Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52603
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor章為皓(Wei-Hau Chang)
dc.contributor.authorZi-Yun Chenen
dc.contributor.author陳姿澐zh_TW
dc.date.accessioned2021-06-15T16:20:05Z-
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation1. Elenko, M. P.; Szostak, J. W.; van Oijen, A. M., Single-molecule binding experiments on long time scales. Review of Scientific Instruments 2010, 81 (8), 083705.
2. Roy, R.; Hohng, S.; Ha, T., A practical guide to single-molecule FRET. Nat Meth 2008, 5 (6), 507-516.
3. Seidel, S. A. I.; Dijkman, P. M.; Lea, W. A.; van den Bogaart, G.; Jerabek-Willemsen, M.; Lazic, A.; Joseph, J. S.; Srinivasan, P.; Baaske, P.; Simeonov, A.; Katritch, I.; Melo, F. A.; Ladbury, J. E.; Schreiber, G.; Watts, A.; Braun, D.; Duhr, S., Microscale Thermophoresis Quantifies Biomolecular Interactions under Previously Challenging Conditions. Methods (San Diego, Calif.) 2013, 59 (3), 301-315.
4. Cramer, P.; Armache, K. J.; Baumli, S.; Benkert, S.; Brueckner, F.; Buchen, C.; Damsma, G. E.; Dengl, S.; Geiger, S. R.; Jasiak, A. J.; Jawhari, A.; Jennebach, S.; Kamenski, T.; Kettenberger, H.; Kuhn, C. D.; Lehmann, E.; Leike, K.; Sydow, J. F.; Vannini, A., Structure of Eukaryotic RNA Polymerases. Annual Review of Biophysics 2008, 37 (1), 337-352.
5. Phatnani, H. P.; Greenleaf, A. L., Phosphorylation and functions of the RNA polymerase II CTD. Genes & Development 2006, 20 (21), 2922-2936.
6. Hemming, S. A.; Edwards, A. M., Yeast RNA Polymerase II Subunit RPB9: MAPPING OF DOMAINS REQUIRED FOR TRANSCRIPTION ELONGATION. Journal of Biological Chemistry 2000, 275 (4), 2288-2294.
7. Chen, X.; Ruggiero, C.; Li, S., Yeast Rpb9 Plays an Important Role in Ubiquitylation and Degradation of Rpb1 in Response to UV-Induced DNA Damage. Molecular and Cellular Biology 2007, 27 (13), 4617-4625.
8. Wild, T.; Cramer, P., Biogenesis of multisubunit RNA polymerases. Trends in Biochemical Sciences 2012, 37 (3), 99-105.
9. Chen, H.-T.; Warfield, L.; Hahn, S., The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex. Nat Struct Mol Biol 2007, 14 (8), 696-703.
10. Ziegler, L. M.; Khaperskyy, D. A.; Ammerman, M. L.; Ponticelli, A. S., Yeast RNA Polymerase II Lacking the Rpb9 Subunit Is Impaired for Interaction with Transcription Factor IIF. Journal of Biological Chemistry 2003, 278 (49), 48950-48956.
11. (a) Puig, O.; Caspary, F.; Rigaut, G.; Rutz, B.; Bouveret, E.; Bragado-Nilsson, E.; Wilm, M.; Séraphin, B., The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods 2001, 24 (3), 218-229; (b) Rigaut, G.; Shevchenko, A.; Rutz, B.; Wilm, M.; Mann, M.; Seraphin, B., A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotech 1999, 17 (10), 1030-1032.
12. Stofko-Hahn, R. E.; Carr, D. W.; Scott, J. D., A single step purification for recombinant proteins Characterization of a microtubule associated protein (MAP 2) fragment which associates with the type II cAMP-dependent protein kinase. FEBS Letters 1992, 302 (3), 274-278.
13. Terpe, K., Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 2003, 60 (5), 523-533.
14. Ikura, M.; Clore, G.; Gronenborn, A.; Zhu, G.; Klee, C.; Bax, A., Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 1992, 256 (5057), 632-638.
15. Montigiani, S.; Neri, G.; Neri, P.; Neri, D., Alanine Substitutions in Calmodulin-binding Peptides Result in Unexpected Affinity Enhancement. Journal of Molecular Biology 1996, 258 (1), 6-13.
16. Hultschig, C.; Hecht, H.-J.; Frank, R., Systematic Delineation of a Calmodulin Peptide Interaction. Journal of Molecular Biology 2004, 343 (3), 559-568.
17. Jerabek-Willemsen, M.; André, T.; Wanner, R.; Roth, H. M.; Duhr, S.; Baaske, P.; Breitsprecher, D., MicroScale Thermophoresis: Interaction analysis and beyond. Journal of Molecular Structure 2014, 1077, 101-113.
18. Duhr, S.; Braun, D., Why molecules move along a temperature gradient. Proceedings of the National Academy of Sciences 2006, 103 (52), 19678-19682.
19. Chang, J.-W.; Wu, Y.-M.; Chen, Z.-Y.; Huang, S.-H.; Wang, C.-H.; Wu, P.-l.; Weng, Y.-p.; You, C.; Piehler, J.; Chang, W.-h., Hybrid electron microscopy-FRET imaging localizes the dynamical C-terminus of Tfg2 in RNA polymerase II–TFIIF with nanometer precision. Journal of Structural Biology 2013, 184 (1), 52-62.
20. Bai, J.; Swartz, D. J.; Protasevich, I. I.; Brouillette, C. G.; Harrell, P. M.; Hildebrandt, E.; Gasser, B.; Mattanovich, D.; Ward, A.; Chang, G.; Urbatsch, I. L., A Gene Optimization Strategy that Enhances Production of Fully Functional P-Glycoprotein in Pichia pastoris. PLoS ONE 2011, 6 (8), e22577.
21. (a) Aebersold, R.; Mann, M., Mass spectrometry-based proteomics. Nature 2003, 422 (6928), 198-207; (b) Johnson, R. S.; Davis, M. T.; Taylor, J. A.; Patterson, S. D., Informatics for protein identification by mass spectrometry. Methods 2005, 35 (3), 223-236; (c) Zhang, G.; Annan, R. S.; Carr, S. A.; Neubert, T. A., Overview of Peptide and Protein Analysis by Mass Spectrometry. In Current Protocols in Protein Science 2001, John Wiley & Sons, Inc.
22. Ishihama, Y.; Oda, Y.; Tabata, T.; Sato, T.; Nagasu, T.; Rappsilber, J.; Mann, M., Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein. Molecular & Cellular Proteomics 2005, 4 (9), 1265-1272.
23. Aitken, C. E.; Marshall, R. A.; Puglisi, J. D., An Oxygen Scavenging System for Improvement of Dye Stability in Single-Molecule Fluorescence Experiments. Biophysical Journal 2008, 94 (5), 1826-1835.
24. van Oijen, A. M., Single-molecule approaches to characterizing kinetics of biomolecular interactions. Current Opinion in Biotechnology 2011, 22 (1), 75-80.
25. Kettenberger, H.; Armache, K.-J.; Cramer, P., Architecture of the RNA Polymerase II-TFIIS Complex and Implications for mRNA Cleavage. Cell 2003, 114 (3), 347-357.
26. Do, T.; Ho, F.; Heidecker, B.; Witte, K.; Chang, L.; Lerner, L., A rapid method for determining dynamic binding capacity of resins for the purification of proteins. Protein Expression and Purification 2008, 60 (2), 147-150.
27. Lamichhane, R.; Solem, A.; Black, W.; Rueda, D., Single Molecule FRET of Protein-Nucleic Acid and Protein-Protein complexes: Surface Passivation and Immobilization. Methods (San Diego, Calif.) 2010, 52 (2), 192-200.
28. Joo, C.; Ha, T., Imaging and Identifying Impurities in Single-Molecule FRET Studies. Cold Spring Harbor Protocols 2012, 2012 (10), pdb.prot071548.
29. Rasnik, I.; McKinney, S. A.; Ha, T., Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Meth 2006, 3 (11), 891-893.
30. Ha, T.; Tinnefeld, P., Photophysics of Fluorescent Probes for Single-Molecule Biophysics and Super-Resolution Imaging. Annual Review of Physical Chemistry 2012, 63 (1), 595-617.
31. Copeland, R. A., Conformational adaptation in drug–target interactions and residence time. Future Medicinal Chemistry 2011, 3 (12), 1491-1501.
32. Wagstaff, K.; Dias, M.; Alvisi, G.; Jans, D., Quantitative Analysis of Protein–Protein Interactions by Native Page/Fluorimaging. J Fluoresc 2005, 15 (4), 469-473.
33. Charles R. Sanders, Biomolecular Ligand-Receptor Binding Studies: Theory, Practice, and Analysis, 2014, Dept. of Biochemistry, Vanderbilt University.
34. Becker, Kleinsmith. Hardin & Bertoni, The World of the Cell, 2009, 7th edition. San Francisco: Benjamin Cummings.
35. Emmanuel Barillot, Laurence Calzone, Philippe Hupe, Jean-Philippe Vert, Andrei Zinovye, Computational Systems Biology of Cancer, 2013, The Fairmont San Francisco, San Francisco, California, 91-95.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52603-
dc.description.abstract單分子螢光共振能量轉移 (Single Molecule Fluorescence Resonance Energy Transfer, smFRET) 顯微術中,需將生物巨分子均勻分散且穩定地固定於樣本槽的玻璃表面上,便於長時間量測 FRET pair 的螢光強度。將 RNA polymerase II(Pol II) 固定於鋪有攜鈣素 (Calmodulin) 的玻璃界面時,注入至樣品槽的 Pol II 的濃度範圍通常為 10-12 M 。但 Pol II 次單元上的 Calmodulin binding peptide (CBP tag) 與攜鈣素的解離平衡常數 (equilibrium dissociation constant) KD 值約為10-9 M,造成 CBP tagged Pol II 與攜鈣素之偶合效率較低,成像範圍內的 FRET pair 較少。
為了提升 CBP tagged Pol II 與攜鈣素之偶合效率,透過定點突變修改 CBP tag 的 DNA 序列,分別獲得胺基酸序列 N9A 和 S14A 突變的 CBP tag (NCBP tag),期許能得到對 Calmodulin 具較高親和力(解離平衡常數約10-12 M) 的 NCBP tag。
藉由生物分子交互作用分析系統,生物薄膜干涉儀 (Biolayer Interferometry) 與微量熱泳動儀 (Microscale Thermophoresis) 兩種方式,驗證 NCBP tagged Pol II 對攜鈣素的親和力改善之情形,然而因為 Pol II 對 NeutrAvidin 的非專一性吸附及Pol II 複合體本身的複雜性,兩種方法均無法有效的獲得正確的 KD 值範圍。除了上述兩方法,亦使用單分子螢光顯微鏡分別對 Pol II 與攜鈣素成像,藉由單分子影像位置之映對 (mapping) ,做 colocalization 分析以測定 Pol II 與攜鈣素的結合率。 CBP tagged Pol II 對 Calmodulin 的結合率最佳會落在 1 nM 的濃度範圍,結合率可達 41% ,而兩種 NCBP tagged Pol II 與攜鈣素的結合率分別為 25% (N9A) 和 12% (S14A) 。
本文找到合適的CBP tagged Pol II濃度範圍,能提供穩定且有效率的單分子成像條件進行後續的量測。Biocytin 與 Biotin-BSA的添加可有效地減緩 RNA polymerase II 對 NeutrAvidin 的非專一性吸附,得以在相對單純的環境中分析 CBP tagged Pol II 與攜鈣素間的生物分子交互作用。
zh_TW
dc.description.abstractSingle-molecule fluorescence resonance energy transfer (smFRET) is a powerful tool to study complex biological interactions and dynamics with sub-nanometer sensitivity. In smFRET technique, biomolecule must be immobilized sparsely and stably on a substrate for measuring the intensity of time trajectories of donors and acceptors. In this study, RNA polymerase II (Pol II) on which a calmodulin binding peptide tag (CBP tag) fused was immobilized on a glass surface with the aid of biotinylated-calmodulin and NeutrAvidin system. In the chamber, CBP tagged Pol II concentration range is usually 10-12 pM , but the dissociation constant KD between CBP tag and calmodulin-Ca2+ complex is about 10-9 M. Because the concentration of CBP tagged Pol II is smaller than KD value, the number of FRET pair is low and the binding between donors and acceptors becomes unstable.
To improve the affinity between CBP tagged Pol II and calmodulin, we used site-directed mutagenesis to modify CBP tag. The alanine substitution within CBP tag resulted Asn9Ala and Ser14Ala (N9A/S14A) mutants which may improve affinity from nano- to pico-molar range. Both modified CBP tags are called as NCBP tags. The improved affinity can stabilize the binding between donors and acceptors and then the measurements of FRET efficiencies is more efficient.
We used Biolayer Interferometry and Microscale Thermophoresis to quantify the affinity between NCBP tagged Pol II and calmodulin. However, the results showed unreliable KD range due to the nonspecific binding between Pol II and NeutrAvidin and maybe the complexity of Pol II complex. Besides, we setup a total internal reflection fluorescence microscope to directly measure the binding ratio between CPB tagged
Pol II and calmodulin by colocalized two channel images of different color. The highest binding ratio of CBP tagged Pol II is 41% as Pol II is at 1 nM ; however, at the same Pol II concentration, the binding ratio of two kinds of NCBP tagged Pol II, N9A and S14A, are 25% and 12%, respectively.
In summary, we tried to improve the affinity between CBP tagged Pol II and calmodulin with the substitution of NCBP tag to get more stable FRET pair and optimize the efficiency of FRET measurements. Although the affinity improvement of NCBP tag is not obvious, the experimental results suggest an optimized Pol II concentration to obtain the best FRET efficiency. Furthermore, buffer additives like Biocytin and Biotin-BSA can effectively reduce the nonspecific binding between Pol II and NeutrAvidin.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:20:05Z (GMT). No. of bitstreams: 1
ntu-104-R00b22030-1.pdf: 9782625 bytes, checksum: fcdefb9df3d8f74cae2d2aa45b5e587a (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書......I
摘要......II
Abstract....... III
目錄.......IV
圖目錄.......VII
表目錄.......IX
縮寫表.......X
第一章 緒論.......1
1.1 單分子影像之成像.......1
1.2 單分子顯微鏡視野下的分子間交互作用.......1
1.3 酵母菌的核糖核酸聚合酶 II (RNA polymerase II) 與
次單元體 RPB9.......2
1.4 核糖核酸聚合酶 II (RNA polymerase II) 與其轉錄因子.......3
1.5 分子之親和性標籤 (Affinity tag).......3
1.6 親和性標籤之優化.......4
1.7 生物分子交互作用分析 (Biomolecular interaction analysis/BIA).......5
第二章 材料與方法....... 6
2.1 實驗材料.......6
2.1.1菌種.......6
2.1.2載體.......6
2.2 實驗試劑.......6
2.3 儀器設備.......8
2.4 實驗方法.......10
2.4.1 製備含抗生素之 LB 培養盤.......10
2.4.2 大腸桿菌轉形作用 .......10
2.4.3 聚合酶鏈鎖反應 (Polymerase chain reaction/PCR).......11
2.4.4 DNA 瓊脂醣凝膠電泳(DNA agarose gel electrophoresis).......11
2.4.5 定點突變 (Site-directed Mutagenesis).......12
2.4.6 Synthetic complete(SC) and Dropout media 製備.......13
2.4.7 酵母菌勝任細胞製備.......14
2.4.8 酵母菌轉形作用.......15
2.4.9 Yeast Colony PCR.......16
2.4.10 酵母菌蛋白質小量製備 Small-scale protein extract of yeast.......16
2.4.11 西方墨點法 (Western Blot).......17
2.4.12 In Gel Digestion.......18
2.4.13 Pol II 與螢光標定之Calmodulin結合.......20
2.4.14 Biolayer Interferometry (BLI) 生物薄膜干涉儀.......20
2.4.15 Protein Labeling 蛋白質標記.......22
2.4.16 Microscale Thermophoresis (MST) 微量熱泳動儀.......23
2.4.17 物鏡式全反射螢光顯微鏡.......23
第三章 結果與討論 .......25
3.1 對質體 pBS1479 作定點突變.......25
3.2 酵母菌之轉形作用.......25
3.3 酵母菌融合蛋白之表現.......26
3.3.1 小量表現蛋白質.......26
3.3.2 西方墨點法結果.......26
3.3.3 液相層析電灑法串聯式質譜分析結果.......27
3.3.3.1 Mascot資料庫搜索條件.......28
3.3.3.2 Mascot資料庫搜索— RPB9結果分析.......28
3.3.3.3 資料庫搜索—RPB9 融合經定點突變後 CBP tag蛋白 質序列結果分析.......29

3.4 Gel mobility shift assay— CaM-Alexa555 與 Pol II RPB9-CBP 專一性結合.......30
3.5 生物薄膜干涉儀測定親和力之結果.......31
3.5.1 感測探針與固定蛋白.......31
3.5.2 固定蛋白與目標蛋白.......31
3.5.3 加鹽或 blocker - Biocytin 解決非專一性結合.......32
3.5.4 量測定點突變之 CBP tagged-Pol II 與 Calmodulin 之親和力.......32
3.6 微量熱泳動儀分析....... 33
3.7 單分子螢光顯微鏡....... 34
3.7.1 單分子影像成像.......35
3.7.2 CBP tagged Pol II與 Calmodulin的colocalization .......36
第四章 結論.......38
問答集.......87
附錄.......89
參考文獻.......90
dc.language.isozh-TW
dc.title高親和性標籤在單分子螢光標記和生物巨分子固定上之應用zh_TW
dc.titleApplication of high affinity tag strategies in single-molecule labeling and immobilization for protein complexen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊健志(Chien-Chih Yang),陳佩燁(Pei-Yen Chen)
dc.subject.keyword物鏡式全反射螢光顯微鏡,核糖核酸聚合? II,攜鈣素結合胜?,colocalization,生物薄膜干涉儀,微量熱泳動儀,解離平衡常數,單分子影像,zh_TW
dc.subject.keywordTIRF,KD value,RNA polymerase II,calmodulin binding peptide,colocalization,Biolayer Interferometry,Microscale Thermophoresis,single-molecule,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
9.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved