請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52511完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 程蘊菁(Yen-Ching Chen) | |
| dc.contributor.author | Shao-Wei Lin | en |
| dc.contributor.author | 林少緯 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:16:59Z | - |
| dc.date.available | 2020-09-14 | |
| dc.date.copyright | 2015-09-14 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | Adami, S. (2009). 'Bone health in diabetes: considerations for clinical management.' Curr Med Res Opin 25(5): 1057-1072. Adami, S., V. Braga, M. Zamboni, D. Gatti, M. Rossini, J. Bakri and E. Battaglia (2004). 'Relationship between lipids and bone mass in 2 cohorts of healthy women and men.' Calcif Tissue Int 74(2): 136-142. Alselami, N. M., A. F. Noureldeen, M. A. Al-Ghamdi, J. A. Khan and S. S. Moselhy (2015). 'Bone turnover biomarkers in obese postmenopausal Saudi women with type-II diabetes mellitus.' Afr Health Sci 15(1): 90-96. Bagozzi, R. P. and Y. Yi (1988). 'On the evaluation of structural equation models.' Journal of the academy of marketing science 16(1): 74-94. Barton, R. H., D. Waterman, F. W. Bonner, E. Holmes, R. Clarke, J. K. Nicholson and J. C. Lindon (2010). 'The influence of EDTA and citrate anticoagulant addition to human plasma on information recovery from NMR-based metabolic profiling studies.' Mol Biosyst 6(1): 215-224. Beckonert, O., H. C. Keun, T. M. Ebbels, J. Bundy, E. Holmes, J. C. Lindon and J. K. Nicholson (2007). 'Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts.' Nat Protoc 2(11): 2692-2703. Brownbill, R. A. and J. Z. Ilich (2006). 'Lipid profile and bone paradox: higher serum lipids are associated with higher bone mineral density in postmenopausal women.' J Womens Health (Larchmt) 15(3): 261-270. Cauley, J. A., D. E. Thompson, K. C. Ensrud, J. C. Scott and D. Black (2000). 'Risk of mortality following clinical fractures.' Osteoporos Int 11(7): 556-561. Center, J. R., T. V. Nguyen, D. Schneider, P. N. Sambrook and J. A. Eisman (1999). 'Mortality after all major types of osteoporotic fracture in men and women: an observational study.' Lancet 353(9156): 878-882. Chenu, C., C. M. Serre, C. Raynal, B. Burt-Pichat and P. D. Delmas (1998). 'Glutamate receptors are expressed by bone cells and are involved in bone resorption.' Bone 22(4): 295-299. Cooper, C., E. J. Atkinson, S. J. Jacobsen, W. M. O'Fallon and L. J. Melton, 3rd (1993). 'Population-based study of survival after osteoporotic fractures.' Am J Epidemiol 137(9): 1001-1005. Devine, A., R. A. Criddle, I. M. Dick, D. A. Kerr and R. L. Prince (1995). 'A longitudinal study of the effect of sodium and calcium intakes on regional bone density in postmenopausal women.' Am J Clin Nutr 62(4): 740-745. Devine, A., I. M. Dick, A. F. Islam, S. S. Dhaliwal and R. L. Prince (2005). 'Protein consumption is an important predictor of lower limb bone mass in elderly women.' Am J Clin Nutr 81(6): 1423-1428. DiStefano, C., M. Zhu and D. Mindrila (2009). 'Understanding and using factor scores: Considerations for the applied researcher.' Practical Assessment, Research Evaluation 14(20): 1-11. Dumas, M. E., E. C. Maibaum, C. Teague, H. Ueshima, B. Zhou, J. C. Lindon, J. K. Nicholson, J. Stamler, P. Elliott, Q. Chan and E. Holmes (2006). 'Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study.' Anal Chem 78(7): 2199-2208. Eghbali-Fatourechi, G., S. Khosla, A. Sanyal, W. J. Boyle, D. L. Lacey and B. L. Riggs (2003). 'Role of RANK ligand in mediating increased bone resorption in early postmenopausal women.' J Clin Invest 111(8): 1221-1230. Fang, Y., C. Hu, X. Tao, Y. Wan and F. Tao (2012). 'Effect of vitamin K on bone mineral density: a meta-analysis of randomized controlled trials.' J Bone Miner Metab 30(1): 60-68. Felson, D. T., Y. Zhang, M. T. Hannan and J. J. Anderson (1993). 'Effects of weight and body mass index on bone mineral density in men and women: the Framingham study.' J Bone Miner Res 8(5): 567-573. Ferron, M., E. Hinoi, G. Karsenty and P. Ducy (2008). 'Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice.' Proc Natl Acad Sci U S A 105(13): 5266-5270. Fornell, C. and D. F. Larcker (1981). 'Evaluating Structural Equation Models with Unobservable Variables and Measurement Error.' Journal of Marketing Research 18(1): 39-50. Frayn, K. N. (1983). 'Calculation of substrate oxidation rates in vivo from gaseous exchange.' J Appl Physiol Respir Environ Exerc Physiol 55(2): 628-634. Frederich, R. C., A. Hamann, S. Anderson, B. Lollmann, B. B. Lowell and J. S. Flier (1995). 'Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action.' Nat Med 1(12): 1311-1314. Ganry, O., C. Baudoin, P. Fardellone, J. Peng and N. Raverdy (2004). 'Bone mass density and risk of breast cancer and survival in older women.' Eur J Epidemiol 19(8): 785-792. Hardcastle, A. C., L. Aucott, W. D. Fraser, D. M. Reid and H. M. Macdonald (2011). 'Dietary patterns, bone resorption and bone mineral density in early post-menopausal Scottish women.' Eur J Clin Nutr 65(3): 378-385. Health Promotion Adiministration, M. (2013). Osteoporosis clinical treatment. Heaney, R. P. (1998). 'Excess dietary protein may not adversely affect bone.' J Nutr 128(6): 1054-1057. Hu, F. B. (2002). 'Dietary pattern analysis: a new direction in nutritional epidemiology.' Curr Opin Lipidol 13(1): 3-9. Ismail, A. A., T. W. O'Neill, C. Cooper, J. D. Finn, A. K. Bhalla, J. B. Cannata, P. Delmas, J. A. Falch, B. Felsch, K. Hoszowski, O. Johnell, J. B. Diaz-Lopez, A. Lopez Vaz, F. Marchand, H. Raspe, D. M. Reid, C. Todd, K. Weber, A. Woolf, J. Reeve and A. J. Silman (1998). 'Mortality associated with vertebral deformity in men and women: results from the European Prospective Osteoporosis Study (EPOS).' Osteoporos Int 8(3): 291-297. Karamati, M., M. Jessri, S. E. Shariati-Bafghi and B. Rashidkhani (2012). 'Dietary patterns in relation to bone mineral density among menopausal Iranian women.' Calcif Tissue Int 91(1): 40-49. Karkkainen, M., M. Tuppurainen, K. Salovaara, L. Sandini, T. Rikkonen, J. Sirola, R. Honkanen, J. Jurvelin, E. Alhava and H. Kroger (2010). 'Effect of calcium and vitamin D supplementation on bone mineral density in women aged 65-71 years: a 3-year randomized population-based trial (OSTPRE-FPS).' Osteoporos Int 21(12): 2047-2055. Keun, H. C., T. M. Ebbels, H. Antti, M. E. Bollard, O. Beckonert, G. Schlotterbeck, H. Senn, U. Niederhauser, E. Holmes, J. C. Lindon and J. K. Nicholson (2002). 'Analytical reproducibility in (1)H NMR-based metabonomic urinalysis.' Chem Res Toxicol 15(11): 1380-1386. Kontogianni, M. D., L. Melistas, M. Yannakoulia, I. Malagaris, D. B. Panagiotakos and N. Yiannakouris (2009). 'Association between dietary patterns and indices of bone mass in a sample of Mediterranean women.' Nutrition 25(2): 165-171. Lee, N. K., H. Sowa, E. Hinoi, M. Ferron, J. D. Ahn, C. Confavreux, R. Dacquin, P. J. Mee, M. D. McKee, D. Y. Jung, Z. Zhang, J. K. Kim, F. Mauvais-Jarvis, P. Ducy and G. Karsenty (2007). 'Endocrine regulation of energy metabolism by the skeleton.' Cell 130(3): 456-469. Lin, Y. C. and W. H. Pan (2011). 'Bone mineral density in adults in Taiwan: results of the Nutrition and Health Survey in Taiwan 2005-2008 (NAHSIT 2005-2008).' Asia Pac J Clin Nutr 20(2): 283-291. Looker, A. C., L. J. Melton, 3rd, L. G. Borrud and J. A. Shepherd (2012). 'Lumbar spine bone mineral density in US adults: demographic patterns and relationship with femur neck skeletal status.' Osteoporos Int 23(4): 1351-1360. Lu, H., G. Yuan, Z. Yin, S. Dai, R. Jia, J. Xu, X. Song, L. Li and C. Lv (2014). 'Effects of subchronic exposure to lead acetate and cadmium chloride on rat's bone: Ca and Pi contents, bone density, and histopathological evaluation.' Int J Clin Exp Pathol 7(2): 640-647. Lucas, F. L., J. A. Cauley, R. A. Stone, S. R. Cummings, M. T. Vogt, J. L. Weissfeld and L. H. Kuller (1998). 'Bone mineral density and risk of breast cancer: differences by family history of breast cancer. Study of Osteoporotic Fractures Research Group.' Am J Epidemiol 148(1): 22-29. Ma, L., L. Oei, L. Jiang, K. Estrada, H. Chen, Z. Wang, Q. Yu, M. C. Zillikens, X. Gao and F. Rivadeneira (2012). 'Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies.' Eur J Epidemiol 27(5): 319-332. Manolagas, S. C. (2010). 'From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis.' Endocr Rev 31(3): 266-300. Masuda, A. and N. Dohmae (2011). 'Amino acid analysis of sub-picomolar amounts of proteins by precolumn fluorescence derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate.' Biosci Trends 5(6): 231-238. McCabe, L. D., B. R. Martin, G. P. McCabe, C. C. Johnston, C. M. Weaver and M. Peacock (2004). 'Dairy intakes affect bone density in the elderly.' Am J Clin Nutr 80(4): 1066-1074. Naharci, I., E. Bozoglu, N. Karadurmus, O. Emer, N. Kocak, S. Kilic, H. Doruk and M. Serdar (2012). 'Vitamin B(12) and folic acid levels as therapeutic target in preserving bone mineral density (BMD) of older men.' Arch Gerontol Geriatr 54(3): 469-472. National Institutes of Health, N. (2001). 'Osteoporosis prevention, diagnosis, and therapy.' JAMA 285(6): 785-795. Nicholson, J. K., P. J. Foxall, M. Spraul, R. D. Farrant and J. C. Lindon (1995). '750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma.' Anal Chem 67(5): 793-811. Nicholson, J. K., E. Holmes, J. C. Lindon, J. T. Brindle and D. J. Grainger (2005). Methods for analysis of spectral data and their applications osteoporosis, US Patent 20,050,037,515. Nicholson, J. K., J. C. Lindon and E. Holmes (1999). ''Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data.' Xenobiotica 29(11): 1181-1189. Okubo, H., S. Sasaki, H. Horiguchi, E. Oguma, K. Miyamoto, Y. Hosoi, M. K. Kim and F. Kayama (2006). 'Dietary patterns associated with bone mineral density in premenopausal Japanese farmwomen.' Am J Clin Nutr 83(5): 1185-1192. Purohit, P. V., D. M. Rocke, M. R. Viant and D. L. Woodruff (2004). 'Discrimination models using variance-stabilizing transformation of metabolomic NMR data.' OMICS 8(2): 118-130. Reichard, G. A., Jr., C. L. Skutches, R. D. Hoeldtke and O. E. Owen (1986). 'Acetone metabolism in humans during diabetic ketoacidosis.' Diabetes 35(6): 668-674. Rivas, A., A. Romero, M. Mariscal-Arcas, C. Monteagudo, B. Feriche, M. L. Lorenzo and F. Olea (2013). 'Mediterranean diet and bone mineral density in two age groups of women.' Int J Food Sci Nutr 64(2): 155-161. Sahni, S., M. T. Hannan, D. Gagnon, J. Blumberg, L. A. Cupples, D. P. Kiel and K. L. Tucker (2008). 'High vitamin C intake is associated with lower 4-year bone loss in elderly men.' J Nutr 138(10): 1931-1938. Sengupta, S., S. H. Park, A. Patel, J. Carn, K. Lee and D. L. Kaplan (2010). 'Hypoxia and amino acid supplementation synergistically promote the osteogenesis of human mesenchymal stem cells on silk protein scaffolds.' Tissue Eng Part A 16(12): 3623-3634. Serre, C. M., D. Farlay, P. D. Delmas and C. Chenu (1999). 'Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers.' Bone 25(6): 623-629. Shan, P. F., X. P. Wu, H. Zhang, X. Z. Cao, W. Gu, X. G. Deng, C. Gu and E. Y. Liao (2009). 'Bone mineral density and its relationship with body mass index in postmenopausal women with type 2 diabetes mellitus in mainland China.' J Bone Miner Metab 27(2): 190-197. Shin, S. and H. Joung (2013). 'A dairy and fruit dietary pattern is associated with a reduced likelihood of osteoporosis in Korean postmenopausal women.' Br J Nutr 110(10): 1926-1933. Skerry, T. M. and P. G. Genever (2001). 'Glutamate signalling in non-neuronal tissues.' Trends Pharmacol Sci 22(4): 174-181. Tucker, K. L., H. Chen, M. T. Hannan, L. A. Cupples, P. W. Wilson, D. Felson and D. P. Kiel (2002). 'Bone mineral density and dietary patterns in older adults: the Framingham Osteoporosis Study.' Am J Clin Nutr 76(1): 245-252. van den Berg, R. A., H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde and M. J. van der Werf (2006). 'Centering, scaling, and transformations: improving the biological information content of metabolomics data.' BMC genomics 7(1): 142. Vestergaard, P. (2007). 'Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis.' Osteoporos Int 18(4): 427-444. Wetzels, M., G. Odekerken-Schröder and C. Van Oppen (2009). 'Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration.' MIS quarterly: 177-195. Xue, L., Y. Wang, L. Liu, L. Zhao, T. Han, Q. Zhang and L. Qin (2011). 'A HNMR-based metabonomics study of postmenopausal osteoporosis and intervention effects of Er-Xian Decoction in ovariectomized rats.' Int J Mol Sci 12(11): 7635-7651. Yang, Y. Y. (2001). '飲食因子與血脂生化值之相關性探討(碩士論文,國防醫學院公共衛生研究所).' 台灣博碩士論文知識加值系統. You, Y. S., C. Y. Lin, H. J. Liang, S. H. Lee, K. S. Tsai, J. M. Chiou, Y. C. Chen, C. K. Tsao and J. H. Chen (2014). 'Association between the metabolome and low bone mineral density in Taiwanese women determined by (1)H NMR spectroscopy.' J Bone Miner Res 29(1): 212-222. Zheng, Y., B. Yu, D. Alexander, L. M. Steffen and E. Boerwinkle (2014). 'Human metabolome associates with dietary intake habits among African Americans in the atherosclerosis risk in communities study.' Am J Epidemiol 179(12): 1424-1433. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52511 | - |
| dc.description.abstract | 背景: 隨著年齡的增長,骨質疏鬆症成為導致不同部位骨折(髖部、脊椎、肩部與其他部位)風險的疾病。不同於少數或單一營養素或食物的探討,飲食型態可全面了解各種營養素或食物對於骨質密度的關係。代謝體可以反映出生物體對於環境刺激(像是飲食、生活型態等)產生之交互作用及最終反應。飲食型態與代謝體對於骨質密度息息相關,但過去少有研究探討它們之間的關係。故本研究旨在探討代謝體、飲食型態與骨質密度之間的關係。由於停經狀態是骨質密度的重要危險因子,因此本研究對於以上的關係依停經狀態進行分層分析。
方法: 本篇研究為一橫斷性研究,於2009到2010年間,招募772位在臺北美兆健康檢查診所參與健康檢查的40至55歲臺灣女性。腰椎骨質密度使用雙能量放射線儀測量。所有的代謝物圖譜分析是利用500兆赫的核磁共振儀進行分析。飲食型態的資料乃以25題自填的半定量飲食問卷進行收集。因素分析用來挑選出飲食型態與代謝體型態,再利用典型相關分析找出飲食與代謝體型態之間的相關性。最後透過多變項邏輯斯迴歸分析模型來探討飲食與代謝體型態與骨質密度的關聯。 結果: 本研究發現停經婦女中,每增加一單位濃度之乳酸(調整後勝算比 = 0.42)、丙酮(調整後勝算比 = 0.41)、極低密度脂蛋白(調整後勝算比 = 0.36)和脂質(調整後勝算比 = 0.02)對於骨質密度也具有保護效果。相反地,每增加一單位濃度之穀氨醯胺(調整後勝算比 = 13.60)、乙酸鹽(調整後勝算比 = 5.48)或葡萄糖(調整後勝算比 = 1.26)則增加低骨質密度之風險。「海鮮以及乳製品」之攝取量達最高三分位數者(T3)比起最低三分位數者(T1) 之低骨質密度風險較低,(T3 vs. T1,調整後勝算比 = 0.12)。此外,停經後婦女代謝體中的乳酸 (調整後勝算比= 0.05)、丙酮 (調整後勝算比= 0.07) 及極低密度脂蛋白 (調整後勝算比= 0.06) 達最高三分位數者(T3)比起最低三分位數者(T1)對於低骨質密度具有保護的效果。然而,中三分位數(T2)以及最高三分位數(T3)的穀氨醯胺(T2,調整後勝算比 = 8.22;T3,調整後勝算比 = 10.04)與葡萄糖(T2,調整後勝算比 = 36.57;T3,調整後勝算比 = 8.99)則會增加低骨質密度的風險。對於低骨質密度的風險,飲食與代謝體型態並無交互作用。然而,分層分析中發現,在低攝取量(低與中三分位數)的「炸物、醃製類與主餐」飲食型態中,每增加一單位濃度的乳酸(調整後勝算比 = 0.35)、丙酮(調整後勝算比 = 0.41)、與極低密度脂蛋白(調整後勝算比 = 0.30)對於骨質密度是具有保護效果的。然而,每增加一單位濃度的穀氨醯胺(調整後勝算比 = 15.81)與葡萄糖(調整後勝算比 = 1.53)則會增加低骨質密度的風險。 結論: 高濃度的「海鮮與乳製品」攝取量與代謝體中之乳酸、丙酮以及極低密度脂蛋白,對於低骨質密度具有保護效果,但穀氨醯胺與葡萄糖濃度高時則會增加低骨質密度風險。「炸物、醃製與主餐類」飲食型態與代謝體之間有顯著相關。上述的飲食型態與代謝體可以用來早期偵測停經後婦女低骨質密度之風險並給予飲食建議。未來需要大型的前瞻性研究來驗證我們的發現。 | zh_TW |
| dc.description.abstract | Background: As population aging, osteoporosis is an important human disease that leads to increase the risk of fractures in hip, spine, shoulder, and other site. Unlike few or individual nutrients or food items, dietary pattern provide the overview of various foods or nutrients in relation to bone mineral density (BMD). The metabolome reflects the interactions and the ultimate responses of organism’s systems to environmental stimuli (e.g., diet, and life style). Both dietary pattern and metabolome are closely related to BMD, but few studies discussed about the association between these factors. Therefore, this study aimed to explore the association between metabolome, dietary pattern and BMD. Because postmenopausal status is an important risk factor for BMD, this study assessed the above association by menopausal status.
Methods: This cross-sectional study recruited 772 Taiwanese women aged 40 to 55 years old from MJ Health Management Institution, Taipei, Taiwan (2009 – 2010). BMD (g/cm2) was measured at the lumbar spine by dual-energy X-ray absorptiometry (DXA, GE Lunar Health Care, DPX-L, USA). All plasma NMR spectra were acquired at 500.13 MHz using an Avance-500 spectrometer (Bruker, Fremont, CA , USA) at the 1H frequency. Dietary intake was collected by a 25-question, self-reported semi-quantitative food frequency questionnaire. Principal component analysis and partial least-squares discriminant analysis was used for identifying metabolome Factor analysis was utilized to identify dietary pattern. Multivariable logistic regression models were used to explore the association of metabolome, dietary pattern and low BMD. Results: Among postmenopausal women, the highest tertile (T3) of “seafood and dairy” pattern protected against low BMD (adjusted odds ratio [AOR] = 0.12). In addition, elevated levels of lactate (AOR = 0.42), acetone (AOR = 0.41), lipid (AOR = 0.02), and very low-density lipoprotein (VLDL, AOR = 0.36) levels protected against low BMD. In contrast, elevated glutamine (AOR = 13.60), acetate (AOR = 5.48), and glucose (AOR = 1.26) levels increased the risk of low BMD. Compared with the lowest tertile (T1), the T3 of lactate (AOR = 0.05), acetone (AOR = 0.07), and VLDL (AOR = 0.06) protected against low BMD. However, the higher tertiles (T2 and T3) of glutamine (T2 vs. T1: AOR = 8.22; T3 vs. T1: AOR = 10.04) and glucose (T2 vs. T1: AOR = 36.57; T3 vs. T1: AOR = 8.99) increased the risk of low BMD. No interaction was observed between dietary pattern groups and metabolome, and the risk of low BMD. After stratification of unhealthy patterns (T1 plus T2), elevated lactate (AOR = 0.35), acetone (AOR = 0.41), and VLDL (AOR = 0.30) levels protected against low BMD. In contrast, elevated glutamine (AOR = 15.81), and glucose (AOR = 1.53) levels increased the risk of low BMD. Conclusions: High intake of “seafood and dairy” dietary pattern, and high level of lactate, acetone, VLDL, and lipid protected against low BMD. In contrast, high glutamine, acetate, and glucose increased the risk of low BMD. “Fried, salted food and staples”dietary pattern was significantly correlated with metabolome. Dietary patterns and metabolome identified in this study may be useful for early detection of low BMD and dietary suggestions among postmenopausal women. Future large prospective studies are needed to confirm our findings. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:16:59Z (GMT). No. of bitstreams: 1 ntu-104-R02849017-1.pdf: 1670904 bytes, checksum: 2ec3fd20f629bad15e3237e259e80458 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Contents 誌謝 I 中文摘要 II English abstract IV Abbreviations VI Contents VIII Table index X Figure index XII Chapter 1. Introduction 1 1.1 The importance of the osteoporosis 1 1.2 Dietary pattern 1 1.3 Epidemiologic studies on dietary pattern and bone mineral density 2 1.4 Metabolome 3 1.5 Epidemiologic studies on metabolome and bone mineral density 3 1.6 Aim and research gap 4 Chapter 2. Material and methods 5 2.1 Study population 5 2.2 Data collection 5 2.3 Metabolome measurement 6 2.4 Dietary assessment 7 2.5 Statistical analyses 8 2.5.1 Descriptive analyses 8 2.5.2 Principal component analysis and partial least-squares discriminant analysis for metabolome 8 2.5.3 Factor analysis for dietary pattern 9 2.5.4 Partial least-squares structure equation modeling 9 2.5.5 Multivariable analysis 10 Chapter 3. Results 11 3.1 Characteristics of the study population 11 3.2 Identification of metabolites 11 3.3 Factor analysis of dietary patterns 12 3.4 Association between dietary patterns, metabolome and BMD 13 3.5 Association between metabolome and BMD by dietary pattern groups in postmenopausal women 13 3.6 Partial least-squares structural equation modeling 14 Chapter 4. Discussion 15 4.1 Summary of research finding and comparisons with previous studies 15 4.2 Postulated mechanism 15 4.2.1 Dietary pattern and BMD 15 4.2.2 Metabolome and BMD 16 4.2.3 Metabolome, dietary pattern and BMD 17 4.3 Strengths and limitations 18 Chapter 5. Conclusion 20 Chapter 6. References 21 Table index Table 1a. Epidemiologic studies on dietary pattern and BMD 28 Table 1b. Epidemiologic studies on metabolome and BMD 31 Table 2. Characteristics of the study population 32 Table 3. PLS-DA parameters and permutation tests for distinguishing high and low BMD 33 Table 4a. Factor loading matrix of the identified dietary patterns in premenopausal women 34 Table 4b. Factor loading matrix of the identified dietary patterns in postmenopausal women 35 Table 5. Association between dietary and metabolome (continuous factor score) and BMD groups (high vs. low) by menopausal status 36 Table 6. Association between dietary patterns groups (tertiles) and BMD groups (high vs. low) by menopausal status 37 Table 7a. Association between metabolites groups (tertiles) and BMD groups (high vs. low) by menopausal status 38 Table 7b. Association between metabolites groups (tertiles) and BMD groups (high vs. low) by menopausal status 39 Table 8a. Association between metabolites and BMD by fried, salted food and staples pattern groups (high and low) in postmenopausal women 40 Table 8b. Association between metabolome groups (high and low) and BMD by fried, salted food and staples pattern groups (high and low) in postmenopausal women 41 Table 9a. Association between metabolites and BMD by sweets pattern groups (high and low) in postmenopausal women 42 Table 9b. Association between metabolome groups (high and low) and BMD by sweets pattern groups (high and low) in postmenopausal women 43 Numbers in bold indicated significant findings. 43 Table 10a. Association between metabolites and BMD by plant-based pattern groups (high and low) in postmenopausal women 44 Table 10b. Association between metabolome groups (high and low) and BMD by plant-based pattern groups (high and low) in postmenopausal women 45 Numbers in bold indicated significant findings. 45 Table 11a. Association between metabolites and BMD by seafood and dairy pattern groups (high and low) in postmenopausal women 46 Table 11b. Association between metabolome groups (high and low) and BMD by seafood and dairy pattern groups (high and low) in postmenopausal women 47 Numbers in bold indicated significant findings. 47 Table 12. Assessment of the measurement model and discriminant validity of variable constructs for PLS-SEM 48 Figure index Figure 1. Flowchart of participant recruitment 49 Figure 2. The distribution of bone mineral density 50 Figure 3. PCA and PLS-DA for metabolome. 51 Figure 4. Scree plot of factor analysis for dietary patterns 52 Figure 5. Partial least squares structure equation modeling in postmenopausal women (pathway coefficient and R square) 53 | |
| dc.language.iso | en | |
| dc.subject | 代謝體 | zh_TW |
| dc.subject | 飲食型態 | zh_TW |
| dc.subject | 骨質疏鬆症 | zh_TW |
| dc.subject | 女性 | zh_TW |
| dc.subject | 停經 | zh_TW |
| dc.subject | dietary pattern | en |
| dc.subject | osteoporosis | en |
| dc.subject | women | en |
| dc.subject | metabolome | en |
| dc.subject | menopause | en |
| dc.title | 台灣中年女性代謝體、飲食型態與骨質密度之關聯研究 | zh_TW |
| dc.title | Association of Metabolome, Dietary Patterns, with Bone Mineral Density in Mid-age Taiwanese Women | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 杜裕康(Yu-Kang Tu) | |
| dc.contributor.oralexamcommittee | 蔡克嵩(Keh-Sung Tsai),李美璇(Meei-Shyuan Lee),林靖愉(Ching-Yu Lin) | |
| dc.subject.keyword | 代謝體,飲食型態,骨質疏鬆症,女性,停經, | zh_TW |
| dc.subject.keyword | metabolome,dietary pattern,osteoporosis,women,menopause, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-17 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
