Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52507
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏炳郎
dc.contributor.authorYu-Yuan Liuen
dc.contributor.author劉育源zh_TW
dc.date.accessioned2021-06-15T16:16:52Z-
dc.date.available2020-08-19
dc.date.copyright2015-08-19
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation王景儀。2010。運用GSM技術之田間斜紋夜蛾監測系統設計與實現。碩士論文。臺北:臺灣大學生物產業機電工程學系暨研究所。
行政院農委會農業試驗所。2014。蔬果重要害蟲防疫旬報。網址:http://www.tari.gov.tw/form/index.asp?Parser=3,9,56。上網日期:2014-10-09。
何雲珍、孫增友。2006。無線自組傳感器網路研究與應用[J]。東北電力大學學報6(5): 2-3。
何坤耀、李後晶、洪淑彬、陳建忠。2003。不同誘引質材對東方果實蠅 (雙翅目:果實蠅科)引誘效果之比較。植物保護學會會刊45(2): 117-126。
邱錫欣與楊麗珠(1998)。台灣省果實蠅防治現況與展望。台灣果實蠅防治研討會,1-8。
林明瑩、陳昇寬。2008。東方果實蠅之生態及防治技術。出自“臺南區農業專訓第65期”,1-6。臺南:行政院農委會臺南區農業改良場。
陳文雄、張煥英。1996。東方果實蠅防治方法。出自”臺南區農業專訓第16期”,14-16。黃慧琳主編。臺南:行政院農委會臺南區農業改良場。
許健平、江振瑞、陳彥文。2010。無線感測網路平台設計與實作。科學發展447。網址:http://ejournal.stpi.narl.org.tw/NSC_INDEX/Journal/EJ0001/9903/9903-03.pdf。上網日期:2014-10-15。
黃毓斌、高靜華。2013。黃毓斌、高靜華、鄭允。1997。台灣地區東方果實蠅之發生及其疫情監測。農業事業所特刊 172(2): 47-48。
黃毓斌、高靜華、鄭允。1997。台灣地區東方果實蠅之發生及其疫情監測。植物保護學會會刊 39(1): 125-136。
廖建興。2006。無線個人區域網路(WPAN)技術發展與應用概論。中華民國電子零件委員會,37-41。
劉俊逸。2012。應用於野生動物之自動化影像追蹤系統設計與實現。碩士論文。臺北:國立臺灣大學生物產業機電工程研究所。
劉明毅。2011。果實蠅對國內使用農藥抗藥性研究。碩士論文。臺南:國立成功大學醫學系工業衛生學科暨環境醫學研究所。
劉玉章。1981。臺灣東方果實蠅之研究。興大昆蟲學會報16: 9-26。
劉玉章、李燕光。1986。土壤物理因子對東方果實蠅蛹族群之影響。中華昆蟲6: 15-30。
劉玉章。2012。東方果實蠅。植物保護圖鑑系列9: 82-88。
鄭明發。1997。東方果實蠅防治策略。出自〝台灣柑橘產業發展研討會專刊〞,197-205。
ADVANTECH。嵌入式無風扇工業電腦。網址:http://buy.advantech.com.tw/%E7%A0%94%E8%8F%AF%E5%B5%8C%E5%85%A5%E5%BC%8F%E9%9B%BB%E8%85%A6+Intel+Corei7+i5+i3+Atom/%E5%B5%8C%E5%85%A5%E5%BC%8F%E7%84%A1%E9%A2%A8%E6%89%87%E5%B7%A5%E6%A5%AD%E9%9B%BB%E8%85%A6/EPPEZEC_EmbeddedPC.cs.htm。上網日期:2014-10-15。
Akcan, H. and H. Bronnimann. 2007. A new deterministic data aggregation method for wireless sensor networks. Signal Processing. 87(12): 2965-2977.
Alyokhin, A. V., R. H. Messing, and J. J. Duan. 2000. Visual and olfactory stimuli and fruit maturity affect trap captures of oriental fruit flies (Diptera: Tephritidae). J. Econ. Entomol . 93: 644–649.
Bishop, A. L., R. J. Worrall, L. J. Spohr, H. J. McKenzie, and I. M. Barchia. 2004. Improving light-trap efficiency for Culicoides spp. with light-emitting diodes. Veterinaria Italiana. 40(3): 266-269.
Briscoe, A. D. and L. Chittka. 2001. The evolution of color vision in insects. Annual Review of Entomology. 46: 471–510.
Chen, C. C., and Y. J. Dong. 2001. Evaluation of trapping effectiveness of the improved McPhail trap for oriental fruit fly (Bactrocera dorsalis) (Diptera: Tephritidae). Formosan Entomologist . 21: 65–75 . Chinese.
Chung J. M., Y. Nam., K. Park, and C. H. Jun, 2012. Exploration Time Reduction and Sustainability Enhancement of Cooperative Clustered Multiple Robot Sensor Networks. IEEE Network. pp. 41-48.
Culler, D., D. Estrin, and M. Srivastava. 2004. Overview of Sensor Networks. IEEE Computer Society. 37(8): 41–49.
Drew, R. A. I. and S. Raghu. 2002. The fruit fly fauna (Diptera: Tephritidae: Dacinae) of the rainforest habitat of the Western Ghats, India. Raffles Bull of Zoology. 50(2): 327-352.
Feeny, P., K. Paauwe, and N. J. Demong. 1970. Flea beetles and mustard oils: host plant specificity of Phyllotreta cruciferae and P. striolata adults (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America. 63: 832–841.
Fletcher, B. S. 1989. Life history strategies of tephritid fruit ßies,. In A. S. Robinson and G. Hooper [eds.], pp. 195-208. Fruit ßies: their biology, natural enemies, and control, vol. 3B. Elsevier, Amsterdam.
Haramoto, F. H. and H. A. Bess. 1970. Recent studies on the abundance of the oriental and Mediterreanean fruit flies and the status of their parasites. Proceeding of the Hawaiian Entomological Society. 20: 551–566
Hoel, D. F., J. F. Butler, E. Y. Fawaz, N. Watany, S. S. El-Hossary, and J. Villinski. 2007. Response of phlebotomine sand flies to light-emitting diode-modified light traps in southern Egypt. Journal of Vector Ecology. 32(2): 302-308.
Hung, Y. T., W. H. Tsai, and K. C. Kuo. 2008. Oriental fruit fly management in Taiwan: current and future. In Proceedings of the International Symposium on the Recent Progress of Tephritid Fruit Flies Management, 6 June. 5–9. Taichung, Taiwan.
Jiang, J. A., C. L. Tseng, F. M. Lu, E. C. Yang, Z. S. Wu, C. P. Chen, S. H. Lin, K. C. Lin, and C. S. Liao. 2008. A GSM-based remote wireless automatic monitoring system for field information: A case study for ecological monitoring of the Oriental fruit fly, Bactrocera dorsalis (Hendel). Comput. Electron. Agric. 62(2): 243-259.
Kahn, J. M., R. H. Katz, and K. S. J. Pister. 1999. Next century challenges: mobile networking for “Smart Dust”. In Proc. of International Conference on Mobile Computing and Networking. pp. 271-278
Kristensen, N. P. 1999. Lepidoptera, moths and butterflies. 2rd ed. Berlin : De Gruyter.
Liu, Y. C. 1981. A review on studies of the oriental fruit fly, Dacus dorsalis Hendel in Taiwan. Bulletin of the Society of Entomology. 16: 9–26.
Lu, B. and V. C. Gungor. 2009. Online and Remote Motor Energy Monitoring and Fault Diagnostics Using Wireless Sensor Networks. IEEE Transactions on Industrial Electronics. 56(11): 4651-4659.
Mollaoori, M. and N. M. Charkari. 2008. LAD: A Routing Algorithm to Prolong the Lifetime of Wireless Sensor Networks. IEEE International Conference on Networking, Sensing and Control. pp. 983-987.
Prokopy, R. J. and E. D. Owens. 1983. Visual detection of plants by herbivorous insects. Annual Review of Entomology. 28: 337-364.
Prokey, R. J., T. A.Green, and R. I. Vargas. 1990. Dacus dorsalis flies can learn to find and accept host fruit. Journal of Insect Behavior. 3: 663-672.
Qian, Y., L. Kejie, and D. Tippe. 2007. A design for secure and survivable wirelss sensor networks. IEEE Wireless Communications. 14(5): 30-37.
Romer, K. and F. Mattern. 2004. The Design Space of Wireless Sensor Networks. IEEE Wireless Communications. 11(6): 54–61.
Romer, K., P. Blum, and L. Meier. time synchronization and calibration in wireless sensor networks. In handbook of sensor network: Algorithms and Architectures. Wiley, 2005, 34-58
Smith, P. H. 1989. Behavioral partitioning of the day and circadian rhythmicity. In: Robinson AS, Hooper G eds. Fruit Flies: Their Biology, Natural Enemies, and Control (World Crop Pests Series, Vol. 3B). Amsterdam: Elsevier. 325-341.
Sridhar, P., A. M. Madno, and M. Jamshidi. 2007. Intelligent Object-Tracking using Sensor Networks. 2007 IEEE Sensors Applications Symposium. pp. 1-5.
Steiner, F., 1952, Methyl eugenol as an attractant for Oriental fruit fly. J. Econ. Entomol. 75: 173-178.
Tsai, W. S., J. A. Jiang, Y. S. Tseng, M. S. Liao, C. P. Chen, J. C. Shieh, and Y. F. Kuo. 2012. An Auto-trapping Device with the Light Luring Mechanism for SPODOPTERA LITURA Using Monitoring. AFITA Paper. Taiwan.
USA: Texas Instruments. 2007. CC2420 Datasheet. Available at: http://focus.ti.com/lit/ds/symlink/cc2420.pdf. Accessed 29 September 2010.
USA: Texas Instruments. 2007. MSP430 Datasheet. Available at: http://focus.ti.com/lit/ds/symlink/msp430f1101a.pdf. Accessed 29 September 2010.
USA: ZigBee Alliance. 2008. ZigBee Logo and Trademark details. Available at: http://www.zigbee.org/About/ZigBeeIntro.aspx. Accessed 30 September 2014.
Vargas, R. I., O. Miyashita, and T. Nishida. 1984. Life history and demographic parameters of three laboratory-reared tephritids (Diptera: Tephritidae). 1984 Ann. Entomol. Soc. Am. 77: 651-656.
Vincent, C. and R. K. Stewart. 1984. Effect of allyl isothiocyanate on field behavior of crucifer-feeding flea beetles (Coleoptera: Chrysomelidae). Journal of Chemical Ecology. 10: 33-39.
Vincent, C. and R. K. Stewart. 1986. Influence of trap color on captures of adult crucifer-feeding flea beetles. Journal of Agricultural Entomology. 3: 120-124.
Werner-Allen, G., K. Lorincz, M. Ruiz, O. Marcillo, J. B. Johnsonm J. Lees, and M. Welsh. 2006. Deploying a Wireless Sensor Network on Active Volcano. IEEE Internet Computing. 10(2): 18-25.
Wu. W. Y., Y. P. Chen, and E. C. Yang. 2007. Chromatic cues to trap the oriental fruit fly, Bactrocera dorsalis. Journal of Insect Physiology. 53: 509-516.
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band, IEEE 802.11a Std., 1999.
Yang, E. C., D. W. Lee, and W. Y. Wu. 2003. Action spectra of phototactic responses of the flea beetle, Phyllotreta striolata. Physiological Entomology. 28: 362-367.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52507-
dc.description.abstract臺灣屬於東方果實蠅的疫區,如果沒有適當防治東方果實蠅每年將會造成10%到30%的果樹產業損失,相當於新台幣40億圓,因此為了減低農業上的損失,本研究致力於發展一種防治東方果實蠅的方法。由於文獻指出以往的防治方法主要為使用嗅覺與視覺之方式防治東方果實蠅,並且嗅覺與視覺除了能單獨發揮功效之外,也具有互補效應,於是本研究利用嗅覺與視覺的特性,設計一套自動化防治兼監測系統去捕捉東方果實蠅。本研究在防治方面結合了LED燈與甲基丁香油去誘引東方果實蠅進入蟲桶,而在監測方面的害蟲資訊(蟲數、溫度、濕度、照度)則由無線感測器網路來蒐集。這項研究的實驗階段分成兩個部分,並皆會全天開起LED燈,以便掌握白天及夜晚東方果實蠅對LED燈的行為。第一個實驗方法為在蟲桶內加入甲基丁香油及六種不同的LED燈去吸引東方果實蠅,此六種LED燈的主要波峰頻譜分別為450、520、600與635 nm以及兩個雙波峰的LED燈分別為450 nm和550 nm與450 nm和650 nm。第一個實驗結果顯示是紅、綠、黃與甲基丁香油的組合是相較於其他LED燈的組合與沒有加入LED燈的蟲桶是有顯著性差異捕捉性效果是較佳的,其紅、綠、黃對應的頻譜為500-570 nm及580-650 nm。另一方面本研究也推論450-490 nm的頻譜是對捕捉東方果實蠅是有負面效果,第二個結果顯示雖然有文獻表示雄性與雌性東方果實蠅對光譜的吸引性沒有顯著性差異,但是在本研究只有捕捉到雄性東方果實蠅,此種現象可能是與有添加甲基丁香油有關。實驗第二階段分成三種實驗組,第一組實驗組的蟲桶內只有加入甲基丁香油,第二組實驗組蟲桶內包含著第一階段測試出有顯著性效果較佳的紅、綠、黃LED與甲基丁香油,最後一組實驗組的蟲桶只有加入紅、綠、黃LED,實驗結果顯示LED可以單獨吸引東方果實蠅,但是與甲基丁香油發揮協同作用會有更好的捕捉效果效果,而有第一組實驗組是為了再次驗證使用LED與甲基丁香油的組合,比傳統只有添加甲基丁香油的捕捉率來的好。zh_TW
dc.description.abstractThe fruit products in Taiwan are greatly attacked by the oriental fruit fly (Bactrocera dorsalis (Hendel), OFF). If no prevention measure is taken, the damage rate of the fruit caused by the OFF will reach 10 to 30%, and the agricultural and economic loss may reach approximately NT$ 4 billion every year in Taiwan. Therefore, the main goal of this study is to develop an appropriate OFF prevention method to reduce the agriculture loss caused by the pest. Traditionally, OFF prevention mainly relies on the senses of smell and sight of OFFs, but some studies indicate that vision and olfactory attraction not only play alone for luring but also have complementary effects. Thus, this study utilizes the characteristics of OFFs to design a trap to measure and capture the pests. For OFF prevention, this paper combines LED lights with methyl eugenol as the lure to attract OFFs. In the monitoring system, the pest information (e.g. the number of pests, air temperature, relative humidity, illumination) is collected by a wireless sensor network. Two experiments are conducted and the LEDs are turned on at day. In the first experiment, the LED is combined with methyl eugenol. Six LEDs (four with single peak wavelengths at 465, 520, 600 and 635 nm, and the white LED with double peak wavelengths at 450 and 550 nm and the purple LED with double peak wavelengths at 450 and 650 nm) are mounted in the trap to provide lighting. Among the six LEDs OFFs are more attracted to the red, yellow and green LEDs compared to the white, purple, blue LEDs and without using an LED, but no difference is found between the attractiveness of the red, yellow and green LEDs. The higher attractiveness of the red, yellow, and green LEDs indicates that the chromatic stimulation of the spectra between 500 and 570nm, and 580 and 650nm contains crucial cues for attracting OFFs. In addition, the white and purple LEDs used in the experiment have the broadest spectrum but no difference in attractiveness is found among the white and purple LEDs, the blue LED, and without an LED. Thus, it is reasonable to assume that there is a negative cue that reduces the attractiveness in the spectrum between 450 and 490 nm. In the second experiment, three luring arrangements are tested. The trap in the first luring arrangement only contains methyl eugenol. Both the LEDs with the best luring results and methyl eugenol are placed in the trap for the second arrangement. In the last arrangement the trap only contains the LEDs with the best luring results. The goal of these luring arrangements is to determine whether the LEDs along can attract OFFs or the LED combining methyl eugenol yields the best result. The experimental results show that temperature and the number of OFFs are closely related. It is also found that it is possible to capture OFFs at night, but the capture rate is higher during the daytime than during the nighttime.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:16:52Z (GMT). No. of bitstreams: 1
ntu-104-R02631048-1.pdf: 3513711 bytes, checksum: a918939b4b55f25943769e0a08aeb88f (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgements ii
Abstract (Chinese) iii
Abstract v
Table of Contents vii
List of Illustrations ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivations 4
1.3 Organization of the Master Thesis 6
Chapter 2 Literature Review 7
2.1 The Life History of the Oriental Fruit Fly 7
2.2 OFF preventive measures 9
2.3 Wireless sensor network structure 14
2.3.1 Communication protocols and technology 15
2.3.2 Wireless sensor nodes and gateways 16
2.3.3 WSN Related Applications 19
2.4 Pest control method: light lure mechanism 20
Chapter 3 Materials & Methods 24
3.1 OFF Monitoring System Design 24
3.2 LED Calibration 29
3.2.1 LED calibration method 29
3.2.2 Distance between the traps 33
3.3 The experimental procedure 39
3.3.1 System deployment 39
Chapter 4 Results and Discussion 42
4.1 The effects of the LEDs and attractant 42
4.1.1 Experiment 1 42
4.1.2 Experiment 2 47
Chapter 5 Conclusion and Future Work 51
5.1 Conclusion 51
5.2 Future Work 52
Reference 53
Appendix 62
dc.language.isoen
dc.subject東方果實蠅zh_TW
dc.subject無線感測器網路zh_TW
dc.subjectLEDzh_TW
dc.subjectoriental fruit flyen
dc.subjectwireless sensor networken
dc.subjectLEDen
dc.title植基於光誘引機制之無線感測器網路技術東方果實蠅生態監測系統zh_TW
dc.titleA WSN-Based Oriental Fruit Fly Monitoring System with a Light Luring Mechanismen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor江昭皚(Joe-Air Jiang)
dc.contributor.oralexamcommittee楊恩誠,莊益源
dc.subject.keyword東方果實蠅,無線感測器網路,LED,zh_TW
dc.subject.keywordoriental fruit fly,wireless sensor network,LED,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved