G., Fendorf, S., Wilkin, R.T., 2006. Introduction: Controls on arsenic transport in near-surface aquatic systems. Chem. 228, 1-5.
56) Fraser, A.M., Swinney, H.L., 1986. Independent coordinates for strange attractors from mutual information. Phys. Rev. A., 33(2), 1134.
57) Giri, A.K., Patel, R.K., Mahapatra, S.S., 2011. Artificial neural network (ANN) approach for modelling of arsenic (III) biosorption from aqueous solution by living cells of Bacillus cereus biomass. Chem. Eng. J. 178, 15-25.
58) Goovaerts, P., AvRuskin, G., Meliker, J., Slotnick, M., Jacquez, G., Nriagu, J., 2005. Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Wat. Resour. 41.
59) Grčić, I., Puma, J. L., 2013. Photocatalytic degradation of water contaminants in multiple photoreactors and evaluation of reaction kinetic constants independent of photon absorption, irradiance, reactor geometry, and hydrodynamics. Environ. Sci. Technol. 47(23), 13702-1371.
60) Gronewold, A. D., Borsuk, M. E., 2010. Improving water quality assessments through a hierarchical bayesian analysis of variability. Environ. Sci. Technol. 44 (20), 7858-7864.
61) Hirasawa, K., Murata, J., Jinglu, H., Chunzhi, J., 2000. Universal learning network and its application to robust control. IEEE Trans. Syst., Man, Cybern. B, Cybern. 30, 419-430.
62) Hong, Y.S.T., 2012. Dynamic nonlinear state-space model with a neural network via improved sequential learning algorithm for an online real-time hydrological modeling. J. Hydrol. 468–469(0), 11-21.
63) Huang W. C., Hsieh C. L., 2010. Real-time reservoir flood operation during typhoon attacks. Water Resour. Res. 46, W07528.
64) Hung, N.Q., Babel, M.S., Weesakul, S., Tripathi, N.K., 2009. An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrol. Earth Syst. Sci. 13, 1413-1425.
65) Jaeger, H., Haas, H., 2004. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Sci., 304(5667), 78-80.
66) Jiang, C., Song, F., 2011. Sunspot forecasting by using Chaotic time series analysis and NARX network. J. Chem. Phys. 6, 1424-1429.
67) Jothiprakash, V., Magar R.B., 2012. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data. J. Hydrol., 450-451, 293-307
68) Journel, A.G., 1983. Nonparametric estimation of spatial distributions. J. Int. Assoc. Math. Geol. 15(3), 445-468.
69) Juang, K.W., Lee, D.Y., 1998. Simple indicator kriging for estimating the probability of incorrectly delineating hazardous areas in a contaminated site. Environ. Sci. Technol. 32, 2487-2493.
70) Keon N.E., Swartz C.H., Brabander D.J., Harvey C., Hemond H.F., 2001. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environ. Sci. Technol. 35, 2778-2784.
71) Khalil, B., Ouarda, T.B.M.J., St-Hilaire, A., 2011. Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. J. Hydrol. 405(3-4), 277-287.
72) Kim, M.J., Nriagu, J., Haack, S., 2000. Carbonate ions and arsenic dissolution by groundwater. Environ. Sci. & Technol. 34(15), 3094-3100.
73) Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. 14th Int. Jt. Conf. Artif. Intell. 2, Quebec, Canada.
74) Koncar, N., 1997. Optimisation methodologies for direct inverse neurocontrol. PhD thesis, Department of computing, Imperial College of Science, Technology and Medicine, University of London.
75) Krishna, B., Rao, Y.R.S., Vijaya, T., 2008. Modelling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrol. Processes. 22, 1180-1188.
76) Kuo, Y.M., Chang, F.J., 2010. Dynamic Factor Analysis for Estimating Groundwater Arsenic Trends. J. Environ. Qual. 39, 176-184.
77) Li, C.U., He, S.B., Liao, X.F., Yu, J.B., 2002. Using recurrent neural network for adaptive predistortion linearization of RF amplifiers. Int. J. RF Microwave Comput.-Aided Eng., 12, 125-130.
78) Liao, V.H.C., Chu, Y.J., Su, Y.C., Hsiao, S.Y., Wei, C.C., Liu, C.W., Liao, C.M., Shen, W.C., Chang, F.J., 2011. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J. Contam. Hydrol. 123, 20-29.
79) Lin, T, Horne, B.G., Tino, P, Giles, C.L., 1996. Learning long-term dependencies in NARX recurrent neural networks. IEEE Trans. Neural Netw. 7 (6) ,1424-1438.
80) Liu, C.W., Huang, Y.K., Hsueh, Y.M., Lin, K.H., Jang, C.S., Huang, L.P., 2008. Spatiotemporal distribution of arsineic species of oysters (Crassostreagigas) in the coastal area of southwestern Taiwan. Environ. Monit. Assess. 138, 181-190.
81) Liu, C.W., Jang, C.S., Liao, C.M., 2004. Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan). Sci. Total Environ. 321(1-3), 173-188.
82) Liu, C.W., Lin, K.H., Kuo, Y.M., 2003. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 313(1-3), 77-89.
83) Liu, C.W., Lin, W.S., Shang, C., Liu, S.H., 2001. The effect of claydehydration on land subsidence in Yun-Lin coastal area, Taiwan. Environ. Geol. 40(4-5), 518-527.
84) Liu, C.W., Wang, S.W., Jang, C.S., Lin, K.H., 2006. Occurrence of Arsenic in Ground Water in the Choushui River Alluvial Fan, Taiwan. J. Environ. Qual. 35, 68-75.
85) Liu, Q.S., Guob, Z.S., Wang, J., 2012. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization. Neural Networks, 26, 99-109.
86) Liu, Q.S., Wang, J., 2008. A One-Layer Recurrent Neural Network with a Discontinuous Activation Function for Linear Programming. Neural Comput., 20(5), 1366-1383.
87) Liu, W., Moran, C. J., Vink, S., 2011. Quantitative risk-based approach for improving water quality management in mining. Environ. Sci. Technol. 45(17), 7459-7464.
88) Loke, E., Warnaars, E.A., Jacobsen, P., Nelen, F., Almeida, M.D., 1997. Artificial neural networks as a tool in urban storm drainage, Water Sci. Technol. 36(8-9), 101-109.
89) Ma, Q. L., Zheng, Q. L., Peng, H., Zhong, T. W., Qin, J. W., 2008. Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network. Chin. Phys. B 17(2), 536
90) MacKay, D. J. C., 1992. Bayesian interpolation. Neural Comput. 4, 415-447.
91) Mackenthun, K. M., 1973. Toward a cleaner aquatic environment. United States Environmental Protection Agency: Washington, DC.
92) MacKey, M.C., Glass, L., 1977. Oscillation and chaos in physiological control systems, Sci., 197 (4300), 287-289.
93) Maity, R., Kumar, D.N., 2008. Basin-scale stream-flow forecasting using the information of large-scale atmospheric circulation phenomena, Hydrol. Process. 22(5), 643–650.
94) Matheron, G., 1963. Principles of geostatistics. Econ. Geol. 58(8), 1246-1266.
95) McDowell, R. W., Littlejohn, R. P., Blennerhassett, J. D., 2010. Phosphorus fertilizer form affects phosphorus loss to waterways: a paired catchment study. Soil Use Manage. 26(3), 365-373.
96) McNamara, J. P., Kane, D. L., Hobbie, J. E., Kling, G. W., 2008. Hydrologic and biogeochemical controls on the spatial and temporal patterns of nitrogen and phosphorus in the Kuparuk River arctic Alaska. Hydrol. Processes 22, 3294-3309.
97) Menezes Jr, J. M. P., Barreto, G. A., 2008. Long-term time series prediction with the NARX network: An empirical evaluation. Neurocomput. 71(16-18), 3335-3343.
98) Mihaljevic, M., Ponavic, M., Ettler, V., ˇSebek, O., 2003. A comparison of sequential extraction techniques for determining arsenic fractionation in synthetic mineral mixtures. Anal. Bioanal. Chem. 377, 723-729.
99) Moghaddamnia, A., Ghafari, M., Piri, J., Amin, S., Han, D., 2009. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv. Water Resour. 32, 88-97.
100) Mondal, P., Mohanty, B., Balomajumder, C., Saraswati, S., 2012. Modeling of the Removal of Arsenic Species from Simulated Groundwater Containing As, Fe, and Mn: A Neural Network Based Approach. Clean: Soil, Air, Water 40(3), 285-289.
101) Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models: 1. A discussion of principles, J. Hydrol., 10, 282-290.
102) Nasseri, M., Asghari, K., Abedini, M.J., 2008. Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network. Expert Syst. Appl. 35(3), 1415-1421.
103) National Research Council, 1999. Arsenic in drinking water. Washington, DC, National Academy Press.
104) Nayak, P.C., Venkatesh, B., Krishna, B., Jain, S.K., 2013. Rainfall runoff modelling using conceptual, data driven and wavelet based computing approach. J. Hydrol. 493, 57-67.
105) Nikolos, I. K., Stergiadi, M., Papadopoulou, M. P., Karatzas, G. P., 2008. Artificial neural networks as an alternative approach to groundwater numerical modelling and environmental design. Hydrol. Processes 22, 3337-3348.
106) Nishimura, T., Robins, R.G., 1998, Are-evaluation of the solubility and stability regions of calciumarsenites and calcium arsenates in aqueous solution at 25 ◦C. Mineral Proc. and Extr.Met. 18, 283-308.
107) Noori, R., Karbassi, A.R., Moghaddamnia, A., Han, D., Zokaei-Ashtiani, M.H., Farokhnia, A., Gousheh, M.G., 2011. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. Hydrol. 401, 177-189.
108) Noori, R., Sabahi, M.S., Karbassi, A.R., 2010. Evaluation of PCA and gamma test techniques on ANN operation for weekly solid waste predicting. J.ournal of Environ.mental Manage.ment 91, 767-771.
109) Nourani ,V., Komasi, M., Almai, M.T., 2011. A Hybrid Wavelet-Genetic Programming Approach to Optimize ANN Modelling of Rainfall-Runoff Process. J. Hydrol. Eng., 17, 724-741.
110) Nourani,V., Sayyah Frad, M., 2012. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv. Eng. Software, 47(1), 127-146.
111) Park, J.M., Lee, J.S., Lee, J.U., Chon, H.T. and Jung, M.C., 2006. Microbial effects on geochemical behavior of arsenic in As-contaminated sediments. J. Geochem. Explor. 88(1-3), 134-138.
112) Parlos, A.G., Rais, O.T., Atiya, A.F., 2000. Multi-step-ahead prediction using dynamic recurrent neural networks. Neural Networks, 13, 765-786.
113) Pierce, M.L., Moore, C.B., 1982. Adsorption of Arsenite and Arsenate on Amorphous Iron Hydroxide. Water Res. 16(7), 1247-1253.
114) Polizzotto, M.L., Harvey, C.F., Li, G., Badruzzman, B., Ali, A., Newville, M., Sutton, S., Fendorf, S., 2006. Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chemical Geology. 228(1-3), 97-111.
115) PUB., Singapore’s National Water Agency, 2013. Code of Practice on Surface Water Drainage, sixth ed. Singapore.
116) Purkait, B., Kadam, S.S., Das, S.K., 2008. Application of artificial neural network model to study arsenic contamination in groundwater of Malda District, Eastern India. J. Environ. Inf. 12 (2), 140-149.
117) Quality Criteria for Water 1986 [The Gold Book], 1987. United States Environmental Protection Agency: Washington, DC.
118) Rahman, M., Tondel, M., Chowdhury, I.A., Axelson, O., 1999. Relations between exposure to arsenic, skin lesions, and glucosuria. Occup. Environ. Med. 56(4), 277-281.
119) Rothwell, J.J., Taylor, K.G., Ander, E.L., Evans, M.G., Daniels, S.M., Allott, T.E., 2009. Arsenic retention and release in ombrotrophic peatlands. Sci. Total Environ. 407, 1405-1417.
120) Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by back-propagating errors. Nature 323(6088), 533-536.
121) Sahoo, G.B., Ray, C., De Carlo, E.H., 2006. Use of neural network to predict flash flood and attendant water qualities of a mountainous stream on Oahu, Hawaii. J. Hydrol. 327(3-4), 525-538.
122) Sahoo, G.B., Schladow, S.G., Reuter, J.E., 2009. Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. J. Hydrol. 378(3-4), 25-342.
123) Seibert, J., 2001. On the need for benchmarks in hydrological modeling, Hydrol. Process., 15(6), 1063-1064.
124) Serpen, G., Xu, Y., 2003. Simultaneous recurrent neural network trained with non-recurrent backpropagation algorithm for static optimisation. Neural Comput. Appl. 12, 1-9.
125) Serre, M.L., Kolovos, A., Christakos, G., Modis, K., 2003. An Application of the Holistochastic Human Exposure Methodology to Naturally Occurring Arsenic in Bangladesh Drinking Water. Risk Anal. 23(3), 515-528.
126) Shalev-Shwartz, S., Singer, Y., Ng, A.Y., 2004. Online and batch learning of pseudo-metrics. Proc. Twenty-First Int. Conf. Mach. Learn., Alberta, Canada, 94.
127) Shen, H. Y., Chang, L. C., 2013. Online multistep-ahead inundation depth forecasts by recurrent NARX networks. Hydrol. Earth Syst. Sci. 17, 935-945.
128) Sorjamaa, A., Hao, J., Reyhani, N., Ji Y., Lendasse, A., 2007. Methodology for long-term prediction of time series. Neurocomput. 70(16-18), 2861-2869.
129) Stamm, C., Jarvie, H. P., Scott, T., 2014. What's more important for managing phosphorus: loads, concentrations or both? Environ. Sci. Technol. 48 (1), 23-24.
130) Stollenwerk, K.G., 2003. Geochemical processes controlling transport ofarsenic in groundwater: a review of adsorption, in: Stollenwerk,K.G., Welch, A.H. (Eds.), Arsenic in Groundwater. Springer US,New York, pp. 67-100.
131) Stone, M., 1974. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc., Ser. B 36, 111-147.
132) Su, H. T., McAvoy, T. J., 1991. Identification of chemical processes using recurrent networks. Proc. Amer. Contr. Conf. 3, 2314-2319.
133) Su, H. T., McAvoy, T.,J., Werbos, P., 1992. Long-term predictions of chemical processes using recurrent neural networks: A parallel training approach. Ind. Eng. Chem. Res. 31, 1338-1352.
134) Takens, F., 1981. Detecting strange attractors in turbulence. Dynamical Systems and Turbulence. Lect. Notes Math., 898, 366-381.
135) Tamoto, N., Endo, J., Yoshimoto, K., Yoshida, T., Sakakibara, T., 2008. Forecast-based operation method in minimizing flood damage in urban area. Int. Conf. Urban Drain. 11th, Edinburgh, Scotland, UK.
136) Thiessen, A.H., 1911. Precipitation averages for large areas. Mon. Weather Rev. 39(7), 1082-1084.
137) Toth, E., 2009. Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting. Hydrol. Earth Syst. Sci. 13, 1555-1566.
138) Tsai, M. J., Abrahart, R. J., Mount, N. J., Chang, F. J., 2014. Including spatial distribution in a data-driven rainfall-runoff model to improve reservoir inflow forecasting in Taiwan. Hydrol. Processes 28, 1055–1070.
139) Tsui, A.P.M., Jones, A.J., Guedes de Oliveira, A.G., 2002. The construction of smooth models using irregular embeddings determined by a gamma test analysis. Neural Comput. Appl. 10, 318-329.
140) Wang, Q., Li, S., Jia, P., Qi, C., Ding, F., 2013. A review of surface water quality models. Sci. World J. 2013.
141) Wang, S.W., Kuo, Y.M., Kao, Y.H., Jang, C.S., Maji, S.K., Chang, F.J., Liu, C.W., 2011. Influence of hydrological and hydrogeochemical parameters on arsenic variation in shallow groundwater of southwestern Taiwan. J. Hydrol. 408(3-4), 286-295.
142) Wang, S.W., Liu, C.W., Jang, C.S., 2007. Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan. Appl. Geochem. 22(2), 460-476.
143) Webster, R., McBratney, A.B., 1987. Mapping soil fertility at Broom's Barn by simple kriging. J. Sci. Food Agric. 38(2), 97-115.
144) Williams, R.J., Zipser, D., 1989. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1, 270-280.
145) Winkel, L., Berg, M., Amini, M., Hug, S. J., & Johnson, C. A., 2008. Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nature Geoscience, 1(8), 536-542.
146) Xie, J. X., Cheng, C. T., Chau, K. W., Pei, Y. Z., 2006. A hybrid adaptive time-delay neural network model for multi-step-ahead prediction of sunspot activity. Int. J. Environ. Pollut., 28, 364-381.
147) Xie, X., Wang, Y., Ellis, A.,Su, C., Li, J., Lia M., Duan, M., 2013. Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: A case study in high arsenic aquifer systems of the Datong basin, northern China. J. Hydrol. 476, 87-96.
148) Yang C.C., Chang L.C., Chen C.S., 1999. Comparison of integrated artificial neural network with time series modeling for flood forecast. J. Hydro sci. Hydraul. Eng. 17(2), 37-50.
149) Yong, S., Yibin, L., Qun, W., Caihong, L., 2010. Multi-steps prediction of chaotic time series based on echo state network. Proc. IEEE Conf. Bio-Inspired Comput.: Theor. Appl., Changsha, China, 669-672.
150) Yu, W. H., Harvey, C. M., Harvey, C. F., 2003. Arsenic in groundwater in Bangladesh: A geostatistical and epidemiological framework for evaluating health effects and potential remedies. Water Resour. Res. 39(6), 1146.
151) Zabiri, H., Maulud, A., Omar, N., 2009. NN-based algorithm for control valve stiction quantification. WSEAS Trans. Syst. 4 (2), 88-97.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5262-
dc.description.abstract水為人類賴以為生的重要資源,水與環境在複雜的交互作用下形成的水文環境系統孕育了各種生命,使得人類社會得以繁榮發展。然而近年來由於氣象、水文、地文及人為開發等各種錯綜複雜之因素影響,水文環境系統逐漸面臨失衡,加上全球氣候變遷現象日趨顯著,導致突發性極端水文事件發生之頻率提高,都市下游河川水質劣化。為能進一步分析掌握其變化,本論文發展新穎系統化動態類神經網路與相關之分析方法應用於水文環境中兩大重要議題:水文量與水質之推估。動態回饋式類神經網路(Recurrent neural networks, RNNs)具內部回饋連結,對於複雜且具有回饋特性的水文環境系統之模擬有較高之精確性,因此近年來受到相當地重視與大量地應用。本論文第一部分發展並推導多時刻強化型即時回饋線上學習演算法於回饋式類神經網路 (Reinforced real-time recurrent learning algorithm for RNNs, R-RTRL NN)。此演算法可充分利用最新的觀測值與網路過去之預測值,不斷地遞迴修正網路權重參數,改善多時刻預報之可靠度與精確度。而為了驗證此演算法之可靠性與效能,本研究針對著名的混沌時間序列與石門水庫颱洪時期之入流量進行二、四至六時刻之多階段預報。此外亦選用了三個常用之類神經網路模式(兩個動態與一個靜態類神經網路)進行效能比較。結果顯示發展之R-RTRL類神經網路較其他類神經網路於多時刻混沌時間序列與水庫入流量預報整體表現優異,且可有效減緩線上學習法於多時刻預報網路權重參數調整延遲之問題。本論文第二部分則發展一系統化動態類神經網路模擬架構 (Systematical dynamic-neural modeling, SDM)。SDM主要包含Gamma test與非線性自回歸與外部輸入類神經網路(Nonlinear autoregressive with exogenous input, NARX)。Gamma test可有效且快速地篩選影響目標變數最為顯著之輸入因子組合;NARX類神經網路則具輸出層至輸入層之回饋連結,有優異的時間與空間推估能力。本論文運用發展之SDM於都市防洪抽水站多時刻前池水位預報,並探討回饋連結於不同模式情境下之貢獻。而建構之水位預報模式之準確度與穩定性皆相當高,可有效率且準確地預測洪汛時期臺北市玉成抽水站之前池水位。此外,SDM亦可應用於區域地下水砷濃度與河川總磷濃度之時空推估,精確度與可靠度皆較傳統倒傳遞類神經網路(BPNN)高,並有效解決進行區域水質推估常面臨之問題,如:影響因子組合之選取、資料稀少、過度描述與推估效果不佳等。而藉由NARX類神經網路之回饋連結與輸入因子資訊,可進一步將標的水質序列間隔較長之推估時間尺度轉換為與輸入因子相同且較短之觀測頻率,提供額外資訊進行水質狀況評估。整體而言,本論文創建之新穎動態類神經網路與分析方法:R-RTRL NN與SDM皆具廣泛之應用性,十分適合分析處理或推估水文環境中水文量與水質變化等重要議題,提供政府有關單位於水庫、都市河川與地下水等經營管理之參考資訊。zh_TW
dc.description.abstractWater is a precious and scarce resource on the Earth and can be utilized by human beings. Due to the complex interaction between hydrological, meteorological, geographical factors and human activities with climate change effects, the hydro-environment that we live by is facing imbalanced conditions, such as intensive storms and typhoons with short durations and the degradation of the water quality in groundwater and urban rivers. Therefore, this dissertation is dedicated to the two main problems encountered in hydro-environmental systems: water quantity and water quality, and endeavors to develop novel dynamic artificial neural networks and modeling schemes to overcome problems for analyzing and estimating the dynamic variability of water quantity and water quality. Recurrent neural networks (RNNs) are computationally powerful nonlinear models that are capable of extracting dynamic behaviors from complex systems through internal recurrence and have attracted much attention for years. In the first part of this dissertation, a multi-step-ahead (MSA) reinforced real-time recurrent learning algorithm for RNNs (R-RTRL NN) is developed for adjusting connection weights by incorporating the latest observed values and model outputs into the online training process, and the sequential formulation of the R-RTRL NN is derived. To demonstrate its reliability and effectiveness, the proposed R-RTRL NN is implemented to make 2-, 4- and 6-step-ahead forecasts through a famous benchmark chaotic time series and a reservoir inflow series during typhoon events in North Taiwan. Numerical and experimental results indicate that the R-RTRL NN not only achieves superior performance than the comparative networks but also significantly improves the precision of MSA forecasts with effective mitigation in time-lag problems for both chaotic time series and reservoir inflow case during typhoon events. In the second part of the dissertation, the systematical dynamic-neural modeling (SDM) scheme that consists of the Gamma test for input factor selection and the nonlinear autoregressive with exogenous input (NARX) network for spatio-temporal estimation is proposed. The SDM is then applied to urban flood control to explore the contribution of recurrent connections and provide reliable results for forecasting the floodwater storage pond (FSP) water level in the Yu-Cheng pumping station. And the SDM is further utilized to estimate the regional arsenic (As) and total phosphate (TP) concentrations in groundwater and river systems, respectively. Results demonstrate that the SDM satisfactorily overcomes the difficulty raised by traditional methods in estimating the temporal and spatial variability of water quality parameters, such as identification of key input factors, data scarcity issue, model over-fitting problem and poor estimation performance. In addition, the SDM bears the ability to reconstruct the time series of the estimated water quality parameter from the original monitoring scale to a shorter monitoring scale through the recurrent connections of the NARX network. In summary, the two developed novel techniques in learning algorithm and modeling scheme, the R-RTRL NN and SDM, have broad applicability and are suitable to deal with water quantity and water quality issues in hydro-environmental systems, which beneficially provides useful information to water authorities for the management of reservoir operation, river basin, urban flood control and groundwater contamination.en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:54:36Z (GMT). No. of bitstreams: 1
ntu-103-F98622003-1.pdf: 6582175 bytes, checksum: 1b77ba3a940c78e4a378255637a9e6fd (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 I
摘要 III
Abstract V
Contents VIII
Figure contents IX
Table contents XII
1. Introduction 1
1.1 Motivation 1
1.2 Research objectives 3
1.3 Dissertation layout 15
2. Methodology 18
2.1 MSA R-RTRL algorithm for RNNs 18
2.2 Systematical Dynamic-neural Modeling (SDM) 25
2.3 Comparative neural network models 38
3. Case studies 40
3.1 Reinforced recurrent neural networks for multi-step-ahead flood forecasting 40
3.2 Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control 54
3.3 Regional estimation of groundwater Arsenic concentration through Systematical Dynamic-neural Modeling 78
3.4 Modeling spatio-temporal total phosphate (TP) concentration through Systematical Dynamic-neural Modeling 95
4. Conclusion and suggestion 110
4.1 Conclusion 110
4.2 Suggestion 116
5. Reference 119
Appendix A-1
Acronym list A-1
Publications A-2
Research projects involved A-4
Awards and scholarship A-4
Appendix A A-5
Appendix B A-9
dc.language.isoen
dc.subject都市防洪zh_TW
dc.subject總磷zh_TW
dc.subject砷zh_TW
dc.subject回饋式類神經網路zh_TW
dc.subject強化型即時回饋線上學習演算法(R-RTRL)zh_TW
dc.subjectGamma testzh_TW
dc.subject非線性自回歸與外部輸入類神經網路(NARX-NN)zh_TW
dc.subject多時刻時間序列預測zh_TW
dc.subjectWater qualityen
dc.subjectUrban flood controlen
dc.subjectMulti-step-ahead forecasten
dc.subjectNonlinear autoregressive with eXogenous input (NARX) neural networken
dc.subjectGamma testen
dc.subjectReinforced real-time recurrent learning (R-RTRL) algorithmen
dc.subjectRecurrent neural network (RNN)en
dc.subjectArsenic (As)en
dc.subjectTotal phosphate (TP)en
dc.title創建新穎動態類神經網路於水文環境系統zh_TW
dc.titleDevelopment of Novel Dynamic Artificial Neural Networks for Hydro-Environmental Systemsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee游保杉,劉振宇,黃文政,張良正,張麗秋
dc.subject.keyword回饋式類神經網路,強化型即時回饋線上學習演算法(R-RTRL),Gamma test,非線性自回歸與外部輸入類神經網路(NARX-NN),多時刻時間序列預測,都市防洪,砷,總磷,zh_TW
dc.subject.keywordRecurrent neural network (RNN),Reinforced real-time recurrent learning (R-RTRL) algorithm,Gamma test,Nonlinear autoregressive with eXogenous input (NARX) neural network,Multi-step-ahead forecast,Urban flood control,Water quality,Arsenic (As),Total phosphate (TP),en
dc.relation.page141
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-07-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf6.43 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved