Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52600
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余佳慧
dc.contributor.authorYu-Chen Paien
dc.contributor.author白宇辰zh_TW
dc.date.accessioned2021-06-15T16:19:58Z-
dc.date.available2025-08-17
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation1. Bäckhed, F., et al., Host-Bacterial Mutualism in human intestine. Science, 2005 307: p. 1915-20.
2. Fontaine, N., et al., Intestinal mucin distribution in the germ-free rat and in the heteroxenic rat harbouring a human bacterial flora effect of inulin in the diet. British Journal of Nutrition, 1996. 75: p. 881-892.
3. Johansson, M.E., et al., The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A, 2008. 105(39): p. 15064-9.
4. Laukoetter, M.G., M. Bruewer, and A. Nusrat, Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr Opin Gastroenterol, 2006. 22: p. 85-9.
5. Niessen, C.M., Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol, 2007. 127(11): p. 2525-32.
6. Fasano, A. and J.P. Nataro, Intestinal epithelial tight junctions as targets for enteric bacteria-derived toxins. Adv Drug Deliv Rev, 2004. 56(6): p. 795-807.
7. Hossain, Z. and T. Hirata, Molecular mechanism of intestinal permeability: interaction at tight junctions. Mol Biosyst, 2008. 4(12): p. 1181-5.
8. James, L., et al., Alteration of intestinal tight junction structure and permeability by cytoskeletal contraction. Am J Physiol, 1987. 253: p.:C854-61.
9. Peterson, M.D. and M.S. Mooseker, Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci, 1992. 102: p. 581-600.
10. Sahl, H.G., et al., Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol, 2005. 77(4): p. 466-75.
11. Ouellette, A.J., et al., Mouse Paneth cell defensins primary structures and antibacterial activities of numerous cryptdin isoforms. Infect Immun, 1994. 62: p. 5040-7.
12. Zhang, P., et al., Innate immunity and pulmonary host defense. Immunol Rev, 2000. 173: p. 39-51.
13. Parikh, A.A., et al., Interleukin-6 Production in Human Intestinal Epithelial Cells Increases in Association with the Heat Shock Response. J Surg Res, 1998. 77: p. 40-4.
14. Jobin, C., et al., TNF receptor-associated factor-2 is involved in both IL-1 beta and TNF-alpha signaling cascades leading to NF-kappa B activation and IL-8 expression in human intestinal epithelial cells. J Immunol, 1999. 162: p. 4447-54.
15. Darfeuille-Michaud, A., et al., Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology, 1998. 115: p. 1405-13.
16. Kleessen, B., et al., Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol, 2002. 37: p. 1034-41.
17. Deitch, E.A., et al., Obstructed intestine as a reservoir for systemic infection. Am J Surg, 1990. 159: p. 394-401.
18. Madara, J.L. and J.S. Trier, Structural abnormalities of jejunal epithelial cell membranes in celiac sprue. Lab Invest, 1980. 43: p. 254-61.
19. Bjarnason, I. and T.J. Peters, In vitro determination of small intestinal permeability. Gut., 1984 25: p. 145-150.
20. Kiliaan, A., et al., Stress stimulates transepithelial macromolecular uptake in rat jejunum. Am J Physiol, 1998. 275: p. 1037-44.
21. Mazzon, E., et al., Effect of stress on the paracellular barrier in the rat ileum. Gut, 2002 51: p. 507-13.
22. Sartor, R.B., Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol, 2006. 3(7): p. 390-407.
23. Kaser, A., S. Zeissig, and R.S. Blumberg, Inflammatory bowel disease. Annu Rev Immunol, 2010. 28: p. 573-621.
24. Monteleone, G., et al., New mediators of immunity and inflammation in inflammatory bowel disease. Curr Opin Gastroenterol, 2006. 22: p. 361-4.
25. Fuss, I.J., et al., Disparate CD4 lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. . J Immunol, 1996. 157: p. 1261.
26. Lupp, C., et al., Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe, 2007. 2(2): p. 119-29.
27. Clayburgh, D.R., et al., Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J Clin Invest, 2005. 115(10): p. 2702-15.
28. Zeissig, S., et al., Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut, 2007. 56(1): p. 61-72.
29. Heller, F., et al., Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology, 2005. 129(2): p. 550-64.
30. Yamamoto, T., et al., The value of plasma cytokine measurement for the detection of strangulation in patients with bowel obstruction: a prospective, pilot study. Dis Colon Rectum, 2005. 48(7): p. 1451-9.
31. Akimoto, T., et al., Molecular analysis for differential diagnosis of small bowel obstruction expression of proinflammatory cytokines and diamine oxidase activity. Int J Biomed Sci, 2006. 2: p. 160-5.
32. Wu, C.C., et al., Role of myosin light chain kinase in intestinal epithelial barrier defects in a rat model of bowel obstruction. BMC Gastroenterol, 2010. 10: p. 39.
33. Wu, L.L., et al., Commensal bacterial endocytosis in epithelial cells is dependent on myosin light chain kinase-activated brush border fanning by interferon-gamma. Am J Pathol, 2014. 184(8): p. 2260-74.
34. Schroder, K., et al., Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol, 2004. 75(2): p. 163-89.
35. Bach, E.A., M. Aguet, and R.D. Schreiber, THE IFNγ RECEPTOR :A Paradigm for Cytokine Receptor Signaling. Annu Rev Immunol, 1997(15): p. 563-91.
36. Carswell, E.A., et al., An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A., 1975 72: p. 3666-70.
37. Kriegler , M., et al., A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell, 1988 (53): p. 45-53.
38. Black, R.A., et al., A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature, 1997(385): p. 729-33.
39. Boehringer, N., et al., Differential regulation of tumor necrosing factor-alpha (TNF-alpha) and interleukin-10 (IL-10) secretion by protein kinase and phosphatase inhibitors in human alveolar macrophages. Eur Cytokine Netw, 1999. 10: p. 211-8.
40. Cavaillon, J.M., Contribution of cytokines to inflammatory mechanisms. Pathol Biol, 1993. 41: p. 799-811.
41. Bradley, J.R., TNF-mediated inflammatory disease. J Pathol, 2008. 214(2): p. 149-60.
42. Kure, I., et al., Lipoxin A(4) reduces lipopolysaccharide-induced inflammation in macrophages and intestinal epithelial cells through inhibition of nuclear factor-kappaB activation. J Pharmacol Exp Ther, 2010. 332(2): p. 541-8.
43. Kim, Y.S., et al., The effects of thalidomide on the stimulation of NF-kappaB activity and TNF-alpha production by lipopolysaccharide in a human colonic epithelial cell line. Mol Cells, 2004. 17: p. 210-6.
44. Wang, F., et al., Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol, 2005. 166: p. 409-19.
45. Wang, F., et al., IFN-gamma-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroenterology, 2006. 131: p. 1153-63.
46. Eder, C., Mechanisms of interleukin-1beta release. Immunobiology, 2009. 214(7): p. 543-53.
47. Siegmund, B., Interleukin-1beta converting enzyme (caspase-1) in intestinal inflammation. Biochem Pharmacol 2002. 64: p. 1-8.
48. Dinarello, C.A., Interleukin-1 and interleukin-1 receptor antagonist production during haemodialysis: which cytokine is a surrogate marker for dialysis-related complications? Nephrol Dial Transplant. 1995;10 Suppl 3:25-8., 1995. 10: p. 25-8.
49. Colotta, F., et al., Interleukin-1 type receptor a decoy target for IL-1 that is regulated by IL-4. Science, 1993. 261: p. 472-5.
50. Li, L., et al., Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice. BMC Immunol, 2008. 9: p. 49.
51. Friedlander, R.M., et al., Functional role of interleukin 1 beta (IL-1 beta) in IL-1 beta-converting enzyme-mediated apoptosis. J Exp Med, 1996. 184: p. 717-24.
52. Stadnyk, A.W., Cytokine production by epithelial cells. FASEB J, 1994. 8: p. 1041-7.
53. Fusunyan, R.D., et al., Butyrate enhances interleukin (IL)-8 secretion by intestinal epithelial cells in response to IL-1beta and lipopolysaccharide. Pediatr Res, 1998. 43: p. 84-90.
54. Migone, T.S., et al., TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity, 2002. 16: p. 479-92.
55. Bamias, G., et al., Expression, Localization, and Functional Activity of TL1A, a Novel Th1-Polarizing Cytokine in Inflammatory Bowel Disease. The Journal of Immunology, 2003. 171(9): p. 4868-4874.
56. Bamias, G., et al., Role of TL1A and its receptor DR3 in two models of chronic murine ileitis. Proc Natl Acad Sci U S A, 2006. 103(22): p. 8441-6.
57. Papadakis, K.A., et al., TL1A Synergizes with IL-12 and IL-18 to Enhance IFN- Production in Human T Cells and NK Cells. The Journal of Immunology, 2004. 172(11): p. 7002-7007.
58. Zhang, J., et al., Role of TL1A in the pathogenesis of rheumatoid arthritis. J Immunol, 2009. 183(8): p. 5350-7.
59. Prehn, J.L., et al., The T Cell Costimulator TL1A Is Induced by Fc R Signaling in Human Monocytes and Dendritic Cells. The Journal of Immunology, 2007. 178(7): p. 4033-4038.
60. Cassatella, M.A., et al., Soluble TNF-like cytokine (TL1A) production by immune complexes stimulated monocytes in rheumatoid arthritis. J Immunol, 2007. 178: p. 7325-33.
61. Shih, D.Q., et al., Microbial induction of inflammatory bowel disease associated gene TL1A (TNFSF15) in antigen presenting cells. Eur J Immunol, 2009. 39(11): p. 3239-50.
62. Screaton, G.R., et al., LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc Natl Acad Sci U S A, 1997. 94: p. 4615-9.
63. Fang, L., et al., Essential role of TNF receptor superfamily 25 (TNFRSF25) in the development of allergic lung inflammation. J Exp Med, 2008. 205(5): p. 1037-48.
64. Yu, K.Y., et al., A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J Biol Chem, 1999. 274: p. 13733-6.
65. Bamias, G., et al., High intestinal and systemic levels of decoy receptor 3 (DcR3) and its ligand TL1A in active ulcerative colitis. Clin Immunol, 2010. 137(2): p. 242-9.
66. Yamazaki, K., et al., Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn's disease. Hum Mol Genet, 2005. 14(22): p. 3499-506.
67. Kakuta, Y., et al., Association study of TNFSF15 polymorphisms in Japanese patients with inflammatory bowel disease. Gut, 2006. 55: p. 1527-8.
68. Picornell, Y., et al., TNFSF15 is an ethnic-specific IBD gene. Inflamm Bowel Dis, 2007. 13(11): p. 1333-8.
69. Michelsen, K.S., et al., IBD-associated TL1A gene (TNFSF15) haplotypes determine increased expression of TL1A protein. PLoS One, 2009. 4(3): p. e4719.
70. Kakuta, Y., et al., TNFSF15 transcripts from risk haplotype for Crohn's disease are overexpressed in stimulated T cells. Hum Mol Genet, 2009. 18(6): p. 1089-98.
71. Saruta, M., et al., Phenotype and Effector Function of CC Chemokine Receptor 9-Expressing Lymphocytes in Small Intestinal Crohn's Disease. The Journal of Immunology, 2007. 178(5): p. 3293-3300.
72. Kamada, N., et al., TL1A produced by lamina propria macrophages induces Th1 and Th17 immune responses in cooperation with IL-23 in patients with Crohn's disease. Inflamm Bowel Dis, 2010. 16(4): p. 568-75.
73. Takedatsu, H., et al., TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology, 2008. 135(2): p. 552-67.
74. Meylan, F., et al., The TNF-family cytokine TL1A drives IL-13-dependent small intestinal inflammation. Mucosal Immunol, 2011. 4(2): p. 172-85.
75. Kim, S., A. Fotiadu, and V. Kotoula, Increased expression of soluble decoy receptor 3 in acutely inflamed intestinal epithelia. Clin Immunol, 2005. 115(3): p. 286-94.
76. Madara, J.L. and J. Stafford, Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest, 1989. 83: p. 724-7.
77. Utech, M., et al., Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol Biol Cell, 2005. 16(10): p. 5040-52.
78. Boivin, M.A., et al., Mechanism of interferon-gamma-induced increase in T84 intestinal epithelial tight junction. J Interferon Cytokine Res, 2009. 29(1): p. 45-54.
79. McKay, D.M., et al., Phosphatidylinositol 3'-kinase is a critical mediator of interferon-gamma-induced increases in enteric epithelial permeability. J Pharmacol Exp Ther, 2007. 320(3): p. 1013-22.
80. Clark, E., et al., Interferon γ Induces Translocation of Commensal Escherichia coli Across Gut Epithelial Cells via a Lipid Raft--Mediated Process. Gastroenterology, 2005. 128(5): p. 1258-1267.
81. Smyth, D., et al., Interferon-gamma signals via an ERK1/2-ARF6 pathway to promote bacterial internalization by gut epithelia. Cell Microbiol, 2012. 14(8): p. 1257-70.
82. Mullin, J.M., et al., Modulation of tumor necrosis factor-induced increase in renal (LLC-PK1) transepithelial permeability. Am J Physiol, 1992. 263: p. 915-24.
83. Marano, C.W., et al., Tumor necrosis factor-alpha increases sodium and chloride conductance across the tight junction of CACO-2 BBE, a human intestinal epithelial cell line. J Membr Biol, 1998. 161: p. 263-74.
84. Ma, T.Y., et al., TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol, 2004. 286: p. 367-76.
85. Schmitz, H., et al., Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J Cell Sci, 1999. 112: p. 137-46.
86. Ye, D. and T.Y. Ma, Cellular and molecular mechanisms that mediate basal and tumour necrosis factor-alpha-induced regulation of myosin light chain kinase gene activity. J Cell Mol Med, 2008. 12(4): p. 1331-46.
87. Ye, D., I. Ma, and T.Y. Ma, Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol, 2006. 290: p. 496-504.
88. Mankertz, J., et al., TNFalpha up-regulates claudin-2 expression in epithelial HT-29/B6 cells via phosphatidylinositol-3-kinase signaling. Cell Tissue Res, 2009. 336(1): p. 67-77.
89. Gitter, A.H., et al., Leaks in the epithelial barrier caused by spontaneous and TNF-alpha-induced single-cell apoptosis. FASEB J, 2000. 14: p. 1749-53.
90. Clark, E.C., et al., Glutamine deprivation facilitates tumour necrosis factor induced bacterial translocation in Caco-2 cells by depletion of enterocyte fuel substrate. Gut, 2003. 52: p. 224-30.
91. Al-Sadi, R., et al., Mechanism of IL-1beta-induced increase in intestinal epithelial tight junction permeability. J Immunol, 2008. 180: p. 5653-61.
92. Al-Sadi, R., et al., IL-1beta-induced increase in intestinal epithelial tight junction permeability is mediated by MEKK-1 activation of canonical NF-kappaB pathway. Am J Pathol, 2010. 177(5): p. 2310-22.
93. Al-Sadi, R.M. and T.Y. Ma, IL-1 Causes an Increase in Intestinal Epithelial Tight Junction Permeability. The Journal of Immunology, 2007. 178(7): p. 4641-4649.
94. Wadgaonkar, R., et al., Intracellular interaction of myosin light chain kinase with macrophage migration inhibition factor (MIF) in endothelium. J Cell Biochem, 2005. 95: p. 849-58.
95. Lazar, V. and J.G. Garcia, A single human myosin light chain kinase gene (MLCK; MYLK). Genomics, 1999. 57: p. 256-67.
96. Clayburgh, D.R., et al., A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J Biol Chem, 2004. 279: p. 55506-13.
97. Bresnick, A.R., Molecular mechanisms of nonmuscle myosin-II regulation. Curr Opin Cell Biol, 1999. 11: p. 26-33.
98. Gerrits, L., et al., Gene duplication and conversion events shaped three homologous, differentially expressed myosin regulatory light chain (MLC2) genes. Eur J Cell Biol, 2012. 91(8): p. 629-39.
99. Citi, S. and J. Kendrick-Jones, Regulation in vitro of brush border myosin by light chain phosphorylation. J Mol Biol, 1986. 188: p. 369-82.
100. Park, I., et al., Myosin regulatory light chains are required to maintain the stability of myosin II and cellular integrity. Biochem J, 2011. 434(1): p. 171-80.
101. Donghai Yang, et al., Significance of decoy receptor 3 (Dcr3) and external-signal regulated kinase 1/2 (Erk1/2) in gastric cancer. BMC Immunology, 2012. 13.
102. Thi-Sau Migone, et al., TL1A Is a TNF-like Ligand for DR3 and TR6/DcR3 and Functions as a T Cell Costimulator. Immunity, 2002. 16: p. 479-92.
103. J. HEIN, et al., Quantification of Murine IFN-g mRNA and Protein Expression:Impact of Real-Time Kinetic RT±PCR Using SYBR Green I Dye. Scand. J. Immunol, 2001. 54: p. 285-91.
104. Qin, T., Upregulation of DR3 expression in CD4+ T cells promotes secretion of IL-17 in experimental autoimmune uveitis. Molecular Vision 2011. 17: p. 3486-93.
105. McLaren, J.E., et al., The TNF-like protein 1A-death receptor 3 pathway promotes macrophage foam cell formation in vitro. J Immunol, 2010. 184(10): p. 5827-34.
106. Unno, N., R.A. Hodin, and M.P. Fink, Acidic conditions exacerbate interferon-gamma-induced intestinal epithelial hyperpermeability: role of peroxynitrous acid. Crit Care Med, 1999. 27: p. 1429-36.
107. Chavez, A.M., et al., Cytokine-induced intestinal epithelial hyperpermeability: role of nitric oxide. Crit Care Med, 1999. 27: p. 2246-51.
108. Ito, R., et al., Interferon-gamma is causatively involved in experimental inflammatory bowel disease in mice. Clin Exp Immunol, 2006. 146(2): p. 330-8.
109. Lee, S.H., et al., Development and characterization of mouse monoclonal antibodies reactive with chicken TL1A. Vet Immunol Immunopathol, 2014. 159(1-2): p. 103-9.
110. Yang, C.R., et al., Soluble decoy receptor 3 induces angiogenesis by neutralization of TL1A, a cytokine belonging to tumor necrosis factor superfamily and exhibiting angiostatic action. Cancer Res, 2004. 64: p. 1122-9.
111. Wu, L.L., et al., Epithelial inducible nitric oxide synthase causes bacterial translocation by impairment of enterocytic tight junctions via intracellular signals of Rho-associated kinase and protein kinase C zeta. Crit Care Med, 2011. 39: p. 2087-98.
112. Han, X., et al., Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock, 2004. 21(3): p. 261-70.
113. Satake, M., et al., Induction of nitric oxide synthase and subsequent production of nitric oxide not involved in interferon-gamma-induced hyperpermeability of Caco-2 intestinal epithelial monolayers. Biosci Biotechnol Biochem, 2001. 65(2): p. 428-30.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52600-
dc.description.abstract背景﹕促炎性激素如﹕IFNγ、TNFα和IL-1β可造成腸道屏障功能損壞,像是高濃度IFNγ可造成腸道上皮細胞緊密連結破壞,而低濃度IFNγ導致腸道上皮細胞內吞細菌。由先前文獻發現,MLCK活化皆參與間細胞(透過細胞間空隙)或穿細胞(直接穿越細胞)途徑其中,然而MLCK是如何分別調控兩條途徑仍尚未清楚。此外,近期發現TNF superfamily之一TL1A和其受器DR3或DcR3結合後,會影響IFNγ產量,然而TL1A是否有參與腸道屏障功能調控未知。目的﹕探討促炎性激素刺激下,引發腸道上皮細胞內吞細菌之機制。方法材料﹕利用C57BL/6小鼠將其遠端小腸利用機械性打結引發腸阻塞,手術後6小時或24小時收取其腸道上皮細胞,測量細菌內吞之情形。此外,分離上皮細胞或收取黏膜層組織利用西方墨點法和反轉錄酶聚合酶鏈反應觀察TL1A和DR3表現。利用人類大腸癌細胞株Caco-2 cells給予IFNγ (100 IU/ml) 或TL1A (10 ng/ml)刺激,及在其上層加入非致病菌E. coli測量細菌內吞情形及蛋白表現改變,以及測量跨細胞電阻和緊密連結蛋白occludin變化。另外,將細胞轉染siMLCK或siMLCK1之後,或是先加入MLCK抑制劑和ROCK抑制劑,再給予激素之刺激。 結果﹕由動物實驗結果顯示,在腸阻塞動物中,黏膜層TL1A和DR3表現量增加與細菌內吞至腸道上皮細胞內有密切相關,然而MLC異構體無變化。 此外,我們發現在人類大腸癌細胞株Caco-2 和HT-29常態性表現TL1A、DR3和DcR3,並且受到E. coli暴露後,細胞TL1A蛋白表現量上升,由此我們推測腸道上皮細胞是TL1A製造來源。我們證明IFNγ和TL1A增加MLCK蛋白表現促使終末端網絡MLC磷酸化,並且無破壞緊密連結,且利用抑制劑證明TL1A引發細胞內吞細菌過程是藉由MLCK而非ROCK調控。而Caco-2細胞常態性表現MLCK異構體MLCK1和MLCK2及MLC異構體Myl12a、Myl12b,若細胞受到IFNγ或TL1A刺激,會增加MLCK2表現而其餘不改變。此外,我們利用siMLCK看到細菌內吞現象顯著降低,然而siMLCK1則不影響TL1A引發細菌內吞之情形,推測由MLCK2參與細菌內吞之機制。相反地,siMLCK1可抑制高濃度IFNγ而導致Caco-2細胞之跨細胞電阻降低。結論﹕低濃度IFNγ和TL1A引發MLCK活化造成腸道上皮細胞內吞細菌,且其過程中無緊密連結破壞和MLCK1之參與;低濃度IFNγ和TL1A增加long MLCK2表現量,但不影響MLCK1和Myl異構體的表現。高濃度IFNγ導致緊密連結破壞且其現象和MLCK1相關。zh_TW
dc.description.abstractBackground: Pro-inflammatory cytokines, such as IFNγ, TNFα, and IL-1β, causes intestinal barrier defects. High dose IFNγ induced tight junctional disruption, whereas low dose IFNγ triggered bacterial endocytosis. Both paracellular and transcellular permeability are dependent on activation of myosin light chain kinase (MLCK), through which the differential regulatory mechanisms remain elusive. A novel member of TNF superfamily TNF-like 1A (TL1A) is recently identified from monocytic cell lineages, and binds to death receptor 3 (DR3) and death decoy receptor (DcR3) for modulation of IFNγ production. It remains unclear whether TL1A also causes epithelial barrier damage. Aim: To investigate the regulatory mechanisms of bacterial endocytosis by epithelial cells under proinflammatory stress. Methods: Distal small intestines of C57BL/6 mice were obstructed by loop ligation to induce barrier damage. After obstruction for 6 or 24 hours, intestinal epithelial cells were isolated for measuring bacterial endocytosis. Isolated epithelial cells and mucosal samples were examined for TL1A and DR3 expression by Western blotting and RT-PCR. Human Caco-2 cells (clone C2BBe) were treated with TL1A (10 ng/ml) or IFNγ (100 IU/ml) for assessment of transepithelial electrical resistance (TER) and dextran flux as tight junctional changes, and apically exposed to nonpathogenic and noninvasive E.coli for measuring bacterial endocytosis. In separate experiments, cells were transfected with siMLCK or siMLCK1, or pretreated with pharmacological inhibitors to MLCK or Rho-associated kinase (ROCK), prior to the cytokine treatment. Results: Our murine study showed that following IO, increased mucosal expression of TL1A and DR3 correlated with augmented bacteria endocytosis by epithelial cells. No change in epithelial Myl isoforms was seen. Constitutive expressions of TL1A, DcR3 and DR3 mRNA were found in Caco-2 and HT-29 cells, and bacterial exposure increased TL1A protein expression, suggesting epithelial sources and autocrine actions of TL1A. We demonstrated that IFNγ and TL1A increased MLCK expression and induced MLC phosphorylation in terminal web regions without tight junctional damage in Caco-2 cells. TL1A-induced bacterial endocytosis was inhibited by pretreatment with ML-7 (a specific inhibitor to MLCK) but not Y27632 (a specific inhibitor to ROCK). Splicing variants of long MLCK-1 and -2, as well as MLC isoforms encoded by Myl12a and Myl12b, but not Myl9, were constitutively expressed in Caco-2 cells. Stimulation with IFNγ or TL1A induced an increase in the transcript levels of MLCK-2, and no change in MLCK-1, Myl12a, or Myl12b. Moreover, TL1A-induced bacterial endocytosis was inhibited by siMLCK but not siMLCK1, suggesting the involvement of MLCK-2 in transcellular pathways. In contrast, siMLCK-1 inhibited TER decrease caused by high dose IFNγ (3000 IU/ml). Conclusion: Low dose IFNγ and TL1A induced MLCK-dependent bacterial endocytosis by intestinal epithelial cells, uncoupled with tight junctional damage or MLCK1 activation. Low dose IFNγ and TL1A upregulated the long MLCK2 transcripts, but had no effect on MLCK1 levels or MLC isoforms. High dose IFNγ caused tight junction disruption in a MLCK1-dependent fashion.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:19:58Z (GMT). No. of bitstreams: 1
ntu-104-R02441008-1.pdf: 3098246 bytes, checksum: 978e7ff0c4df6f1d202cbf22f2af2c6c (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract IV
目錄 VI
圖表目錄 IX
一、導論 1
1. 腸道屏障功能概述 1
1.1腸道物理性屏障 1
1.1.1緊密連結蛋白 1
1.1.2刷狀緣 2
1.2 化學性屏障 2
1.3 免疫性屏障 2
1.4 腸道上皮屏障功能失常之病理現象 3
2.臨床上與腸道屏障功能失常有關之疾病 3
2.1腸道發炎性疾病(Inflammatory bowel disease;IBD) 4
2.2腸阻塞(Intestinal obstruction;IO) 4
3. 腸道疾病中提高的促炎性激素之簡介 5
3.1干擾素γ(IFNγ) 5
3.2腫瘤壞死因子α(TNFα) 6
3.3介白素1β(IL-1β) 6
3.4腫瘤壞死因子激素1A (Tumor necrosis factor -like cytokine 1A,TL1A) 6
4. 促炎性激素對於腸道上皮屏障功能調控 8
4.1 IFNγ對腸道上皮屏障功能的影響 8
4.1.1 間細胞途徑 8
4.1.2 穿細胞途徑 8
4. 2 TNFα對腸道上皮屏障功能的影響 9
4.2.1 間細胞途徑 9
4.2.2 穿細胞途徑 9
4.3 IFNγ和TNFα共同作用對腸道上皮屏障功能的影響 9
4.3.1間細胞途徑 9
4.4 IL-1β對腸道上皮屏障功能的影響 10
4.4.1間細胞途徑 10
5. 肌凝蛋白輕鏈激酶以及肌凝蛋白對間細胞和跨細胞途徑之屏障功能調控機制 10
5.1 肌凝蛋白輕鏈激酶和其異構體(isoform) 10
5.2 肌凝蛋白(Myosin)和其異構體(isoform) 11
6. 研究目的和假設 12
二、材料與方法 13
1. 實驗動物 13
2. 腸阻塞模式(Intestinal obstruction(IO)model) 13
3. 人類腸道上皮細胞株 14
4. 腸道上皮細胞屏障功能分析 15
4.1跨上皮細胞電阻(transepithelial electrical resistance,TER) 15
4.2細胞間通透性測量(Paracellular permeability assay) 15
5. 細胞轉染siRNA基因靜默技術(Cell transfection and siRNA knockdown) 16
6. 細胞蛋白萃取(Protein extraction)暨西方墨點法(Western blotting) 17
6.1細胞質蛋白質之萃取(Extraction of cytoplasmic proteins) 17
6.2西方墨點法(Western blotting) 18
6.2.1膠體製備 18
6.2.2電泳 18
6.2.3轉漬(Transferring) 18
6.2.4封鎖Blocking、一級抗體與二級抗體免疫結合 19
7. 萃取核醣核酸與反轉錄酶聚合酶鏈反應(RNA Extraction Reverse Transcription Polymerase Chain Reaction, RTPCR)及即時聚合酶鏈鎖反應(Real-time polymerase chain reaction, Real-time PCR) 20
7.1萃取核醣核酸 20
7.2反轉錄反應(Reverse Transcription, RT) 21
7.3聚合酶鏈反應(Polymerase Chain Reaction, PCR) 22
7.3.1膠體製備(Gel preparation) 23
7.3.2電泳(Electrophoresis) 24
7.4即時聚合酶鏈鎖反應(Real-time polymerase chain reaction, Real-time PCR) 24
8. 上皮細胞分離技術和內吞細菌計數 (Measurement of endocytosed bacteria by epithelial cells) 24
9. 免疫螢光染色(Immunofluorescent Staining) 25
10.統計分析方法(Statistical analysis) 26
三、結果 27
一. 腸阻塞的病理變化 27
1.腸阻塞對於腸道上皮細胞內吞細菌的影響 27
2.腸阻塞引發上皮屏障功能失調與細胞激素的關係 27
3.腸阻塞導致屏障功能缺失與肌凝蛋白輕鏈 (MLC)異構體之關聯 28
二. TL1A對於腸道上皮細胞屏障功能之影響 28
1.腸道上皮細胞是TL1A分泌來源 28
2.TL1A造成腸道上皮通透性的改變 28
三. TL1A和IFNγ對肌凝蛋白輕鏈激酶 (MLCK) 之影響 30
1.TL1A和IFNγ與肌凝蛋白活化之相關性 30
2. TL1A造成肌凝蛋白磷酸化表現之位置 30
3. TL1A藉由激酶作用而導致細胞內吞細菌之現象 30
4. TL1A和IFNγ對肌凝蛋白輕鏈激酶(MLCK)表現量之影響 31
5. Long MLCK1和Long MLCK2在腸道上皮細胞屏障失常機制中扮演的角色 31
6. TL1A和IFNγ與肌凝蛋白輕鏈(MLC)表現量之關聯 32
四. 高濃度之IFNγ對於上皮通透性之調控 33
1. 高濃度之IFNγ對於腸道屏障功能之影響 33
2. 高濃度之IFNγ與肌凝蛋白輕鏈激酶(MLCK)異構體之關係 33
五. TL1A和 IFNγ對於通透性增加機制之iNOS表現量之調控 34
1. IFNγ刺激會增加iNOS表現量,但TL1A對iNOS總量無影響 34
四、討論 35
五、附圖與附表 40
六、參考文獻 68
dc.language.isozh-TW
dc.title促炎性激素引發腸道上皮細胞內吞細菌之機制zh_TW
dc.titleRegulatory mechanisms of proinflammatory cytokine-induced bacterial endocytosis in intestinal epithelial cellsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王錦堂,林琬琬,蔡丰喬
dc.subject.keyword腸阻塞,屏障功能,zh_TW
dc.subject.keywordIntestinal obstruction,barrier function,TL1A,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
3.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved