請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52595完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 繆希椿(Shi-Chuen Miaw) | |
| dc.contributor.author | Wei-Ting Wang | en |
| dc.contributor.author | 王韋婷 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:19:48Z | - |
| dc.date.available | 2020-09-24 | |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-16 | |
| dc.identifier.citation | Akbari, O., Stock, P., Meyer, E., Kronenberg, M., Sidobre, S., Nakayama, T., Taniguchi, M., Grusby, M.J., DeKruyff, R.H., and Umetsu, D.T. (2003). Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nature medicine 9, 582-588. Bendelac, A. (1995). Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. The Journal of experimental medicine 182, 2091-2096. Bendelac, A., Rivera, M.N., Park, S.H., and Roark, J.H. (1997). Mouse CD1-specific NK1 T cells: development, specificity, and function. Annual review of immunology 15, 535-562. Benlagha, K., Kyin, T., Beavis, A., Teyton, L., and Bendelac, A. (2002). A thymic precursor to the NK T cell lineage. Science 296, 553-555. Bernardes, E.S., Silva, N.M., Ruas, L.P., Mineo, J.R., Loyola, A.M., Hsu, D.K., Liu, F.T., Chammas, R., and Roque-Barreira, M.C. (2006). Toxoplasma gondii infection reveals a novel regulatory role for galectin-3 in the interface of innate and adaptive immunity. The American journal of pathology 168, 1910-1920. Biburger, M., and Tiegs, G. (2005). Alpha-galactosylceramide-induced liver injury in mice is mediated by TNF-alpha but independent of Kupffer cells. Journal of immunology 175, 1540-1550. Brennan, P.J., Brigl, M., and Brenner, M.B. (2013). Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nature reviews. Immunology 13, 101-117. Cerundolo, V., Silk, J.D., Masri, S.H., and Salio, M. (2009). Harnessing invariant NKT cells in vaccination strategies. Nature reviews. Immunology 9, 28-38. Chen, H.Y., Fermin, A., Vardhana, S., Weng, I.C., Lo, K.F., Chang, E.Y., Maverakis, E., Yang, R.Y., Hsu, D.K., Dustin, M.L., and Liu, F.T. (2009). Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proceedings of the National Academy of Sciences of the United States of America 106, 14496-14501. Coquet, J.M., Chakravarti, S., Kyparissoudis, K., McNab, F.W., Pitt, L.A., McKenzie, B.S., Berzins, S.P., Smyth, M.J., and Godfrey, D.I. (2008). Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proceedings of the National Academy of Sciences of the United States of America 105, 11287-11292. Dumic, J., Dabelic, S., and Flogel, M. (2006). Galectin-3: an open-ended story. Biochimica et biophysica acta 1760, 616-635. Ferraz, L.C., Bernardes, E.S., Oliveira, A.F., Ruas, L.P., Fermino, M.L., Soares, S.G., Loyola, A.M., Oliver, C., Jamur, M.C., Hsu, D.K., et al. (2008). Lack of galectin-3 alters the balance of innate immune cytokines and confers resistance to Rhodococcus equi infection. European journal of immunology 38, 2762-2775. Fujii, S., Shimizu, K., Kronenberg, M., and Steinman, R.M. (2002). Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nature immunology 3, 867-874. Gaffen, S.L. (2009). Structure and signalling in the IL-17 receptor family. Nature reviews. Immunology 9, 556-567. Ge, X.N., Bahaie, N.S., Kang, B.N., Hosseinkhani, M.R., Ha, S.G., Frenzel, E.M., Liu, F.T., Rao, S.P., and Sriramarao, P. (2010). Allergen-induced airway remodeling is impaired in galectin-3-deficient mice. Journal of immunology 185, 1205-1214. Glimcher, L.H., Townsend, M.J., Sullivan, B.M., and Lord, G.M. (2004). Recent developments in the transcriptional regulation of cytolytic effector cells. Nature reviews. Immunology 4, 900-911. Gumperz, J.E., Miyake, S., Yamamura, T., and Brenner, M.B. (2002). Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. The Journal of experimental medicine 195, 625-636. Heller, F., Fuss, I.J., Nieuwenhuis, E.E., Blumberg, R.S., and Strober, W. (2002). Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17, 629-638. Hurst, S.D., Muchamuel, T., Gorman, D.M., Gilbert, J.M., Clifford, T., Kwan, S., Menon, S., Seymour, B., Jackson, C., Kung, T.T., et al. (2002). New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. Journal of immunology 169, 443-453. Ito, R., Kita, M., Shin-Ya, M., Kishida, T., Urano, A., Takada, R., Sakagami, J., Imanishi, J., Iwakura, Y., Okanoue, T., et al. (2008). Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice. Biochemical and biophysical research communications 377, 12-16. Jawhara, S., Thuru, X., Standaert-Vitse, A., Jouault, T., Mordon, S., Sendid, B., Desreumaux, P., and Poulain, D. (2008). Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. The Journal of infectious diseases 197, 972-980. Jiang, H.R., Al Rasebi, Z., Mensah-Brown, E., Shahin, A., Xu, D., Goodyear, C.S., Fukada, S.Y., Liu, F.T., Liew, F.Y., and Lukic, M.L. (2009). Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. Journal of immunology 182, 1167-1173. Kakimi, K., Guidotti, L.G., Koezuka, Y., and Chisari, F.V. (2000). Natural killer T cell activation inhibits hepatitis B virus replication in vivo. The Journal of experimental medicine 192, 921-930. Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., Ueno, H., Nakagawa, R., Sato, H., Kondo, E., et al. (1997). CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278, 1626-1629. Kelly, M.N., Kolls, J.K., Happel, K., Schwartzman, J.D., Schwarzenberger, P., Combe, C., Moretto, M., and Khan, I.A. (2005). Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infection and immunity 73, 617-621. Kim, P.J., Pai, S.Y., Brigl, M., Besra, G.S., Gumperz, J., and Ho, I.C. (2006). GATA-3 regulates the development and function of invariant NKT cells. Journal of immunology 177, 6650-6659. Kinjo, Y., and Kronenberg, M. (2005). V alpha14 i NKT cells are innate lymphocytes that participate in the immune response to diverse microbes. Journal of clinical immunology 25, 522-533. Korn, T., Bettelli, E., Oukka, M., and Kuchroo, V.K. (2009). IL-17 and Th17 Cells. Annual review of immunology 27, 485-517. Kronenberg, M., and Gapin, L. (2002). The unconventional lifestyle of NKT cells. Nature reviews. Immunology 2, 557-568. Matsuda, J.L., and Gapin, L. (2005). Developmental program of mouse Valpha14i NKT cells. Current opinion in immunology 17, 122-130. Michel, M.L., Keller, A.C., Paget, C., Fujio, M., Trottein, F., Savage, P.B., Wong, C.H., Schneider, E., Dy, M., and Leite-de-Moraes, M.C. (2007). Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. The Journal of experimental medicine 204, 995-1001. Monteiro, M., Almeida, C.F., Agua-Doce, A., and Graca, L. (2013). Induced IL-17-producing invariant NKT cells require activation in presence of TGF-beta and IL-1beta. Journal of immunology 190, 805-811. Nachtigal, M., Ghaffar, A., and Mayer, E.P. (2008). Galectin-3 gene inactivation reduces atherosclerotic lesions and adventitial inflammation in ApoE-deficient mice. The American journal of pathology 172, 247-255. Ogawa, A., Andoh, A., Araki, Y., Bamba, T., and Fujiyama, Y. (2004). Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clinical immunology 110, 55-62. Osman, Y., Kawamura, T., Naito, T., Takeda, K., Van Kaer, L., Okumura, K., and Abo, T. (2000). Activation of hepatic NKT cells and subsequent liver injury following administration of alpha-galactosylceramide. European journal of immunology 30, 1919-1928. Park, S.H., Benlagha, K., Lee, D., Balish, E., and Bendelac, A. (2000). Unaltered phenotype, tissue distribution and function of Valpha14(+) NKT cells in germ-free mice. European journal of immunology 30, 620-625. Pichavant, M., Goya, S., Meyer, E.H., Johnston, R.A., Kim, H.Y., Matangkasombut, P., Zhu, M., Iwakura, Y., Savage, P.B., DeKruyff, R.H., et al. (2008). Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. The Journal of experimental medicine 205, 385-393. Rabinovich, G.A., and Toscano, M.A. (2009). Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nature reviews. Immunology 9, 338-352. Ruas, L.P., Bernardes, E.S., Fermino, M.L., de Oliveira, L.L., Hsu, D.K., Liu, F.T., Chammas, R., and Roque-Barreira, M.C. (2009). Lack of galectin-3 drives response to Paracoccidioides brasiliensis toward a Th2-biased immunity. PloS one 4, e4519. Saegusa, J., Hsu, D.K., Chen, H.Y., Yu, L., Fermin, A., Fung, M.A., and Liu, F.T. (2009). Galectin-3 is critical for the development of the allergic inflammatory response in a mouse model of atopic dermatitis. The American journal of pathology 174, 922-931. Sato, S., Ouellet, N., Pelletier, I., Simard, M., Rancourt, A., and Bergeron, M.G. (2002). Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. Journal of immunology 168, 1813-1822. Shen, F., and Gaffen, S.L. (2008). Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 41, 92-104. Song, X., and Qian, Y. (2013). IL-17 family cytokines mediated signaling in the pathogenesis of inflammatory diseases. Cellular signalling 25, 2335-2347. Sundblad, V., Croci, D.O., and Rabinovich, G.A. (2011). Regulated expression of galectin-3, a multifunctional glycan-binding protein, in haematopoietic and non-haematopoietic tissues. Histology and histopathology 26, 247-265. Wang, B., Geng, Y.B., and Wang, C.R. (2001). CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. The Journal of experimental medicine 194, 313-320. Wei, D.G., Lee, H., Park, S.H., Beaudoin, L., Teyton, L., Lehuen, A., and Bendelac, A. (2005). Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. The Journal of experimental medicine 202, 239-248. Wirtz, S., Neufert, C., Weigmann, B., and Neurath, M.F. (2007). Chemically induced mouse models of intestinal inflammation. Nature protocols 2, 541-546. Wondimu, Z., Santodomingo-Garzon, T., Le, T., and Swain, M.G. (2010). Protective role of interleukin-17 in murine NKT cell-driven acute experimental hepatitis. The American journal of pathology 177, 2334-2346. Wu, S.Y., Yu, J.S., Liu, F.T., Miaw, S.C., and Wu-Hsieh, B.A. (2013). Galectin-3 negatively regulates dendritic cell production of IL-23/IL-17-axis cytokines in infection by Histoplasma capsulatum. Journal of immunology 190, 3427-3437. Yang, X.O., Chang, S.H., Park, H., Nurieva, R., Shah, B., Acero, L., Wang, Y.H., Schluns, K.S., Broaddus, R.R., Zhu, Z., and Dong, C. (2008). Regulation of inflammatory responses by IL-17F. The Journal of experimental medicine 205, 1063-1075. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52595 | - |
| dc.description.abstract | 半乳糖凝集素-3 (Galectin-3)是半乳糖凝集素家族的一員,含有能特定和半乳糖苷結合的編碼區 (CRD)。Galectin-3的功能十分多樣化,包含活化、黏附、細胞凋亡、細胞遷移和吞噬作用。 不變的自然殺手T細胞 (iNKT cell)的T細胞受體 (TCRs)會專一性地去辨認CD1d-α-GalCer複合體。經由CD1d-α-GalCer的刺激後,iNKT cell 會快速且大量地產生細胞激素 (cytokines)。這些由iNKT cell所產生的cytokines,經報導證實在許多過敏性、自體免疫及感染性疾病的致病過程中扮演重要的角色。雖然目前已知Galectin-3參與在人類疾病和免疫反應,但是Galectin-3在iNKT cell產生cytokines及細胞相關的發炎反應的影響尚未釐清。 在我們的研究中,我們首先檢驗Galectin-3是否有表現在iNKT cell中。我們發現Galectin-3在胰臟、腸繫膜淋巴結及周邊淋巴結的iNKT cell中皆有表現。 接下來我們使用野生型(WT)及半乳糖凝集素-3缺失型(Gal-3 KO)的小鼠,觀察在注射α-GalCer後iNKT cell的族群數量。我們得知Galectin-3的缺失並不會影響iNKT cell在胰臟、腸繫膜淋巴結及周邊淋巴結的族群數目。我們更進一步研究以體內施打α-GalCer以刺激小鼠,觀察其iNKT cell的細胞激素分佈型 (cytokine profile)。我們的結果顯示Galectin-3缺失的周邊淋巴結iNKT cell跟野生型比較顯著地分泌較少的介白素-17 (IL-17)。 研究結果指出Galectin-3在iNKT cell所調節的IL-17分泌中,扮演了正向的特定性角色。 | zh_TW |
| dc.description.abstract | Galectin-3 (gal-3), a member of the galectin family, contains CRD that enable the specific binding of β-galactosides. The functions of galectin-3 are diverse, including activation, adhesion, apoptosis, cell migration and phagocytosis. The T cell receptors (TCRs) of invariant NKT (iNKT) cells specifically recognize CD1d-α-GalCer complex. Upon activation by CD1d-α-GalCer, iNKT cells rapidly produce large amounts of cytokines. These cytokines produced by iNKT cells have been reported to play a crucial role in the pathogenesis of various allergic, autoimmune and infectious diseases. Although galectin-3 is involved in various human diseases and immune responses, its role in cytokine production by iNKT cells and the effect in iNKT cell-mediated inflammation remain unclear. In our study, we first examined whether galectin-3 is expressed by iNKT cells. We found that galectin-3 is expressed in iNKT cells from spleen (SP), mesenteric lymph nodes (mLNs) and peripheral lymph nodes (pLNs). We next used WT and Gal-3 KO mice to examine the population of iNKT cells after injection with α-GalCer. Deficiency of galectin-3 doesn’t affect the iNKT population in SP, mLN and pLN. We further studied the cytokine profile of iNKT cells after stimulation with α-GalCer in vivo. Our data indicated the galectin-3-deficent iNKT cells in pLN secret less IL-17 than WT iNKT cells. Our results suggest that the positive and specific role of galectine-3 in regulating IL-17 production by iNKT cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:19:48Z (GMT). No. of bitstreams: 1 ntu-104-R02449003-1.pdf: 2177994 bytes, checksum: 48b1890dfa73880a70b5b7c1427deef5 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Acknowledgements i 中文摘要 ii Abstract iii Table of contents iv Introduction 1 1. Galectin-3 1 2. iNKT cells and its function in immune system 2 3. Overview of IL-17 4 4. Significance and specific aim 6 Materials and Methods 7 1. Materials 7 1.1 Chemicals and Reagents 7 1.2 Antibodies 8 1.3 Cytokines 9 1.4 Kits 9 1.5 Mice 9 2. Methods 11 2.1. Expansion for iNKT cells 11 2.2. Real-time PCR analysis 11 2.3. Galectin-3 expression analysis 12 2.4. In vivo stimulation and cytokine analysis 12 2.5. Polarization of iNKT 17 cells and ELISA analysis 13 Results 14 1. Galectin-3 is expressed in iNKT cells. 14 2. Population of iNKT cells in the spleen, mesenteric lymph nodes and peripheral lymph nodes from wild type and galectin-3 knockout mice is comparable. 15 3. Upon α-GalCer stimulation, iNKT cells from the peripheral lymph nodes of galectin-3 knockout mice secret less IL-17A than WT iNKT cells. 16 4. Invariant NKT17-skewed cells from spleen of galectin-3 knockout mice secret less IL-17 than iNKT17-skewed cells from spleen of WT mice. 18 5. The neutrophil recruitment in the airway of WT and Gal-3 KO mice is comparable after 48 hours stimulation with α-GalCer intratracheally. 18 Discussion 20 Figures 22 Figure 1. Differential expression of galectin family in iNKT cells. 24 Figure 2. Expression of galectin-3 in iNKT cells. 26 Figure 3. Population of iNKT cells in spleen, mesenteric lymph nodes and peripheral lymph nodes from wild type and galectin-knockout mice is comparable. 28 Figure 4. Cytokines expression of iNKT cells in spleen, mesenteric lymph nodes and peripheral lymph nodes of wild type and galectin-3 knockout mice. 30 Figure 5. The IL-17 production by iNKT17-skewed cells from spleen of wild type and galectin-3 knockout mice was determined by ELISA. 32 Figure 6. Neutrophil recruitment in the airway of wild type and galectin-3 knockout mice is comparable after 48 hours stimulation with α-GalCer intratracheally. 34 References 35 | |
| dc.language.iso | en | |
| dc.subject | 自然殺手T細胞 | zh_TW |
| dc.subject | 介白素-17 | zh_TW |
| dc.subject | 半乳糖凝集素-3 | zh_TW |
| dc.subject | iNKT | en |
| dc.subject | galectin-3 | en |
| dc.subject | IL-17 | en |
| dc.title | 半乳糖凝集素-3在iNKT細胞產生的介白素-17中所扮演的角色 | zh_TW |
| dc.title | The role of galectin-3 in IL-17 production by iNKT cell | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 伍安怡(Betty Wu-Hsieh),劉扶東(Fu-Tong Liu),張雅貞(Ya-Jen Chang) | |
| dc.subject.keyword | 半乳糖凝集素-3,自然殺手T細胞,介白素-17, | zh_TW |
| dc.subject.keyword | galectin-3,IL-17,iNKT, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
