請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52573
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林淑華 | |
dc.contributor.author | Guan-Ying Zheng | en |
dc.contributor.author | 鄭冠瑛 | zh_TW |
dc.date.accessioned | 2021-06-15T16:19:02Z | - |
dc.date.available | 2020-09-25 | |
dc.date.copyright | 2015-09-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-17 | |
dc.identifier.citation | 1.Lee KW, Lip GY. Effects of lifestyle on hemostasis, fibrinolysis, and platelet reactivity: a systematic review. Archives of internal medicine 2003; 163: 2368-2392 2.Mackman N, Tilley RE, Key NS. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arteriosclerosis, thrombosis, and vascular biology 2007; 27: 1687-1693 3.Butenas S, Mann KG. Blood coagulation. Biochemistry-Moscow+ 2002; 67: 3-12 4.Yoshitake S, Schach BG, Foster DC et al. Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry 1985; 24: 3736-3750 5.Autin L, Miteva MA, Lee WH et al. Molecular models of the procoagulant Factor VIIIa-Factor IXa complex. J Thromb Haemost 2005; 3: 2044-2056 6.Mann KG. Biochemistry and physiology of blood coagulation. Thrombosis and haemostasis 1999; 82: 165-174 7.Chang YJ, Wu HL, Hamaguchi N et al. Identification of functionally important residues of the epidermal growth factor-2 domain of factor IX by alanine-scanning mutagenesis. Residues Asn(89)-Gly(93) are critical for binding factor VIIIa. The Journal of biological chemistry 2002; 277: 25393-25399 8.Schmidt AE, Bajaj SP. Structure-function relationships in factor IX and factor IXa. Trends in cardiovascular medicine 2003; 13: 39-45 9.Chuah MK, Evens H, VandenDriessche T. Gene therapy for hemophilia. J Thromb Haemost 2013; 11 Suppl 1: 99-110 10.Sun J, Hakobyan N, Valentino LA et al. Intraarticular factor IX protein or gene replacement protects against development of hemophilic synovitis in the absence of circulating factor IX. Blood 2008; 112: 4532-4541 11.Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instructional course lectures 1998; 47: 477-486 12.Edwards JC, Wilkinson LS, Jones HM et al. The formation of human synovial joint cavities: a possible role for hyaluronan and CD44 in altered interzone cohesion. Journal of anatomy 1994; 185 ( Pt 2): 355-367 13.Iwanaga T, Shikichi M, Kitamura H et al. Morphology and functional roles of synoviocytes in the joint. Archives of histology and cytology 2000; 63: 17-31 14.Brown TJ, Laurent UB, Fraser JR. Turnover of hyaluronan in synovial joints: elimination of labelled hyaluronan from the knee joint of the rabbit. Experimental physiology 1991; 76: 125-134 15.Jansen NW, Roosendaal G, Lafeber FP. Understanding haemophilic arthropathy: an exploration of current open issues. British journal of haematology 2008; 143: 632-640 16.Pergantou H, Matsinos G, Papadopoulos A et al. Comparative study of validity of clinical, X-ray and magnetic resonance imaging scores in evaluation and management of haemophilic arthropathy in children. Haemophilia : the official journal of the World Federation of Hemophilia 2006; 12: 241-247 17.Manco-Johnson M. Hemophilia management: optimizing treatment based on patient needs. Current opinion in pediatrics 2005; 17: 3-6 18.Valentino LA. Blood-induced joint disease: the pathophysiology of hemophilic arthropathy. J Thromb Haemost 2010; 8: 1895-1902 19.Forsyth AL, Zourikian N, Valentino LA et al. The effect of cooling on coagulation and haemostasis: Should 'Ice' be part of treatment of acute haemarthrosis in haemophilia? Haemophilia : the official journal of the World Federation of Hemophilia 2012; 18: 843-850 20.Aledort LM, Haschmeyer RH, Pettersson H. A longitudinal study of orthopaedic outcomes for severe factor-VIII-deficient haemophiliacs. The Orthopaedic Outcome Study Group. Journal of internal medicine 1994; 236: 391-399 21.Dabbagh AJ, Trenam CW, Morris CJ et al. Iron in joint inflammation. Annals of the rheumatic diseases 1993; 52: 67-73 22.Wen FQ, Jabbar AA, Chen YX et al. c-myc proto-oncogene expression in hemophilic synovitis: in vitro studies of the effects of iron and ceramide. Blood 2002; 100: 912-916 23.Hakobyan N, Kazarian T, Jabbar AA et al. Pathobiology of hemophilic synovitis I: overexpression of mdm2 oncogene. Blood 2004; 104: 2060-2064 24.Issuree PD, Maretzky T, McIlwain DR et al. iRHOM2 is a critical pathogenic mediator of inflammatory arthritis. The Journal of clinical investigation 2013; 123: 928-932 25.Le Gall SM, Maretzky T, Issuree PDA et al. ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. J Cell Sci 2010; 123: 3913-3922 26.Maretzky T, Evers A, Zhou W et al. Migration of growth factor-stimulated epithelial and endothelial cells depends on EGFR transactivation by ADAM17. Nature communications 2011; 2: 229 27.Hakobyan N, Enockson C, Cole AA et al. Experimental haemophilic arthropathy in a mouse model of a massive haemarthrosis: gross, radiological and histological changes. Haemophilia : the official journal of the World Federation of Hemophilia 2008; 14: 804-809 28.Fischer K, van Hout BA, van der Bom JG et al. Association between joint bleeds and Pettersson scores in severe haemophilia. Acta Radiol 2002; 43: 528-532 29.Nilsson IM, Berntorp E, Lofqvist T et al. 25 Years Experience of Prophylactic Treatment in Severe Hemophilia-a and Hemophilia-B. Journal of internal medicine 1992; 232: 25-32 30.Berntorp E, Astermark J, Bjorkman S et al. Consensus perspectives on prophylactic therapy for haemophilia: summary statement. Haemophilia : the official journal of the World Federation of Hemophilia 2003; 9 Suppl 1: 1-4 31.Srivastava A, Brewer AK, Mauser-Bunschoten EP et al. Guidelines for the management of hemophilia. Haemophilia : the official journal of the World Federation of Hemophilia 2013; 19: e1-47 32.Hay CR, Brown S, Collins PW et al. The diagnosis and management of factor VIII and IX inhibitors: a guideline from the United Kingdom Haemophilia Centre Doctors Organisation. British journal of haematology 2006; 133: 591-605 33.Johnson KA, Zhou ZY. Costs of care in hemophilia and possible implications of health care reform. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program 2011; 2011: 413-418 34.Nathwani AC, Tuddenham EGD, Rangarajan S et al. Adenovirus-Associated Virus Vector-Mediated Gene Transfer in Hemophilia B. New Engl J Med 2011; 365: 2357-2365 35.Manno CS, Pierce GF, Arruda VR et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nature medicine 2006; 12: 342-347 36.Mingozzi F, Maus MV, Hui DJ et al. CD8+ T-cell responses to adeno-associated virus capsid in humans. Nature medicine 2007; 13: 419-422 37.Powell JS, Apte S, Chambost H et al. Long-acting recombinant factor IX Fc fusion protein (rFIXFc) for perioperative management of subjects with haemophilia B in the phase 3 B-LONG study. British journal of haematology 2015; 168: 124-134 38.Ivens IA, Baumann A, McDonald TA et al. PEGylated therapeutic proteins for haemophilia treatment: a review for haemophilia caregivers. Haemophilia : the official journal of the World Federation of Hemophilia 2013; 19: 11-20 39.Chang JY, Monroe DM, Stafford DW et al. Replacing the first epidermal growth factor-like domain of Factor IX with that of factor VII enhances activity in vitro and in canine hemophilia B. Journal of Clinical Investigation 1997; 100: 886-892 40.Lin CN, Kao CY, Miao CH et al. Generation of a novel factor IX with augmented clotting activities in vitro and in vivo. J Thromb Haemost 2010; 8: 1773-1783 41.Chang J, Jin J, Lollar P et al. Changing residue 338 in human factor IX from arginine to alanine causes an increase in catalytic activity. The Journal of biological chemistry 1998; 273: 12089-12094 42.Bajaj SP. Region of factor IXa protease domain that interacts with factor VIIIa: Analysis of select hemophilia B mutants. Thrombosis and haemostasis 1999; 82: 218-225 43.Schmidt AE, Stewart JE, Mathur A et al. Na+ site in blood coagulation factor IXa: Effect on catalysis and factor VIIIa binding. J Mol Biol 2005; 350: 78-91 44.Hamaguchi N, Roberts H, Stafford DW. Mutations in the Catalytic Domain of Factor-Ix That Are Related to the Subclass Hemophilia Bm. Biochemistry 1993; 32: 6324-6329 45.Valentino LA, Hakobyan N, Kazarian T et al. Experimental haemophilic synovitis: rationale and development of a murine model of human factor VIII deficiency. Haemophilia : the official journal of the World Federation of Hemophilia 2004; 10: 280-287 46.Yan SC, Razzano P, Chao YB et al. Characterization and novel purification of recombinant human protein C from three mammalian cell lines. Bio/technology 1990; 8: 655-661 47.Mannucci PM, Mendolicchio L, Gringeri A. Use of prophylaxis to prevent complications of hemophilia. Adv Exp Med Biol 2001; 489: 59-64 48.R. H. Hematology : basic principles and practice. 4th ed. . Elsevier Churchill Livingstone 2005, DOI: 49.Brantly ML, Chulay JD, Wang LL et al. Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. P Natl Acad Sci USA 2009; 106: 16363-16368 50.Kao CY, Yang SJ, Tao MH et al. Incorporation of the factor IX Padua mutation into FIX-Triple improves clotting activity in vitro and in vivo. Thrombosis and haemostasis 2013; 110: 244-256 51.Nieuwenhuizen L, Roosendaal G, Coeleveld K et al. Haemarthrosis stimulates the synovial fibrinolytic system in haemophilic mice. Thrombosis and haemostasis 2013; 110: 173-183 52.Mejia-Carvajal C, Hakobyan N, Enockson C et al. The impact of joint bleeding and synovitis on physical ability and joint function in a murine model of haemophilic synovitis. Haemophilia : the official journal of the World Federation of Hemophilia 2008; 14: 119-126 53.Valentino LA, Hakobyan N, Kazarian T et al. Prevention of haemarthrosis in a murine model of acute joint bleeding. Haemophilia : the official journal of the World Federation of Hemophilia 2009; 15: 314-319 54.Monahan PE, Sun JJ, Gui T et al. Employing a Gain-of-Function Factor IX Variant R338L to Advance the Efficacy and Safety of Hemophilia B Human Gene Therapy: Preclinical Evaluation Supporting an Ongoing Adeno-Associated Virus Clinical Trial. Hum Gene Ther 2015; 26: 69-81 55.Nieuwenhuizen L, Roosendaal G, Mastbergen SC et al. Deferasirox limits cartilage damage following haemarthrosis in haemophilic mice. Thrombosis and haemostasis 2014; 112: 1044-1050 56.Doria AS, Zhang NN, Lundin B et al. Quantitative versus semiquantitative MR imaging of cartilage in blood-induced arthritic ankles: preliminary findings. Pediatr Radiol 2014; 44: 576-586 57.Lundin B, Manco-Johnson ML, Ignas DM et al. An MRI scale for assessment of haemophilic arthropathy from the International Prophylaxis Study Group. Haemophilia : the official journal of the World Federation of Hemophilia 2012; 18: 962-970 58.Roosendaal G, Lafeber FP. Pathogenesis of haemophilic arthropathy. Haemophilia : the official journal of the World Federation of Hemophilia 2006; 12: 117-121 59.Cayir A, Yavuzer G, Sayli RT et al. Evaluation of joint findings with gait analysis in children with hemophilia. J Back Musculoskelet 2014; 27: 307-313 60.Katsarou O, Terpos E, Chatzismalis P et al. Increased bone resorption is implicated in the pathogenesis of bone loss in hemophiliacs: correlations with hemophilic arthropathy and HIV infection. Ann Hematol 2010; 89: 67-74 61.Kempton CL, Antoniucci DM, Rodriguez-Merchan EC. Bone health in persons with haemophilia. Haemophilia : the official journal of the World Federation of Hemophilia 2015, DOI: 10.1111/hae.12736 62.Kempton CL, Antun A, Antoniucci DM et al. Bone density in haemophilia: a single institutional cross-sectional study. Haemophilia : the official journal of the World Federation of Hemophilia 2014; 20: 121-128 63.Gay ND, Lee SC, Liel MS et al. Increased fracture rates in people with haemophilia: a 10-year single institution retrospective analysis. British journal of haematology 2015; 170: 584-586 64.Hardy R, Cooper MS. Bone loss in inflammatory disorders. J Endocrinol 2009; 201: 309-320 65.Tan AH, Mitra AK, Chang PC et al. Assessment of blood-induced cartilage damage in rabbit knees using scanning electron microscopy. Journal of orthopaedic surgery 2004; 12: 199-204 66.Hooiveld M, Roosendaal G, Wenting M et al. Short-term exposure of cartilage to blood results in chondrocyte apoptosis. Am J Pathol 2003; 162: 943-951 67.Lau AG, Sun J, Hannah WB et al. Joint bleeding in factor VIII deficient mice causes an acute loss of trabecular bone and calcification of joint soft tissues which is prevented with aggressive factor replacement. Haemophilia : the official journal of the World Federation of Hemophilia 2014; 20: 716-722 68.Nagel K, Walker I, Decker K et al. Comparing bleed frequency and factor concentrate use between haemophilia A and B patients. Haemophilia : the official journal of the World Federation of Hemophilia 2011; 17: 872-874 69.Escobar M, Sallah S. Hemophilia A and hemophilia B: focus on arthropathy and variables affecting bleeding severity and prophylaxis. J Thromb Haemost 2013; 11: 1449-1453 70.Liel MS, Greenberg DL, Recht M et al. Decreased bone density and bone strength in a mouse model of severe factor VIII deficiency. British journal of haematology 2012; 158: 140-143 71.Lafeber FP, Miossec P, Valentino LA. Physiopathology of haemophilic arthropathy. Haemophilia : the official journal of the World Federation of Hemophilia 2008; 14 Suppl 4: 3-9 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52573 | - |
dc.description.abstract | B型血友病是一種性聯遺傳疾病,病人主要由於缺乏凝血第九因子而出現關節反覆性出血,進而造成關節炎、軟硬骨破壞和關節腫脹變形,導致關節功能喪失,稱之為血友病性關節病,在病人中為最常見的併發症,嚴重影響病人的生活品質。針對B型血友病患者的治療,一直以來最常被使用的方式為注射第九因子蛋白濃縮液 (Factor IX concentration)。然而,儘管血漿濃縮與合成的第九因子凝血蛋白注射治療已實施多年,但關節部位出血產生的關節病變仍然嚴重影響病人的日常生活。這顯示目前的第九因子蛋白濃縮液 Factor IX (FIX)-WT 無法完全有效地避免血友病性關節病的發生,原因可能是FIX-WT在病人體內於最低濃度劑量時的凝血活性太低而缺乏保護療效所導致。本實驗室先前已研發出具有三個單點突變 (FIX-V86A/E277A/R338A) 的高專一活性第九因子 (FIX–Triple),具有比 FIX-WT高13倍的專一活性,因此我想探討高專一活性的 FIX-Triple 是否能比 FIX-WT 更為有效的減低血友病性關節病發生的機會。本論文利用膝損傷血友病小鼠模型,將高劑量 (2×1010 vg/mouse)AAV載體注入至血友病小鼠體內以表達不同變異型第九因子,發現各組小鼠中均未發生膝關節病變,且AAV-Triple 治療之小鼠具有比 AAV-WT 高 7.2 倍的專一活性。確認此法在基因治療的可行性後,接著以中劑量病毒載體 (8×108 vg/mouse)進行治療。我發現小鼠血中蛋白凝血活性可達正常人5~10 % ,且以 AAV-Triple 治療的小鼠能以較少的蛋白量表現就達到和 AAV-WT具有相同的療效。為了模擬病人出血後的需求性治療,我先誘導血友病小鼠在關節產生出血性損傷,接著進行第九因子蛋白輸注治療 (5 micro;g/mouse)。結果顯示,分析以 FIX-Triple 治療之膝損傷血友病小鼠的關節病變程度,發現在膝關節外觀表現、膝關節出血評分和關節直徑長度變化皆比 FIX-WT及已在臨床試驗二期的 FIX-338L 具有更好的保護療效,綜合上述結果得知, FIX-Triple 是一個具有治療潛力的第九因子,可以取代現今所採用的 FIX-WT,若未來成功應用於臨床上,將更能幫助病友們避免關節出血產生之病變情況。 | zh_TW |
dc.description.abstract | Hemophilia B is an X-linked bleeding disorder that results from a deficiency or dysfunction of plasma coagulation factor IX (FIX). Bleeding into joints that consequently develops into haemophilic arthropathy (HA) is the most common morbidity of haemophilia, and impacts negatively on quality of life. Patients are treated with administration of FIX protein concentration. Despite administration of high quality plasma-derived and recombinant FIX protein products readily available for several decades, many patients still suffer from HA. This suggests that the current FIX (FIX-WT) protein concentration products are not protective against HA. We suspect that this may be due to the low coagulation activity of the currently used FIX products on trough level in patients. Our laboratory previously demonstrated that the high specific activity of FIX-Triple (FIX-V86A/E277A/R338A) is superior to FIX-WT for 13 folds specific activity. Therefore, we aim to test whether FIX-Triple will be more effective than FIX-WT in the reduction of the occurrence of HA. To this purpose, I established a hemophilia B mouse model of synovitis which is raised from haemorrhage-induced joint injury. Gene therapy of hemophilia B mice was performed on adeno-associated virus (AAV) expressing human FIX (hFIX) at a dose of 2×1010 vector genome (vg)/mouse. All the Mice treated with AAV-hFIX were no longer observed development of HA and the mice treated with AAV showed 7.2-fold higher specific clotting activity than those treated with AAV-WT. Under the therapy at a medium dose of 8×108 vector genome (vg)/mouse, the coagulation activity of the mice showed 5~10 % level to normal people. It also indicated that the mice treated with AAV-Triple could exhibit the same protective effect as AAV-WT in the less circulating level of FIX Triple. To mimic the on-demand treatment of patients suffering from bleeding, the hemophilia B mice were treated with intravenous administration of FIX following induction of joint hemorrhage. The result suggested that the mice received intravenous FIX-Triple developed minimal histopathological findings of synovitis after blood-induced joint injury, when compared with the mice that received FIX-WT and FIX-338L, a gain-of-function FIX variant which is undergoing evaluation in phase 2 clinical trial for gene therapy of hemophilia B. These studies demonstrate that FIX-Triple is a potential therapeutic substitute for FIX-WT to improve the bleeding phenotype to prevent the development of HA. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:19:02Z (GMT). No. of bitstreams: 1 ntu-104-R02424015-1.pdf: 3763952 bytes, checksum: 7bfcd9fabaada20cb79784bb8ebaf731 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 論文口試委員會審定書..............................I 致謝...........................................II 中文摘要.......................................III Abstract.......................................IV 總目錄..........................................VI 圖目錄........................................VIII 附表............................................IX 附錄............................................IX 第一章 緒論......................................1 第一節 止血作用................................1 第二節 凝血第九因子............................2 第三節 B型血友病...............................3 第四節 滑膜關節................................4 第五節 血友病關節病變...........................4 第六節 血友病膝部關節病變之預防及治療.............6 第七節 改良重組第九因子.........................8 第八節 研究動機與策略...........................8 第二章 實驗材料及方法.............................10 第一節 實驗動物................................10 第二節 血友病小鼠之基因型鑑定...................10 第三節 膝損傷小鼠模型誘導.......................10 第四節 純化重組第九因子蛋白質....................11 第五節 酵素連結免疫吸附法定量第九因子.............12 第六節 第九因子電泳分析...……………………………………………………..12 第七節 第九因子凝血活性測定...………………………………………………..13 第八節 血友病小鼠以基因治療方式表現第九因子凝血蛋白….14 第九節 膝損傷血友病小鼠進行第九因子凝血蛋白補充療法..14 第十節 數據分析與統計.............................15 第三章 實驗結果.....................................16 第一節 膝損傷小鼠模型之建立........................16 第二節 評估第九凝血因子之療效......................17 第四章 實驗討論......................................21 參考文獻............................................26 圖.................................................31 附表...............................................52 附錄...............................................60 | |
dc.language.iso | zh-TW | |
dc.title | 以B型血友病膝損傷小鼠模型探討人類凝血第九因子FIX-Triple的療效 | zh_TW |
dc.title | Dissection of the therapeutic efficacy of FIX-Triple for reducing haemophilic arthropathy in hemophilia B mice using a blood-induced joint injury model | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江鴻生,楊永立,林淑容,胡忠怡 | |
dc.subject.keyword | B型血友病,關節病,凝血第九因子,基因治療,蛋白補充治療, | zh_TW |
dc.subject.keyword | Hemophilia B,Arthropathy,Coagulation Factor IX,Gene therapy,Protein infusion therapy, | en |
dc.relation.page | 65 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-17 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。