Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 臨床藥學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52617
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林淑文
dc.contributor.authorChiung-Yi Wangen
dc.contributor.author王瓊儀zh_TW
dc.date.accessioned2021-06-15T16:20:34Z-
dc.date.available2020-09-24
dc.date.copyright2015-09-24
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation1. Ho JMW, Juurlink DN. Considerations when prescribing trimethoprim–sulfamethoxazole. CMAJ 2011;183:1851-8.
2. Weis S, Karagülle D, Kornhuber J, Bayerlein K. Cotrimoxazole-induced psychosis: a case report and review of literature. Pharmacopsychiatry 2006;39:236-7.
3. Walker LE, Thomas S, McBride C, et al. ‘Septrin psychosis’ among renal transplant patients with Pneumocystis jirovecii pneumonia. J Antimicrob Chemother 2011;66:1117-9.
4. Stuhec M. Trimethoprim-sulfamethoxazole-related hallucinations. Gen Hosp Psychiatry 2014;36:230. e7-. e8.
5. Carr A, Gross AS, Hoskins JM, Penny R, Cooper DA. Acetylation phenotype and cutaneous hypersensitivity to trimethoprim-sulphamethoxazole in HIV-infected patients. Aids 1994;8:333-8.
6. Cribb AE, Miller M, Leeder JS, Hill J, Spielberg SP. Reactions of the nitroso and hydroxylamine metabolites of sulfamethoxazole with reduced glutathione. Implications for idiosyncratic toxicity. Drug metabolism and disposition 1991;19:900-6.
7. Carr A, Gross AS, Hoskins JM, Penny R, Cooper DA. Acetylation phenotype and cutaneous hypersensitivity to trimethoprim-sulphamethoxazole in HIV-infected patients. AIDS 1994;8:333-7.
8. Alfirevic A, Stalford AC, Vilar FJ, Wilkins EG, Park BK, Pirmohamed M. Slow acetylator phenotype and genotype in HIV‐positive patients with sulphamethoxazole hypersensitivity. Br J Clin Pharmacol 2003;55:158-65.
9. Pirmohamed M, Alfirevic A, Vilar J, et al. Association analysis of drug metabolizing enzyme gene polymorphisms in HIV-positive patients with co-trimoxazole hypersensitivity. Pharmacogenet Genomics 2000;10:705-13.
10. Patel RB, Welling PG. Clinical pharmacokinetics of co-trimoxazole (trimethoprim-sulphamethoxazole). Clin Pharmacokinet 1980;5:405-23.
11. Libecco JA, Powell KR. Trimethoprim/sulfamethoxazole: clinical update. Pediatrics in Review/American Academy of Pediatrics 2004;25:375.
12. Kielhofner MA. Trimethoprim-sulfamethoxazole: pharmacokinetics, clinical uses, and adverse reactions. Tex Heart Inst J 1990;17:86.
13. Bushby S. Trimethoprim-sulfamethoxazole: in vitro microbiological aspects. J Infect Dis 1973;128:S442-S62.
14. Huang L, Crothers K, Atzori C, et al. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance. Emerg Infect Dis 2004;10:1721.
15. Stevens RC, Laizure SC, Williams CL, Stein D. Pharmacokinetics and adverse effects of 20-mg/kg/day trimethoprim and 100-mg/kg/day sulfamethoxazole in healthy adult subjects. Antimicrob Agents Chemother 1991;35:1884-90.
16. van der Ven AA, Koopmans P, van der Meer JW, Vree T. Adverse reactions to co-trimoxazole in HIV infection. The Lancet 1991;338:431-3.
17. Masters PA, O'Bryan TA, Zurlo J, Miller DQ, Joshi N. Trimethoprim-sulfamethoxazole revisited. Arch Intern Med 2003;163:402-10.
18. Welling PG, Weinfeld RE, Craig WA, Amidon GL, Kunin CM. Pharmacokinetics of trimethoprim and sulfamethoxazole in normal subjects and in patients with renal failure. J Infect Dis 1973;128:S556-S66.
19. Vree T, Hekster Y, Damsma J, Van Dalen R, Hafkenscheid J, Friesen W. Renal excretion of sulphamethoxazole and its metabolite N4-acetylsulphamethoxazole in patients with impaired kidney function. Ther Drug Monit 1981;3:129-36.
20. Paap CM, Nahata MC. Clinical use of trimethoprim/sulfamethoxazole during renal dysfunction. Ann Pharmacother 1989;23:646-54.
21. Chin T, Vandenbroucke A, Fong IW. Pharmacokinetics of trimethoprim-sulfamethoxazole in critically ill and non-critically ill AIDS patients. Antimicrob Agents Chemother 1995;39:28-33.
22. Stevens RC, Laizure S, Sanders P, Stein D. Multiple-dose pharmacokinetics of 12 milligrams of trimethoprim and 60 milligrams of sulfamethoxazole per kilogram of body weight per day in healthy volunteers. Antimicrob Agents Chemother 1993;37:448-52.
23. Septra®. DS (Double Strength) Tablets (trimethoprim and sulfamethoxazole).Package inset. Monarch pharmaceutical company, inc. Tennessee, USA.
24. 行政院衛生署. 撲菌特錠-西藥、醫療器材、含藥化粧品許可證查詢。(Accessed on July 13, at http://www.fda.gov.tw/MLMS/(S(fcbpoc55mglol0455atsrbmk))/H0001D.aspx?Type=Lic LicId=01004919).
25. Neuman MG, Malkiewicz IM, Phillips EJ, et al. Monitoring adverse drug reactions to sulfonamide antibiotics in human immunodeficiency virus-infected individuals. Ther Drug Monit 2002;24:728-36.
26. Choi MJ, Fernandez PC, Patnaik A, et al. Trimethoprim-induced hyperkalemia in a patient with AIDS. N Engl J Med 1993;328:703-6.
27. Velazquez H, Perazella MA, Wright FS, Ellison DH. Renal mechanism of trimethoprim-induced hyperkalemia. Ann Intern Med 1993;119:296-301.
28. Brown GR. Cotrimoxazole-optimal dosing in the critically ill. Ann Intens Care 2014;4:13.
29. Klinker H, Langmann P, Zilly M, Richter E. Drug monitoring during the treatment of AIDS‐associated Pneumocystis carinii pneumonia with trimethoprim‐sulfamethoxazole. J Clin Pharm Ther 1998;23:149-54.
30. Lee K-Y, Huang C-H, Tang H-J, et al. Acute psychosis related to use of trimethoprim/sulfamethoxazole in the treatment of HIV-infected patients with Pneumocystis jirovecii pneumonia: a multicentre, retrospective study. J Antimicrob Chemother 2012:dks283.
31. Davis CM, Shearer WT. Diagnosis and management of HIV drug hypersensitivity. J Allergy Clin Immunol 2008;121:826-32. e5.
32. Lee BL, Delahunty T, Safrin S. The hydroxylamine of sulfamethoxazole and adverse reactions in patients with acquired immunodeficiency syndrome. Clin Pharmacol Ther 1994;56:184-9.
33. Riley RJ, Cribb AE, Spielberg SP. Glutathione transferase μ deficiency is not a marker for predisposition to sulphonamide toxicity. Biochem Pharmacol 1991;42:696-8.
34. Trepanier LA, Yoder AR, Bajad S, Beckwith MD, Bellehumeur JL, Graziano FM. Plasma ascorbate deficiency is associated with impaired reduction of sulfamethoxazole-nitroso in HIV infection. JAIDS Journal of Acquired Immune Deficiency Syndromes 2004;36:1041-50.
35. Lau WK, Young LS. Trimethoprim-sulfamethoxazole treatment of Pneumocystis carinii pneumonia in adults. The New England journal of medicine 1976;295:716.
36. Joos B, Blaser J, Opravil M, Chave J-P, Lüthy R. Monitoring of co-trimoxazole concentrations in serum during treatment of pneumocystis carinii pneumonia. Antimicrob Agents Chemother 1995;39:2661-6.
37. Carmona EM, Limper AH. Update on the diagnosis and treatment of Pneumocystis pneumonia. Ther Adv Respir Dis 2011;5:41-59.
38. Sim E, Lack N, Wang C-J, et al. Arylamine N-acetyltransferases: structural and functional implications of polymorphisms. Toxicology 2008;254:170-83.
39. Wang D, Para MF, Koletar SL, Sadee W. Human N-acetyltransferase 1 (NAT1)* 10 and* 11 alleles increase protein expression via distinct mechanisms and associate with sulfamethoxazole-induced hypersensitivity. Pharmacogenet Genomics 2011;21:652.
40. Sanderson S, Salanti G, Higgins J. Joint effects of the N-acetyltransferase 1 and 2 (NAT1 and NAT2) genes and smoking on bladder carcinogenesis: a literature-based systematic HuGE review and evidence synthesis. Am J Epidemiol 2007;166:741-51.
41. Butcher N, Boukouvala S, Sim E, Minchin R. Pharmacogenetics of the arylamine N-acetyltransferases. The pharmacogenomics journal 2002;2:30-42.
42. Kagaya H, Miura M, Niioka T, et al. Influence of NAT2 polymorphisms on sulfamethoxazole pharmacokinetics in renal transplant recipients. Antimicrob Agents Chemother 2012;56:825-9.
43. Kukongviriyapan V, Prawan A, Warasiha B, Tassaneyakul W, Aiemsa-ard J. Polymorphism of N-acetyltransferase 1 and correlation between genotype and phenotype in a Thai population. Eur J Clin Pharmacol 2003;59:277-81.
44. Ishibe N, Wiencke JK, Zuo Z-F. Polymorphisms in the N acetyltransferase 1 NAT1 gene and lung cancer risk in a minority population. Biomarkers 1998;3:219-26.
45. Bell DA, Stephens EA, Castranio T, et al. Polyadenylation polymorphism in the acetyltransferase 1 gene (NAT1) increases risk of colorectal cancer. Cancer Res 1995;55:3537-42.
46. Zheng W, Deitz AC, Campbell DR, et al. N-acetyltransferase 1 genetic polymorphism, cigarette smoking, well-done meat intake, and breast cancer risk. Cancer Epidemiology Biomarkers Prevention 1999;8:233-9.
47. Katoh T, Kaneko S, Boissy R, Watson M, Ikemura K, Bell DA. A pilot study testing the association between N-acetyltransferases 1 and 2 and risk of oral squamous cell carcinoma in Japanese people. Carcinogenesis 1998;19:1803-7.
48. Zhao B, Lee EJ, Yeoh PN, Gong NH. Detection of mutations and polymorphism of N-acetyltransferase 1 gene in Indian, Malay and Chinese populations. Pharmacogenet Genomics 1998;8:299-304.
49. Gong C, Hu X, Gao Y, Cao Y, Gao F, Mo Z. A meta-analysis of the NAT1 and NAT2 polymorphisms and prostate cancer: a huge review. Med Oncol 2011;28:365-76.
50. Bell D, Taylor J, Butler M, et al. SHORT COMMUNICATION: Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis 1993;14:1689-92.
51. Xie H-G, Xu Z-H, Ou-Yang D-S, et al. Meta-analysis of phenotype and genotype of NAT2 deficiency in Chinese populations. Pharmacogenet Genomics 1997;7:503-14.
52. Huang CS, Chern HD, Shen CY, Hsu SM, Chang KJ. Association between N‐acetyltransferase 2 (NAT2) genetic polymorphism and development of breast cancer in post‐menopausal Chinese women in Taiwan, an area of great increase in breast cancer incidence. Int J Cancer 1999;82:175-9.
53. Wu F, Chen Y, Lin M, Chern H-D, Shen L-J. Variability in the Frequency of Single Nucleotide Polymorphisms of N-acetyl Transferase 2 (NAT2) Gene among the Different Ethnic Groups in Taiwan. Journal of Food and Drug Analysis 2008;16:15-20.
54. Zhangwei X, Jianming X, Qiao M, Xinhua X. N-Acetyltransferase-1 gene polymorphisms and correlation between genotype and its activity in a central Chinese Han population. Clin Chim Acta 2006;371:85-91.
55. Ven A, Mantel MA, Vree T, Koopmans P, Meer J. Formation and elimination of sulphamethoxazole hydroxylamine after oral administration of sulphamethoxazole. Br J Clin Pharmacol 1994;38:147-50.
56. Rieder MJ, Shear N, Kanee A, Tang B, Spielberg SP. Prominence of slow acetylator phenotype among patients with sulfonamide hypersensitivity reactions. Clin Pharmacol Ther 1991;49:13-7.
57. Soejima M, Sugiura T, Kawaguchi Y, et al. Association of the diplotype configuration at the N-acetyltransferase 2 gene with adverse events with co-trimoxazole in Japanese patients with systemic lupus erythematosus. Arthritis Res Ther 2007;9:R23.
58. Zielińska E, Niewiarowski W, Bodalski J. The arylamine N-acetyltransferase (NAT2) polymorphism and the risk of adverse reactions to co-trimoxazole in children. Eur J Clin Pharmacol 1998;54:779-85.
59. Sacco J, Abouraya M, Motsinger-Reif A, Yale S, McCarty C, Trepanier L. Evaluation of polymorphisms in the sulfonamide detoxification genes NAT2, CYB5A, and CYB5R3 in patients with sulfonamide hypersensitivity. Pharmacogenet Genomics 2012;22:733.
60. O'Neil WM, MacArthur RD, Farrough MJ, et al. Acetylator Phenotype and Genotype in HIV‐Infected Patients with and without Sulfonamide Hypersensitivity. The Journal of Clinical Pharmacology 2002;42:613-9.
61. Rieder MJ, Uetrecht J, Shear NH, Cannon M, Miller M, Spielberg SP. Diagnosis of sulfonamide hypersensitivity reactions by in-vitro rechallenge with hydroxylamine metabolites. Ann Intern Med 1989;110:286-9.
62. DeRyke, Alexander D. Optimizing vancomycin dosing through pharmacodynamic assessment targeting area under the concentration-time curve/minimum inhibitory concentration. Hosp Pharm 2009;44:751-65.
63. 楊景涵碩士論文.住院病人之sulfamethoxazole-trimethoprim 血中濃度測定; 2014:1-103.
64. Deitz AC, Doll MA, Hein DW. A Restriction Fragment Length Polymorphism Assay That Differentiates HumanN-Acetyltransferase-1 (NAT1) Alleles. Anal Biochem 1997;253:219-24.
65. Doll MA, Fretland AJ, Deitz AC, Hein DW. Determination of HumanNAT2Acetylator Genotype by Restriction Fragment-Length Polymorphism and Allele-Specific Amplification. Anal Biochem 1995;231:413-20.
66. Bozzette SA, Sattler FR, Chiu J, et al. A controlled trial of early adjunctive treatment with corticosteroids for Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome. N Engl J Med 1990;323:1451-7.
67. Bioanalytical Method Validation (2013) U.S. Department of Health and HUman Services Food and Drug Administration, CDER, CVM, Sep 2013. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM368107.pdf.
68. Lui YY, Chik K-W, Chiu RW, Ho C-Y, Lam CW, Lo YD. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem 2002;48:421-7.
69. Bruhn C, Brockmöller J, Cascorbi I, Roots I, Borchert H-H. Correlation between genotype and phenotype of the human arylamine N-acetyltransferase type 1 (NAT1). Biochem Pharmacol 1999;58:1759-64.
70. Yang M, Katoh T, Delongchamp R, Ozawa S, Kohshi K, Kawamoto T. Relationship between NAT1 genotype and phenotype in a Japanese population. Pharmacogenet Genomics 2000;10:225-32.
71. Hsieh F, Pu Y, Chern H, Hsu L, Chiou H, Chen C. Genetic polymorphisms of N-acetyltransferase 1 and 2 and risk of cigarette smoking-related bladder cancer. Br J Cancer 1999;81:537.
72. Yeh C-C, Sung F-C, Tang R, Chang-Chieh CR, Hsieh L-L. Association between polymorphisms of biotransformation and DNA-repair genes and risk of colorectal cancer in Taiwan. J Biomed Sci 2007;14:183-93.
73. Stanley LA, Sim E. Update on the pharmacogenetics of NATs: structural considerations. 2008.
74. McDonagh EM, Boukouvala S, Aklillu E, Hein DW, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genomics 2014;24:409.
75. Kaufmann GR, Wenk M, Taeschner W, et al. N‐Acetyltransferase 2 polymorphism in patients infected with human immunodeficiency virus. Clin Pharmacol Ther 1996;60:62-7.
76. Zielińska E, Bodalski J, Mianowska K, et al. Genotyping of the arylamine N‐acetyltransferase polymorphism in the prediction of idiosyncratic reactions to trimethoprim‐sulfamethoxazole in infants. Pharm World Sci 1998;20:123-30.
77. Deguchi T. Sequences and expression of alleles of polymorphic arylamine N-acetyltransferase of human liver. J Biol Chem 1992;267:18140-7.
78. WINSTON DJ, LAU WK, GALE RP, YOUNG LS. Trimethoprim-sulfamethoxazole for the treatment of Pneumocystis carinii pneumonia. Ann Intern Med 1980;92:762-9.
79. Siber GR, Gorham CC, Ericson JF, Smith AL. Pharmacokinetics of intravenous trimethoprim-sulfamethoxazole in children and adults with normal and impaired renal function. Review of Infectious Diseases 1982;4:566-78.
80. Baethke R, Golde G, Gahl G. Sulphamethoxazole/trimethoprim: pharmacokinetic studies in patients with chronic renal failure. Eur J Clin Pharmacol 1972;4:233-40.
81. Zelenitsky SA, Iacovides H, Ariano RE, Harding GK. Antibiotic combinations significantly more active than monotherapy in an in vitro infection model of Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis 2005;51:39-43.
82. Clinical and laboratory standards institute: Performance standards for antimicrobial susceptibility testing; 23 rd informational supplement. 2011, 32(3, M100-S22):1-182.
83. Panel on Opportunistic Infections in HIV-Infected Adults and Adolescents. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. Available at http://aidsinfo.nih.gov/contentfiles/lvguidelines/adult_oi.pdf. (Accessed on 2015/7/17).
84. Bartlett J, Auwaerter P, Pham P. Diagnosis and Treatment of Infectious Disease Johns Hopkins ABX Guide 2012 third edition: Jones Barlett 2012.
85. Naisbitt DJ, Hough SJ, Gill HJ, Pirmohamed M, Kitteringham NR, Park BK. Cellular disposition of sulphamethoxazole and its metabolites: implications for hypersensitivity. Br J Pharmacol 1999;126:1393-407.
86. Nakamura H, Uetrecht J, Cribb AE, et al. In vitro formation, disposition and toxicity of N-acetoxy-sulfamethoxazole, a potential mediator of sulfamethoxazole toxicity. J Pharmacol Exp Ther 1995;274:1099-104.
87. Grant DM, Hughes NC, Janezic SA, et al. Human acetyltransferase polymorphisms. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 1997;376:61-70.
88. Winter HR, Unadkat JD. Identification of cytochrome P450 and arylamine N-acetyltransferase isoforms involved in sulfadiazine metabolism. Drug metabolism and disposition 2005;33:969-76.
89. Gill HJ, Tjia JF, Kitteringham NR, Pirmohamed M, Back DJ, Park BK. The effect of genetic polymorphisms in CYP2C9 on sulphamethoxazole N-hydroxylation. Pharmacogenet Genomics 1999;9:43-54.
90. Chern H-D, Ueng T-H, Fu Y-P, Cheng C-W. CYP2C9 polymorphism and warfarin sensitivity in Taiwan Chinese. Clin Chim Acta 2006;367:108-13.
91. Anderson GD. Sex and racial differences in pharmacological response: where is the evidence? Pharmacogenetics, pharmacokinetics, and pharmacodynamics. J Womens Health 2005;14:19-29.
92. GILL HJ, MAGGS JL, MADDEN S, PIRMOHAMED M, PARK BK. The effect of fluconazole and ketoconazole on the metabolism of sulphamethoxazole. Br J Clin Pharmacol 1996;42:347-53.
93. Varoquaux O, Lajoie D, Gobert C, et al. Pharmacokinetics of the trimethoprim‐sulphamethoxazole combination in the elderly. Br J Clin Pharmacol 1985;20:575-81.
94. Wolkenstein P, Loriot M-A, Aractingi S, Cabelguenne A, Beaune P, Chosidow O. Prospective evaluation of detoxification pathways as markers of cutaneous adverse reactions to sulphonamides in AIDS. Pharmacogenet Genomics 2000;10:821-8.
95. Grün B, Kiessling MK, Burhenne J, et al. Trimethoprim–metformin interaction and its genetic modulation by OCT2 and MATE1 transporters. Br J Clin Pharmacol 2013;76:787-96.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52617-
dc.description.abstract背景
Co-trimoxazole (sulfamethoxazole-trimethoprim)為廣效性抗生素,可用於治療多種感染症,尤其在肺囊蟲肺炎(PJP)治療上為第一線用藥。Sulfamethoxazole(SMX)主要由肝臟代謝,其中約70%代謝途徑經由乙醯轉移酵素(NAT)代謝成沒有毒性的產物N4-acetyl sulfamethoxazole(N4-acetyl SMX),其餘則會由CYP2C9代謝,此類代謝物在人體可能導致毒性。NAT同時包含NAT1與NAT2兩種酵素,均具基因多型性。臺灣地區的NAT1基因多型性分布比例與其他亞洲國家相似,約有20%為慢代謝者(slow acetylator, SA),NAT2則約有30%屬於慢代謝者。不同基因型會影響藥品的代謝,致使藥品或代謝物濃度在個體間的變異性大,而增加藥物相關不良反應(adverse drug reaction, ADR)如肝毒性、皮膚過敏等發生的風險。目前尚未有研究探討臺灣病人使用co-trimoxazole時,不同的NAT基因型對於藥品濃度及ADR的影響,因此本研究利用前瞻性收案,研究不同NAT基因型與SMX及其代謝物濃度及ADR的相關性,同時也一併描述SMX與trimethoprim(TMP)的血中濃度分布情形。
研究目的
本研究包含兩部分分析,第一部分為血中濃度分布情形,第二部分為研究NAT1、NAT2基因多型性與SMX、N4-acetyl SMX血中濃度與ADR之間的關聯性。
研究方法
研究收案自2014年1月19日至2015年6月18日間,於臺大醫院前瞻性收納年紀≥20歲且使用co-trimoxazole治療劑量≥ 5 mg/kg/day(以TMP劑量計算)的住院病人,簽署受試者同意書後納入研究分析。排除沒有血中濃度、NAT基因型資料有缺漏、做過異體骨髓移植且無法取得口水檢體檢測基因型的病人。
待達到穩定血中濃度後,於使用藥品前量測血中最低濃度(trough concentration, Ctrough),在服藥後3小時(或靜脈輸注完畢1小時)檢測藥品最高濃度(peak concentration, Cpeak)。使用高效能液相層析儀以UV偵測吸收波長來測定藥品濃度,基因多型性則以聚合酶連鎖反應- 限制酶片段長度多型性分析。
研究記錄收案期間病人的基本資料、實驗室檢查值、藥品使用的劑量、頻次、起始日期與抽血時間,並在用藥期間觀察使否有發生藥品不良反應,不良反應之評估以Naranjo scale評估與co-trimoxazole的相關性。
統計方法使用Mann-Whitney U test、Chi-square test比較兩組之間的差異,使用Wilcoxon signed-rank test比較多組樣本間的差異。利用簡單線性回歸(simple linear regression)及多重線性迴歸分析(multiple linear regression)影響藥品濃度的重要因子。所有檢定皆為雙尾檢定(two sided),以p-value小於0.05視為統計上的顯著差異。
研究結果
本研究共收案87人,排除4人後共納入82人進行血中濃度療劑監測分析;納入病人之共病症主要以腫瘤疾病(64.6 %)及後天免疫缺乏症候群為主(43.9%);co-trimoxazole主要用來治療肺囊蟲肺炎感染。第二部份分別納入具NAT1基因型結果的63人、NAT2基因型的68人進行分析。
第一部分分析的82人中,使用治療劑量雖低於治療指引建議的15~20 mg/kg/day,不過合計有65%落在文獻建議之SMX為100~200 µg/mL範圍中,而有70%落在文獻建議之TMP為3~8 µg/mL範圍中,顯示不需要用到較高劑量即可達到療劑範圍內。
第二部分NAT基因型與濃度分析,欲校正不同給藥劑量頻次而利用代謝物與原型藥比值做為結果分析。NAT1基因型63人中,有49位(77.8%)快代謝者、14位(22.2%)慢代謝者;NAT2基因型68人中,有23位(33.8%)快代謝者、有23位(33.8%)中速代謝者、22位(32.4%)慢代謝者。NAT1/NAT2基因型與血中濃度最低比值、血中濃度最高比值、AUC比值沒有相關性,但其中在血中濃度最高比值、AUC比值中,均有NAT1/NAT2快代謝者較高的趨勢。
基因型與濃度及ADR分析中,排除與SMX及其代謝物確定為不相關的ADR後,一共發生50件相關ADR。發生相關ADR比起沒有發生ADR者,不論在濃度最低比值、最高比值或AUC比值皆顯著較低(p-value<0.05)。細部以基因型分組後,NAT1基因型快代謝者,沒發生ADR者的最低濃度、最高濃度比值顯著較高(p-value<0.05);NAT2基因型中速代謝者,沒發生ADR者則在最低濃度、最高濃度、AUC比值中顯著較有發生ADR者高(p-value<0.05)。
結論
本研究為第一個使用co-trimoxazole治療劑量的病人中,比較NAT基因型與藥物代謝物與原型藥比值及不良反應間的相關性研究。血中濃度分布之分析中,治療劑量雖低於指引之建議,但多數病人血中濃度可以達到文獻建議的治療範圍之內。基因型分析中,NAT基因型雖然只有影響代謝物與原型藥血中濃度比值的趨勢,但是藥物濃度的比值在不良反應的發生上有統計顯著差異,NAT1快代謝者、NAT2中速代謝者之藥物濃度的比值在不良反應的發生上有統計顯著差異。
zh_TW
dc.description.abstractBackground
Co-trimoxazole (sulfamethoxazole-trimethoprim) is a broad-spectrum antibiotic combination, which is used as the first line treatment for Pneumocystis jirovecii pneumonia (PJP) and several infections. Sulfamethoxazole (SMX) is mainly acetylated to N-acetyl sulfamethoxazole (N4-acetyl SMX) via N-acetyltransferase (NAT).The other pathway for SMX is CYP2C9-mediated bioactivation to a reactive metabolite that may result in toxicity. NAT has genetic polymorphism. There are 20~30% slow acetylators (SA) in Asian population. It is reported that SA with significantly higher concentration of SMX may contribute to more adverse drug reaction (ADR). However, there are limited data of metabolite concentration and ADR in relation to genetic polymorphism in Taiwan. We aim to describe the plasma concentrations of SMX and TMP, and to investigate NAT genetic polymorphism and its correlation to concentration of co-trimoxazole and N4-acetyl SMX and ADR.
Objectives
To evaluate the impact of NAT genetic polymorphism on concentration of co-trimoxazole, N4-acetyl SMX and ADRs, as well as to describe the distribution of co-trimoxazole concentration.
Methods
This prospective study was conducted at the National Taiwan University Hospital from January 19 2014 to June 18 2015. Inpatients, who were older than or equal to 20 years old, used therapeutic doses(≥ 5 mg/kg/day, based on TMP component)of co-trimoxazole and signed informed consent were enrolled. Patients without concentration or genetic information, who had allogeneic bone marrow transplantation and whose saliva samples were not collected were excluded.
Blood samples of peak concentration were drawn 3 hours after oral administration or 1 hour after completion of intravenous infusion, while trough concentration were collected just before the next dose. The plasma concentration of co-trimoxazole and N4-acetyl SMX were assayed by high performance liquid chromatography. DNA was extracted from blood or saliva samples. SNP were determined by polymerase chain reaction amplification and restriction fragment-length polymorphism method.
Patients’ characteristics, lab data, dosing regimen, and the duration of treatment were recorded. The Naranjo scale was applied to evaluate the causality of the ADRs.
Chi-square test and Mann-Whitney U test were used to compare the differences between two groups. Wilcoxon signed-rank test was used to compare the differences among three groups. Simple linear regression and multiple linear regression analysis were used to determine the factors contributing to plasma concentration. In all of the statistical analyses, a p-value of <0.05 was considered statistically significant.
Result
During the study period, a total of 87 patients were enrolled, but only 82 patients were included in the analysis. Most of them had hemato-oncological disease (64.6%) or acquired immunodeficiency syndrome (43.9%). Co-trimoxazole was mainly used for the treatment of PJP. There were 63 and 68 patients included in the NAT1, NAT2 genetic polymorphism analysis, respectively.
82 patents were included in the analysis of correlation between dosage and concentration. Although the dose administered were lower than the recommended dose according to the treatment guideline (15~20 mg/kg/day). 65% of the peak SMX levels and 70% of the peak TMP levels were within the therapeutic ranges for treating PJP (target peak concentration 100~200 µg/mL for SMX and 3~8 µg/mL for TMP).
In terms of NAT polymorphism in relation to serum concentration, the latter was expressed as a proportion of peak concentration of SMX compared to N4-acetyl SMX in order to standardize variation of dosing regimen. For the analysis of NAT1 genetic polymorphism, 49 patients (77.8%) were genotyped as rapid acetylators (RA) and 14 patients (22.2%) as SAs in the patient population. For the analysis of NAT2 genetic polymorphism, 23 patients (33.8%) were genotyped as RAs, 23 patients (33.8%) as intermediate acetylators (IA) and 22 patients (32.4%) as SAs in the patient population. There were no significant differences between the ratio of N4-acetyl SMX/SMX and the NAT polymorphisms, but higher levels were seen in RAs group.
We excluded the less-associated ADRs of SMX (such as hyperkalemia) in the analysis of NAT polymorphism. A total of 50 ADRs was evaluated as SMX-associated. We found that the ratio of N4-acetyl SMX/SMX was lower in the group of SMX-related ADRs (p-value<0.05). Also, there were significant differences in the ratio of N4-acetyl SMX/SMX between RA group of NAT1 polymorphism, and the IA group of NAT2 polymorphism (p-value<0.05).
Conclusion
Although lower dosing regimen was administered, plasma concentrations of co-trimoxazole were within the optimal therapeutic range in the most of the patients. There were significant differences in the ratio of N4-acetyl SMX/SMX and adverse drug reaction. The same result were found in RA group of NAT1 and IA group of NAT2 polymorphism.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:20:34Z (GMT). No. of bitstreams: 1
ntu-104-R02451004-1.pdf: 5166738 bytes, checksum: e364cae9f5beab3363ad3426c71a2274 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract v
目錄 viii
圖目錄 xi
表目錄 xiii
縮寫表 xv
第一章 緒論 1
第二章 文獻探討 2
2.1 Co-trimoxazole簡介 2
2.1.1 藥理作用 2
2.1.2 藥品動態學特性 3
2.1.3適應症與使用劑量 5
2.1.4 藥物及其代謝物與不良反應 5
2.1.5血中濃度監測 8
2.2 Co-trimoxazole藥物基因體學 9
2.2.1 全球及臺灣地區NAT、CYP2C9基因型(genotype)分布 9
2.2.2 基因多型性與co-trimoxazole藥品濃度的相關性 10
2.2.3基因多型性與co-trimoxazole藥品不良反應的相關性 11
第三章 研究目的 13
第四章 研究方法 14
4.1 研究架構 14
4.2 研究對象及地點 15
4.3 納入條件 15
4.4 相關資料收集 15
4.4.1受試者基本資料 15
4.4.2 Co-trimoxazole給藥與抽血時間記錄 16
4.5 濃度測量方法 16
4.6 不同基因型分析法 17
4.7 肺囊蟲肺炎之疾病定義 18
4.8 疾病嚴重程度評估 18
4.9 不良反應評估 18
4.9.1不良反應相關性 18
4.9.2不良反應嚴重程度與作用時間 19
4.10 統計方法 22
第五章 研究結果 23
5.1 分析方法確效 23
5.2 收案情形 28
5.3 受試者基本資料 30
5.3.1基本資料 30
5.3.2適應症 35
5.3.3 基因多型性變異分布情形 35
5.3.4 Co-trimoxazole血中濃度與劑量 37
5.4 Co-trimoxazole及代謝物濃度與基因型相關性 39
5.5 不良反應分析 43
5.6血中濃度比值多元迴歸分析 57
第六章 討論 63
6.1分析方法確效 63
6.2 病人族群 64
6.3 基因多型性分布 65
6.4 藥物血中濃度與劑量 66
6.5 藥物代謝物濃度與基因型分析 68
6.6 不良反應與基因型分析 71
6.7血中濃度比值迴歸分析 74
6.8 研究限制 75
6.9 未來展望 75
第七章 結論 76
參考文獻 77
 
dc.language.isozh-TW
dc.subject藥物不良反應zh_TW
dc.subjectN4-acetyl SMXzh_TW
dc.subjectNAT基因多型性zh_TW
dc.subjectCo-trimoxazolezh_TW
dc.subject血中濃度zh_TW
dc.subjectCo-trimoxazoleen
dc.subjectN4-acetyl SMXen
dc.subjectNAT polymorphismen
dc.subjectplasma concentrationen
dc.subjectadverse drug reactionen
dc.title基因多型性與sulfamethoxazole-trimethoprim藥品代謝物血中濃度與不良反應之關聯性研究zh_TW
dc.titleGenetic Polymorphism Relating to the Concentration and Adverse Drug Reactions of Sulfamethoxazole-Trimethoprim and their Metaboliteen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫幸筠,張淑媛,郭錦樺
dc.subject.keywordCo-trimoxazole,N4-acetyl SMX,NAT基因多型性,血中濃度,藥物不良反應,zh_TW
dc.subject.keywordCo-trimoxazole,N4-acetyl SMX,NAT polymorphism,plasma concentration,adverse drug reaction,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college藥學專業學院zh_TW
dc.contributor.author-dept臨床藥學研究所zh_TW
顯示於系所單位:臨床藥學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved