Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52541
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞
dc.contributor.authorYu-Tsung Chenen
dc.contributor.author陳育琮zh_TW
dc.date.accessioned2021-06-15T16:17:59Z-
dc.date.available2015-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citationAlbani, M., and P. Bernardi, “A numerical method based on the discretization of
Maxwell equations in integral form,' IEEE Trans. Microwave Theory Tech., vol.
22, pp. 446 -- 450, 1974.
Bakker, R. M., A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev,
V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna
resonance,' Opt. Express, vol. 15, pp. 13682 -- 13688, 2007.
Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic
waves,' J. Comput. Phys., vol. 114, pp. 185 -- 200, 1994.
Byun, K. M., S. J. Kim, and D. Kim, “Design study of highly sensitive nanowireenhanced
surface plasmon resonance biosensors using rigorous coupled wave analysis,'
Opt. Express, vol. 13, pp. 3737 -- 3742, 2005.
Chang, Y. P., Analysis of Three-Dimensional Nanoantenna Arrays Using the Paral-
lelized Finite-Difference Time-Domain Method M. S. Thesis, Graduate Institute
of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, July
2014.
Chiou, S. M., Analysis of Three-Dimensional Nano-Antennas and Nano-Elements
Using the parallelized Finite-Difference Time-Domain Method M. S. Thesis, Grad-
113
uate Institute of Communication Engineering, National Taiwan University, Taipei,
Taiwan, July 2013.
Courant, R., K. Friedrichs, and H. Lewy, “Uber die partiellen di_erenzengleichungen
der mathematischen physik,' Math. Ann., vol. 100, pp. 32 -- 74, 1928.
Drude, P., “Zur Elektronentheorie der Metalle,' Ann. Phys., vol. 1, pp. 566 -- 613,
1900.
Fischer, H., and O. J. F. Martin, “Engineering the optical response of plasmonic
nanoantennas,' Opt. Express, vol. 16, pp. 9144 -- 9154, 2008.
Harrington, R. F., “The method of moments in electromagnetics,' J. Electromagn.
Waves Appl., vol. 1, pp. 181 -- 200, 1987.
Karumuri, S., and A. K. Kalkan, “Hybrid plasmon damping chemical sensor,' IEEE
Trans. Nanotechnology, pp. 790{795, 2011.
Kelley, D. F., and R. J. Luebbes, “Piecewise linear recursive convolution for dispersive
media using FDTD,' IEEE Trans. Antennas Propagat., vol. 44, pp. 792 -- 797,
1996.
Kernighan, B. W., and D. M. Ritchie, The C programming Language, 2nd Ed.
Prentice-Hall, 1988.
Ko, K. D., A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C.
Toussaint , Jr., “Nonlinear optical response from arrays of au bowtie nanoantennas,'
Nano Lett., vol. 11, pp. 61 -- 65, 2010.
114
Li, J., A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer
scale: A Yagi-Uda nanoantenna in the optical domain,' Phys. Rev. B, vol. 76, pp.
245403 -- 245407, 2007.
Li, S., S. Yin, Y. Jiang, C. Yin, Q. Deng, and C. Du, “Specific protein detection
in multiprotein coexisting environment by using LSPR biosensor,' IEEE Trans.
Nanotechnology, vol. 9, pp. 554 -- 557, 2010.
Lynch, D. W., and W. R. Hunter, Handbook of Optical Constants of Solids. Orlando,
FL: Academic Press, 1985.
Maier, S. A., Plasmonics: Fundamentals and Applications. New York, NY: Springer,
2007.
Mie, G., “Beitrage zur optik trber medien, speziell kolloidaler metallosungen,' An-
nalen der Physik, vol. 330, pp. 377 -- 445, 1908.
Muskens, O. L., V. Giannini, J. A. Sanchez-Gil, and J. Gomez Rivas, “Optical
scattering resonances of single and coupled dimer plasmonic nanoantennas,' Opt.
Express, vol. 15, pp. 17736{17746, 2007.
Okoniewski, M., M. Mrozowski, and M. A. Stuchly, “Simple treatment of multiterm
dispersion in FDTD,' IEEE Microwave Guided Wave Lett., vol. 7, no 5, pp.
121 -- 123, 1997.
Roden, J. A., and S. D. Gedney, “Convolutional PML (CPML): An efficient FDTD
implementation of the CFS-PML for arbitrary media,' Microwave Opt. Technol.
Lett., vol. 27, pp. 334 -- 339, 2000.
115
Sabaawi, A. M. A., 'Infra-red spiral nano-antennas' Antennas and Propagation
Conference (LAPC), pp. 1 -- 4, 2012.
Seok, T. J., A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S.
Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, 'Radiation
engineering of optical antennas for maximum field enhancement' Nano Lett.,
vol. 11, pp. 2606 -- 2610, 2011.
Sundaramurthy, A., P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and
W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the
near-field of bowtie optical nanoantennas,' Nano Lett., vol. 6, pp. 355 -- 360, 2006.
Taove, A., and S. C. Hagness, Computation Electromagnetics: The Finite-
Difference Time-Domain Method. Norwood, MA: Artech House, 2005.
Teng, C. H., B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, and K. A. Feng,
'A Legendre pseudospectral penalty scheme for solving time-domain Maxwell's
equations.' J. Sci. Comput., vol. 36, pp. 351 -- 390, 2008.
Vial, A., A. Grimault, D. Macias, D. Barchiesi, and M. L. Chapelle, “Improved
analytical fit of gold dispersion: Application to the modeling of extinction spectra
with a finite-difference time-domain method,' Phys. Rev. B, vol. 71, 085416, 2005.
Wang, H. H., C. Y. Liu, S. B. Wu, N. Y. Liu, C. Y. Peng, T. H. Chan, C. F.
Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based
on silver nanoparticle arrays with tunable sub-10 nm gaps,' Adv. Mater., vol.18,
pp. 491 -- 495, 2006.
116
Wang, L., S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high
transmission nanoscale bowtie apertures,' Nano Lett., vol. 6, pp. 361 -- 364, 2006.
Xu, H., E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single
hemoglobin molecules by surface enhanced raman scattering,' Phys. Rev. Lett.,
vol. 83, pp. 4357 -- 4360, 1999.
Yang, J., J. Zhang, X. Wu, and Q. Gong, “Electric field enhancing properties of
the V-shaped optical resonant antennas,' Opt. Express, vol. 15, pp. 16852 -- 16859,
2007.
Yee, K., “Numerical solution of initial boundary value problems involving Maxwell's
equations in isotropic media,' IEEE Trans. Antennas Propaga., vol. 14, pp. 302 --
307, 1966.
Zienkiewicz, O. C., and Y. K. Cheung, “Finite elements in the solution of field
problems,' The Engineer, vol. 220, pp. 507 -- 510, 1965.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52541-
dc.description.abstract時域有限差分法已被廣泛地運用在諸多光電電磁學問題的計算與模擬上。我們利用C語言自行開發三維時域有限差分模擬器,並利用多台電腦透過訊息傳遞介面協定來加速模擬,減少運算時間。本論文中,我們利用平行化時域有限差分模擬器,來分析奈米十字對天線,以及奈米螺旋天線與奈米十字對天線的有限陣列。十字對天線又細分為十字對天線、變化型十字對天線、與三叉戟對型天線。首先我們以一個寬頻的電磁波作為波源,垂直照射在奈米天線,得到天線間隙之局部場增強、頻譜響應及共振波長。接著,我們將天線擺放成陣列來觀察其特性變化。模擬結果顯示,當我們在天線的間隙處,適度的加上平行的金屬尾翼,會使得共振波長紅移,藉由改變金屬尾翼長度,可以使得變化型十字對天線、三叉戟對天線、螺旋天線依序紅移60%、52%、與16%共振波長。此外螺旋天線與十字對天線相比,在相同的天線面積大小內,有更長的共振波長與更強的局部場增加。在相同的天線面積下,有著較強局部場和較長的共振波長的螺旋天線,當天線縮小時,其共振波長的減小和局部場的降低不致於太大,為其優點。zh_TW
dc.description.abstractThe Finite-difference time-domain (FDTD) method has been widely used in computational electromagnetics. In this research, a parallelized three-dimensional (3D) FDTD simulator in C language is constructed and several computers are combined to speed-up the simulations by using the message passing interface (MPI) protocol. Then, the simulator is employed to study nano-antennas including the cross-pair antenna, the modified cross-pair antenna, the trident-pair antenna, and the spiral antenna. The antennas are simulated with a broadband source. The local field enhancement in the antenna gap is calculated, including the broadband responses and the resonant wavelengths. Then, three different arrangements of two- and four- element arrays are simulated. The most important finding is that the wing length at the antenna gap will make the resonant wavelength red-shift. By varying the wing length, the resonant wavelengths of the modified cross-pair, the trident, and the spiral antenna can be increased by 60%, 52%, and 16%, respectively. The spiral antenna seems to possess larger gap enhancement and resonant wavelength than the cross-pair, the trident-pair, and the modified cross-pair with the same antenna size (450 X 450 nm2). Thus, the spiral antenna has the advantages of reducing the antenna
footprint without decreasing too much in the gap enhancement and resonant wavelength.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:17:59Z (GMT). No. of bitstreams: 1
ntu-104-R02942090-1.pdf: 9155380 bytes, checksum: a22c7915f708c8aba59c5d3a2c51ae4a (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction to Computational Electromagnetics . . . . . . . . . . . . 2
1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 The Finite-Difference Time-Domain Method for Electromagnetics 5
2.1 The Yee Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Numerical Stability: The Courant Stability Limit . . . . . . . . . . . 6
2.3 Modeling of Dispersive Materials in the FDTD Method . . . . . . . . 7
2.4 Convolutional Perfectly Matched Layer (CPML) . . . . . . . . . . . . 12
2.5 The Parallel FDTD Method . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Comparisons between Analytical Calculations and FDTD Simulations 16
3 Enhancement in Plasmonic Nano-Antennas 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Cross-Pair Nano-Antennas and Contour Cross-Pair Nano-Antennas . 23
3.3 Simulations of the Cross-Pair Nano-Antennas . . . . . . . . . . . . . 25
3.3.1 Simulations of the Cross-Pair Nano-Antennas Having Different
Side Lengths . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Simulations of the Modified Cross-Pair Nano-Antennas . . . . 27
3.3.3 Simulations of the trident-Pair Nano-Antennas . . . . . . . . . 28
3.4 Simulations of the spiral Nano-Antennas . . . . . . . . . . . . . . . . 29
3.4.1 Simulations of the spiral Nano-Antennas Having Different side
length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Simulations of the spiral Nano-Antennas Having Different order 31
3.4.3 Simulations of the modified spiral Nano-Antennas . . . . . . . 32
3.5 Comparisons Between the Nano-Antennas . . . . . . . . . . . . . . . 33
4 Effects of Obliquely Incident Wave and Array Structures for Cross-
Pair Nano-Antennas 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Simulations of the Cross-Pair Nano-Antennas with an Obliquely Incident
Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Simulations of the Cross-Pair Nano-Antenna 2 X 1 Array . . . . . . . 86
4.4 Simulations of the Cross-Pair Nano-Antenna 1 X 2 Array . . . . . . . 87
4.5 Simulations of the Cross-Pair Nano-Antenna 2 X 2 Array . . . . . . . 88
5 Conclusion 111
dc.language.isoen
dc.subject表面電漿子zh_TW
dc.subject時域有限差分法zh_TW
dc.subject奈米天線zh_TW
dc.subject天線陣列zh_TW
dc.subjectFDTD methoden
dc.subjectsurface plasmonsen
dc.subjectnana-antennasen
dc.subjectnano-antenna arraysen
dc.title以平行化時域有限差分法研究數種奈米天線結構zh_TW
dc.titleStudy of Several Nano-Antenna Structures Using the Parallelized Finite-Difference Time-Domain Methoden
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee魏培坤,楊宗哲,陳瑞琳
dc.subject.keyword時域有限差分法,表面電漿子,奈米天線,天線陣列,zh_TW
dc.subject.keywordFDTD method,surface plasmons,nana-antennas,nano-antenna arrays,en
dc.relation.page117
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
8.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved