Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52505
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor常玉強
dc.contributor.authorHsiu-Chun Yangen
dc.contributor.author楊琇淳zh_TW
dc.date.accessioned2021-06-15T16:16:47Z-
dc.date.available2019-09-17
dc.date.copyright2015-09-17
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citationAbe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell 15: 63-78.
Aldemita, R.R., Zapata, F.J. (1991). Anther culture of rice: Effect of radiation and media components on callus induction and plant regeneration. Cereal Research Communication 19: 9–32.
Alleman, M., and Freeling, M. (1986). The Mu transposable elements of maize: evidence for transposition and copy number regulation during development. Genetics 112: 107–119.
Alvarado, V.Y., Tag, A., and Thomas, T.L. (2011). A cis regulatory element in the TAPNAC promoter directs tapetal gene expression. Plant Molecular. Biology 75: 129–139.
Bajaj, Y.P.S. (1990). In Vitro production of haploids and their use in Cell Genetics and Plant Breeding. Haploids in Crop Improvement 3–44.
Bajaj, Y.P.S., Reinert J., Heberle E. (1977). Factors enhancing in vitro production of haploid plants in anther and isolated microspore cultures. La culture des tissue et des cellules des végétaux 47–58
Ball, S.T., Zhou H.P., Konzak C.F. (1993). Influence of 2, 4-D, IAA and duration of callus induction in anther culture of spring wheat. Plant Science 90:195–200
Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C.L., Serova, N., Davis, S., Soboleva, A. (2013). NCBI GEO: archive for functional genomics data sets. Nucleic Acids Research 41:991–995
Bate, N., Twell, D. (1998). Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Molecular Biology 37: 859-869.
Bate, N., and Twell, D. (1998). Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Molecular Biology 37: 859–869.
Batzer, M.A., and Deininger, P.L. (2002). Alu repeats and human genomic diversity. Nature Review Genetics 3:370–379.
Bennetzen J.L. (2000). Transposable element contributions to plant gene andgenome evolution. Plant Molecular Biology 42(1):251–269.
Belzile, F., Lassner, M.W., Tong, Y., Khush, R., and Yoder, J.I. (1989). Sexual transmission of transposed activator elements in transgenic tomatoes. Genetics 123: 181–189.
Binarova, P., Hause, G., Cenklová, V., Cordewener, J.H.G., and Campagne, M.M.L. (1997). A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. .Sexual Plant Reprod 10: 200–208.
Brew-Appiah, R.A., Ankrah, N., Liu, W., Konzak, C.F., von Wettstein, D., Rustgi, S. (2013). Generation of doubled haploid transgenic wheat lines by microspore transformation. PLOS ONE 8(11): e80115
Cao, P., Jung, K.H., Choi, D., Hwang, D., Zhu, J., and Ronald, P.C. (2012). The Rice Oligonucleotide Array Database: an atlas of rice gene expression. Rice. 5: 17.
Carter, J.D., Pereira, A., Dickerman, A.W., and Veilleux, R.E. (2013). An active Ac/Ds transposon system for activation tagging in tomato cultivar M82 using clonal propagation. Plant Physiology 162: 145–156.
Chaboissier, M.C., Busseau, I., Prosser, J., Finnegan, D.J., and Bucheton, A. (1990). Identification of a potential RNA intermediate for transposition of the LINE-like element I factor in Drosophila melanogaster. EMBO Journal 9: 3557–3563.
Charng, Y.C., Pfitzner, A.J.P., Pfitzner, U.M., Charng-Chang, K.F., Chen, C., Tu, J., and Kuo, T.T. (2000). Construction of an inducible transposon, INAc, to develop a gene tagging system in higher plants. Molecular Breeding 6: 353–367.
Chatterjee, S., and Starlinger, P. (1995). The role of subterminal sites of transposable element Ds of Zea mays in excision. Molecular Genetics and Genomics 249: 281–288.
Chomczynski P., Mackey K. (1995). Substitution of chloroform by bromo -chloropropane in the single-step method of RNA isolation. Analytical Biochemistry. 225(1): 163-164.
Chu, C.C. (1978). The N6 medium and its applications to anther culture of cereal crops. Proceedings of Symposium on Plant Tissue Culture . pp. 43-50.
Coupland G, Baker B, Schell J, Starlinger P. (1988). Characterization of the maize transposable element Ac by internal deletions. EMBO Journal. 7: 3653–3659.
Coupland, G., Dash, S., Goodrich, J., Lee, K., Long, D., Martin, M., Puangsomlee P., Puterill J., Robson F., Sundberg E., Wilson, K. (1993). Molecular and genetic analysis of the control of flowering time in response to daylength in Arabidopsis thaliana. Flowering Newsletter, pp. 27-32.
Datta, S.K., Datta, K., and Potrykus, I. (1990). Embryogenesis and plant regeneration from microspores of both “Indica” and “Japonica” rice (Oryza sativa). Plant Science. 67: 83–88.
Dean, C., Sjodin, C., Page, T., Jones, J., and Lister, C. (1992). Behaviour of the maize transposable element Ac in Arabidopsis thaliana. Plant Journal. 2: 69–81.
Dong, H.T., Zhang, L., Zheng, K.L., Yao, H.G., Chen, J., Yu, F.C., Yu, X.X., Mao, B.Z., Zhao, D., Yao, J., et al. (2012). A Gaijin-like miniature inverted repeat transposable element is mobilized in rice during cell differentiation. BMC Genomics 13: 135.
Dooner, H.K., and Belachew, A. (1989). Transposition Pattern of the Maize Element Ac from the Bz-M2 (ac) Allele. Genetics 122: 447–457.
Duncan E.J., Heberle E. (1976). Effect of temperature shock on nuclear phenomena in microspores of Nicotiana tabacum and consequently on plantlet production. Protoplasma 90(1-2): 173-177.
Dunwell, J.M. (2010). Haploids in flowering plants: origins and exploitation. Plant Biotechnology Journal 8: 377–424.
Dunwell, J.M., and Thurling, N. (1985). Role of sucrose in microspore embryo production in Brassica napus ssp. oleifera. Journal of Experimental Botany 36: 1478–1491.
Dunwell, J.M., Cornish, M., Courcel, A.G.L.D., and Middlefell-Williams, J.E. (1983). Induction and growth of “microspore-derived” embryos of Brassica napus ssp. oleifera. Journal of Experimental Botany 34: 1768–1778.
Durbarry, A., Vizir, I., and Twell, D. (2005). Male germ Line development in Arabidopsis. duo pollen mutants reveal gametophytic regulators of generative cell cycle progression. Plant Physiology 137: 297–307.
Eamens, A.L., Blanchard, C.L., Dennis, E.S., Upadhyaya, N.M. (2004). A bidirectional gene trap construct suitable for T‐DNA and Ds‐mediated insertional mutagenesis in rice (Oryza sativa L.). Plant Biotechnology Journal 2(5): 367-380.
Emmons, S.W., and Yesner, L. (1984). High-frequency excision of transposable element Tc1 in the nematode caenorhabditis elegans is limited to somatic cells. Cell 36: 599–605.
Fedoroff, N., Wessler, S., and Shure, M. (1983). Isolation of the transposable maize controlling elements Ac and Ds. Cell 35: 235–242.
Feschotte, C. (2008). Transposable elements and the evolution of regulatory networks. Nature Reviews Genetics 9.5: 397-405.
Feschotte, C., and Pritham, E.J. (2007). DNA Transposons and the evolution of eukaryotic genomes. Annual Review of Genetics 41: 331–368.
Firek, S., Martin, D.J., Roberts, M.R., Sturgess, F., Scott, R., Draper, J. (1996). Gametophyte‐specific transposition of the maize Ds element in transgenic tobacco. The Plant Journal 10(3): 569-578.
Foster, R., Izawa, T., and Chua, N.H. (1994). Plant bZIP proteins gather at ACGT elements. FASEB Journal 8: 192–200.
Forster, B.P., Heberle-Bors, E., Kasha, K.J., Touraev, A. (2007). The resurgence of haploids in higher plants. Trends in Plant Science 12(8):368-375.
Francesca R. (2000). Regulation of maize Ac/Ds transposition by replication and DNA methylation. pp.1-123
Gamborg, O.L., Miller, R.A., and Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research 50: 151–158.
George, S.H.L., Gertsenstein, M., Vintersten, K., Korets-Smith, E., Murphy, J., Stevens, M.E., Haigh, J.J., and Nagy, A. (2007). Developmental and adult phenotyping directly from mutant embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 104: 4455–4460.
Germanà, M.A. (2005). Protocol of somatic embryogenesis from citrus spp. Anther Culture. Protocol for Somatic Embryogenesis in Woody Plantspp. 191–207.
Germanà, M.A. (2011). Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Reports 30: 839–857.
Gowik, U., Burscheidt, J., Akyildiz, M., Schlue, U., Koczor, M., Streubel, M., and Westhoff, P. (2004). cis-regulatory elements for mesophyll-specific gene expression in the C4 plant flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell 16: 1077–1090.
Greco, R., Ouwerkerk, P. B., Taal, A. J., Favalli, C., Beguiristain, T., Puigdomenech, P., Colombo, L., Hoge, J.H.C., Pereira, A. (2001). Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis. Plant Molecular Biology 46(2): 215-227.
Gruenbaum, Y., Naveh-Many, T., Cedar, H., Razin, A. (1981). Sequence specificity of methylation in higher plant DNA. Nature 292: 860–862.
Hamilton, D.A., Schwarz, Y.H., and Mascarenhas, J.P. (1998). A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Molecular Biology 38: 663–669.
Haring, M.A., Rommens, C.M., Nijkamp, H.J., and Hille, J. (1991). The use of transgenic plants to understand transposition mechanisms and to develop transposon tagging strategies. Plant Molecular Biology. 16: 449–461.
Heinlem, M., Brattig, T., Kunze, R. (1994). In vivo aggregation of maize Activator (Ac) transposase in nuclei of maize endosperm and Petunia protoplasts. The Plant Journal 5(5): 705-714.
Heberle-Bors, E. (1985). In vitro haploid formation from pollen: a critical review. Theoretical and Applied Genetics 71: 361–374.
Heberle-Bors E., Reinert J. (1981). Environmental control and evidence for predetermination of pollen embryogenesis in Nicotiana tabacum pollen. Protoplasma 109:249–255
Hehl, R., and Baker, B. (1990). Properties of the maize transposable element Activator in transgenic tobacco plants: a versatile inter-species genetic tool. Plant Cell 2:709–721.
Honma, M.A., Baker, B.J., Waddell, C.S. (1993). High-frequency germinal transposition of DsALS in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 90: 6242–6246.
Huang, M.-D., Wei, F.J., Wu, C.C., Hsing, Y.I.C., and Huang, A.H.C. (2009). Analyses of advanced rice anther transcriptomes reveal global tapetum secretory functions and potential proteins for lipid exine formation. Plant Physiology 149: 694–707.
Huang, K.C., Yang H.C., Li K.T., Liu L.D., Charng Y.C. (2012). Ds transposon is biased towards providing splice donor sites for exonization in transgenic tobacco.Plant molecular biology, 79.4-5: 509-519.
Huang, Y., Pettitt, S.J., Guo, G., Liu, G., Li, M.A., Yang, F., Bradley, A. (2012). Isolation of homozygous mutant mouse embryonic stem cells using a dual selection system. Nucleic Acids Research 40(3): e21.
Jones, J.D., Carland, F., Lim, E., Ralston, E., and Dooner, H.K. (1990). Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2:701–707.
Jones, J.D., Carland, F.M., Maliga, P., Dooner, H.K. (1989). Visual detection of transposition of the maize element Activator (Ac) in tobacco seedlings. Science 244(4901): 204-207.
Jung, K.H., Jeon, J.S., An, G. (2011). Web tools for rice transcriptome analyses. J Plant Biologyl 54:65–80
Kaushal, L., Balachandran, S.M., Ulaganathan, K., Shenoy, V. (2014). Effect of culture media on improving anther culture response of rice (Oryza sativa L.). International Journal of Agriculture Innovations and Research 3(1): 218-224.
Kikuchi, K., Terauchi, K., Wada, M., and Hirano, H.-Y. (2003). The plant MITE mPing is mobilized in anther culture. Nature 421: 167–170.
Kolesnik, T., Szeverenyi, I., Bachmann, D., Kumar, C.S., Jiang, S., Ramamoorthy, R., Cai, M., Ma, Z.G., Sundaresan, V., and Ramachandran, S. (2004). Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant Cell Biotechnology and Molecular Biology. 37: 301–314.
Kunze R., Saedler H., Lönnig W.E. (1997). Plant transposable elements. Advances in Botanical Research 27:331-470.
Kunze, R., Stochaj, U., Laufs, J., and Starlinger, P. (1987). Transcription of transposable element Activator (Ac) of Zea mays L. EMBO Journal 6: 1555–1563.
Kuromori, T., Hirayama, T., Kiyosue, Y., Takabe, H., Mizukado, S., Sakurai, T., Akiyama, K., Kamiya, A., Ito, T., and Shinozaki, K. (2004). A collection of 11 800 single-copy Ds transposon insertion lines in Arabidopsis. Plant Journal37: 897–905.
Kyo, M., and Harada, H. (1986). Control of the developmental pathway of tobacco pollen in vitro. Planta 168: 427–432.
Lantos, C., Weyen, J., Orsini, J. M., Gnad, H., Schlieter, B., Lein, V., Kontowski, S., Jacobi, A., MihÁly1, R., Broughton, S., Pauk, J. (2013). Efficient application of in vitro anther culture for different European winter wheat (Triticum aestivum L.) breeding programmes. Plant Breeding 132(2): 149-154.
Li, K.T., Charng, Y.C. (2014). The use of hygromycin phosphotransferase gene (hpt) with an artificial intron to obtain marker-off transgenic plants. African Journal of Biotechnology 11(6): 1330-1336.
Liu, Y.G., Mitsukawa, N., Oosumi, T., and Whittier, R.F. (1995). Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant Journal 8: 457–463.
Liu, X., Shangguan, Y., Zhu, J., Lu, Y., Han, B. (2013). The rice OsLTP6 gene promoter directs anther-specific expression by a combination of positive and negative regulatory elements. Planta 238(5): 845-857.
Lu, N., Carter, J. D., Medina, T. B., Holt, S. H., Manrique-Carpintero, N. C., Upham, K. T., Pereira A., Shulaev V., Veilleux, R. E. (2014). Transposon based activation tagging in diploid strawberry and monoploid derivatives of potato. Plant Cell Reports 33(7): 1203-1216.
Meyers B.C., Tingey S.V., Morgante M.(2001). Abundance, distribution, and
transcriptional activity of repetitive elements in the maize genome.Genome Rearch 11(10): 1660-1676.
Malik, M.R., Wang, F., Dirpaul, J.M., Zhou, N., Polowick, P.L., Ferrie, A.M.R., Krochko, J.E. (2007). Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiology 144:134–154.
Mascarenhas, J.P. (1990).Gene activity during pollen development. Plant Molecular Biology 41: 317–338.
McClintock, B. (1947). Cytogenetic studies of maize and neurospora. Carnegie Institute of Washington, 46: 146-152
McClintock, B. (1951). Chromosome organization and genic expression. Cold Spring Harbor Symposia on Quantitative Biology 16: 13-47.
Muller-Neumann M., Yoder J.I., Starlinger P. (1984). The DNA sequence of the transposable element Ac of Zea mays L. Molecular Genome Genetics 198:19–24
McCormac, A.C., Elliott, M.C., and Chen, D.F. (1998). A simple method for the production of highly competent cells ofAgrobacterium for transformation via electroporation. Molecular Biotechnology 9:155–159.
Morita, R., Hattori, Y., Yokoi, S., Takase, H., Minami, M., Hiratsuka, K., and Toriyama, K. (2003). Assessment of utility of meiosis-associated promoters of lily for induction of germinal Ds transposition in transgenic rice. Plant and Cell Physiology. 44: 637–642.
Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiology 15: 473–497.
Nakagawa, Y., Machida, C., Machida, Y., Toriyama, K. (2000). Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant and Cell Physiology 41(6): 733-742.
Nishal, B., Tantikanjana, T., and Sundaresan, V. (2005). An inducible targeted tagging system for localized saturation mutagenesis in Arabidopsis. Plant Physiology 137: 3–12.
Nitsch C. (1974) Pollen culture-a new technique for mass production of haploid and homozygous plants. In Haploid in Higher plant-Asvances and Potential pp. 123-135.
Nitsch C. (1981). Production of isogenic lines: basic technical aspects of androgenesis. Plant Tissue Culture Methods and Applications in Agriculture pp. 241–252
Nobuta, K., Venu, R. C., Lu, C., Beló, A., Vemaraju, K., Kulkarni, K., Wang, W., Pillay, M., Green, P.J., Wang, G.L., Meyers, B.C. (2007). An expression atlas of rice mRNAs and small RNAs. Nature biotechnology 25(4): 473-477.
Ogawa, T., Fukuoka, H., and Ohkawa, Y. (1995). Plant regeneration through direct culture of isolated pollen grains in rice. Japanese Journal of Breeding 45: 301–307.
Oh, S.J., Song, S.I., Kim, Y.S., Jang, H.J., Kim, S.Y., Kim, M., Kim Y.K., Nahm, B.H., Kim, J. K. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology 138(1): 341-351.
Osborne, J., Simon, S., and Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education 25: 1049–1079.
Pelletier G., Ilami M. (1972). Les facteurs de l’androgenèsein vitro chez Nicotiana tabacum. Z. Pflanzenphysiol 68: 97–114.
Pohlman, R.F., Fedoroff, N.V., Messing, J. (1984). The nucleotide sequence of the maize controlling element Activator. Cell 37:635-643
Pulido, A., Bakos, F., Castillo, A., Vallés, M.P., Barnabas, B., and Olmedilla, A. (2005). Cytological and ultrastructural changes induced in anther and isolated-microspore cultures in barley: Fe deposits in isolated-microspore cultures. Journal of Structural Biology 149: 170–181.
Qu, S., Desai, A., Wing, R., and Sundaresan, V. (2008). A versatile transposon-based activation tag vector system for functional genomics in cereals and other monocot plants. Plant Physiology 146: 189–199.
Qu, S., Jeon, J.S., Ouwerkerk, P.B.F., Bellizzi, M., Leach, J., Ronald, P., Wang, G.-L. (2009). Construction and application of efficient Ac-Ds transposon tagging vectors in rice. Journal of Integrative Plant Biology 51: 982–992.
Raquin, C. (1983). Utilization of different sugars as carbon source for in vitro anther culture of Petunia. Z. Für Pflanzenphysiology, 111: 453–457.
Rinehart, T.A., Caroline D., Clifford F.l. (1997). Comparative analysis of non‐random DNA repair following Ac transposon excision in maize and Arabidopsis. The Plant Journal 12(6): 1419-1427.
Robertson, D.S., and Mascia, P.N. (1981). Tests of 4 controlling-element systems of maize for mutator activity and their interaction with Mu mutator. Mutation Research 84: 283–289.
Rogers, H.J., Bate, N., Combe, J., Sullivan, J., Sweetman, J., Swan, C., Lonsdale, D.M., and Twell, D. (2001). Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Molecular. Biology 45: 577–585.
Rommens, C.M., Rudenko, G.N., Dijkwel, P.P., van Haaren, M.J., Ouwerkerk, P.B., Blok, K.M., Nijkamp, H.J., and Hille, J. (1992). Characterization of the Ac/Ds behaviour in transgenic tomato plants using plasmid rescue. Plant Molecular Biology 20: 61–70.
Rukmini, M., Rao, G.J.N., & Rao, R.N. (2013). Effect of cold pretreatment and phytohormones on anther culture efficiency of two indica rice (Oryza sativa L.) hybrids–Ajay and Rajalaxmi. Journal of Experimental Biology and Agricultural Sciences 2: 69-76.
Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular cloning 2: 9-14.
Scott, L.A., Daniel L.F., Clifford F. l. (1996). Adjacent sequences influence DNA repair accompanying transposon excision in maize.Genetics 142(1): 237-246.
Scofield, S.R., Harrison, K., Nurrish, S.J., and Jones, J.D. (1992). Promoter fusions to the Activator transposase gene cause distinct patterns of Dissociation excision in tobacco cotyledons. Plant Cell 4: 573–582.
Scofield, S.R., English, J.J., Jones, J.D. (1993). High level expression of the Activator transposase gene inhibits the excision of Dissociation in tobacco cotyledons. Cell 75(3): 507-517.
Sha, Y., Li, S., Pei, Z., Luo, L., Tian, Y., and He, C. (2004). Generation and flanking sequence analysis of a rice T-DNA tagged population. Theoretical and Applied Genetics 108:306–314.
Sheu, J.J., Yu, T.S., Tong, W.F., and Yu, S.M. (1996). Carbohydrate starvation stimulates differential expression of rice alpha-amylase genes that is modulated through complicated transcriptional and posttranscriptional processes. Journal of Biological Chemistry 271: 26998–27004.
Simpson, S.D., Nakashima, K., Narusaka, Y., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant Journal33: 259–270.
Sohn, K.H., Lee, S.C., Jung, H.W., Hong, J.K., Hwang, B.K. (2006). Overexpression of the pepper CARAV1 pathogen-induced gene encoding a RAV transcription factor induces pathogenesis-related genes and enhances resistance to bacterial pathogen in Arabidopsis. Plant Molecular Biology 61: 897-915.
Southern EM. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 5;98(3):503-17.
Sun, Q., Gao, F., Zhao, L., Li, K., and Zhang, J. (2010). Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila. BMC Plant Biology 10: 90.
Sunderland N. (1978). Strategies in the improvement of yields in anther culture. Proc Symp Plant Tissue Culture pp. 65–86
Sunderland N. (1971). Anther culture: a progress report. Science Progress 59:527–549
Sundaresan, V., Springer, P., Volpe, T., Haward, S., Jones, J.D., Dean, C., Ma, H., and Martienssen, R. (1995). Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Development 9: 1797–1810.
Sutoh, K., and Yamauchi, D. (2003). Two cis-acting elements necessary and sufficient for gibberellin-upregulated proteinase expression in rice seeds. Plant Journal Cell Molecular Biology 34: 635–645.
Swinburne, J., Balcells, L., Scofield, S.R., Jones, J.D., Coupland, G. (1992). Elevated levels of Activator transposase mRNA are associated with high frequencies of Dissociation excision in Arabidopsis. The Plant Cell 4(5): 583-595.
Telmer, C.A., Simmonds, D.H., Newcomb, W. (1992). Determination of developmental stage to obtain high frequencies of embryogenic microspores in Brassica napus. Physiology Plant 84: 417–424.
Tai, H.K., Li, K.T., Charng, Y.C. (2011). A one-time inducible transposon for terminating selectable markers in transgenic plants. Botanical Studies 52(4): 375-381.
Tissier, A.F., Marillonnet, S., Klimyuk, V., Patel, K., Torres, M.A., Murphy, G., and Jones, J.D. (1999). Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11: 1841–1852.
Touraev, A., Indrianto, A., Wratschko, I., Vicente, O., and Heberle-Bors, E. (1996). Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sexual Plant Reproduction 9: 209–215.
Touraev, A., Pfosser, M., and Heberle-Bors, E. (2001). The microspore: A haploid multipurpose cell pp. 53–109.
Upadhyaya, N.M., Zhu, Q.-H., Zhou, X.-R., Eamens, A.L., Hoque, M.S., Ramm, K., Shivakkumar, R., Smith, K.F., Pan, S.-T., Li, S., et al. (2006). Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice. Theoretical and Applied Genetics 112: 1326–1341.
Vagera, J., Novotný, J., and Ohnoutková, L. (2004). Induced Androgenesis in vitro in Mutated Populations of Barley, Hordeum vulgare. Plant Cell Tissue Organ Culture77: 55–61.
Van Der Biezen, E.A., Brandwagt, B.F., van Leeuwen, W., Nijkamp, H. J.J., Hille, J. (1996). Identification and isolation of the FEEBLY gene from tomato by transposon tagging. Molecular and General Genetics 251(3): 267-280.
Vasil I.K., Nitsch C. (1975). Experimental production of pollen haploids and their uses. Zeitschrift für Pflanzenphysiologie 76(3):191-212.
Wang, R., Hong, G., Han, B. (2004). Transcript abundance of rml1, encoding a putative GT1-like factor in rice, is up-regulated by Magnaporthe grisea and down-regulated by light. Gene 324: 105-115.
Wedzony M, Forster B.P., Zur I, Golemiec E, Szechynska-Hebda M, Dubas, Gotebiowska G (2009). Progress in doubled haploid technology in higher plants. Advances in Haploid Production in Higher Plantspp. 1–34
Wei, F.J., Droc, G., Guiderdoni, E., and Hsing, Y.C. (2013). International consortium of rice mutagenesis: resources and beyond. Rice 6,:39.
Welchen, E., and Gonzalez, D.H. (2005). Differential expression of the Arabidopsis cytochrome c genes Cytc-1 and Cytc-2. evidence for the involvement of TCP-domain protein-binding elements in anther- and meristem-specific expression of the Cytc-1 gene. Plant Physiology 139: 88–100.
Yanagisawa, S., and Schmidt, R.J. (1999). Diversity and similarity among recognition sequences of Dof transcription factors. Plant Journal 17:209–214.
Yang, H.C., and Charng, Y.C. (2014). Application of an inducible transposon with anther culture in generation of di-haploid homologous mutants. Botanical Studies 55: 1–7.
Yoder, J.I. (1990). Rapid proliferation of the maize transposable element Activator in transgenic tomato. The Plant Cell 2(8): 723-730.
Yuan Y.W., Wessler S.R. (2011). The catalytic domain of all eukaryotic cut-and-paste
transposase superfamilies. Proc Natl Acad Sci USA 108(19):7884–7889.
Zhang, K., Martiny, A.C., Reppas, N.B., Barry, K.W., Malek, J., Chisholm, S.W., Church, G.M. (2006). Sequencing genomes from single cells by polymerase cloning. Nature Biotechnology 24(6): 680-686.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52505-
dc.description.abstract轉位子釣取系統 (transposon tagging) 是利用轉位子 (transposable elements) 創造插入型突變 (insertional mutation) 藉以研究基因功能的技術之一。此系統最大的潛力在於轉位子於生殖細胞轉位 (germinal transposition) 相較於體細胞轉位 (somatic transposition) 可產生較多獨立的插入型突變體。先前本實驗室使用來自玉米Ac / Ds (Activator-Dissociator) 轉位系統,利用水楊酸誘導啟動子PR-1a (Pathogenesis related-1a) 控制Ac轉位酶表現,並將轉位子構築於轉位酶內隱子 (intron),建構了水楊酸誘導單次轉位系統 (COKC)。而本研究誘導COKC之轉殖水稻生殖細胞轉位,進而配合花藥培養,於單一世代生產同質結合突變體 (homozygous mutants)。該系統分別處理以下兩種水楊酸誘導方式:一、先誘導再分離花藥進行培養。二、同時誘導及花藥培養。前者轉位效率為5%,且皆為同質結合突變體;後者效率為20%,但之中90%為異質結合突變體 (heterozygous mutants),推測轉位子於花藥培養誘導生殖細胞胚體化 (embryogenesis) 的同時,發生體細胞轉位。為了改善生殖細胞轉位效率,本研究利用水稻花粉不同發育時期之專一表現啟動子 (pollen-specific promoters) OsP1、OsP41和OsP128,建構生殖細胞轉位系統OsP1-0380PL、OsP41-0380PL和OsP128-0380PL,進行水稻及菸草轉殖而後同樣進行花藥培養。綜合上述研究成果,藉由水楊酸誘導系統COKC及生殖細胞轉位系統0380PL,可提升生殖細胞轉位效率,並於單一世代得到穩定的同質結合突變體。zh_TW
dc.description.abstractTransposon tagging is an effective tool of insertional mutagenesis for studying gene function. A higher number of independent insertion mutants can be obtained from a few transgenic launch pads via germinal transposition. Our lab previously developed a one-time inducible Ac/Ds transposable system, COKC, where the Ds element in the intron of the Ac transposase is driven by the salicylic acid inducible promoter PR-1a (Pathogenesis related-1a). In order to increase germinal transposition and generate homozygous mutants, we treated floral tissues at uninucleate stages of microspore in COKC transgenic rice with salicylic acid in two salicilylic acid treatments. The first approach was pot induction, where rice panicle was induced in the pot prior to anther culture. The other approach was culture induction, where the rice anther was isolated first and then simultaneously induced and incubated. The transposition efficiency of anther-derived regeneration shoots from the two sets were 5 % and 20 %, respectively. For pot induction, all of the regeneration calli were homozygotes. In contrast, for culture induction, most of the regeneration calli were heterozygotes, which may result from somatic transposition after embryogenesis of the callus. In order to increase germinal transposition, the present study aims to construct three novel germinal transposon tagging systems OsP1-0380PL, OsP41-0380PL and OsP128-0380PL. In these systems, the Ac transposase is driven by each of the three pollen specific promoters identified in rice cultivar TNG67. The above tagging constructs were transformed into rice and tobacco through Agrobacterium. After that, the transformants were subjected to anther culture to observe the frequency of transposition in gametophytic process, where more homozygotes could be derived. In conclusion, the aim of this thesis is appling to improve germinal transposition to create stable homozygous mutants in a single generation in plants.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:16:47Z (GMT). No. of bitstreams: 1
ntu-104-D99621101-1.pdf: 3671324 bytes, checksum: c5587ccf83d20b8e67d36fdacbfd28ef (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
英文摘要 IV
第一章 前言 1
第二章 文獻回顧 2
2.1 植物轉位子 2
2.1.1 Ac/Ds 轉位子基因結構 3
2.1.2 Ac/Ds 轉位機制及插入序列特性 3
2.1.3 Ac/Ds轉位子插入型突變系統 4
2.2 建構轉位子插入型突變系統 5
2.2.1 雙構築及單一構築系統 6
2.2.2 可誘導單次轉位系統 7
2.2.3 生殖細胞專一轉位系統 8
2.2.4 轉位子之反劑量效應 10
2.3 花藥培養生產同質結合突變體 11
2.3.1 生產同質結合突變體 11
2.3.2 花藥培養產生單倍體或雙單倍體 12
2.3.3 應用花藥或花粉培養生產同質結合突變體 15
第三章 試驗架構 16
第四章 材料與方法 17
4.1 水楊酸誘導單次轉位系統 17
4.1.1 轉位子插入突變水稻起始系 17
4.1.2 水稻花藥培養 17
4.1.3 水楊酸誘導 18
4.1.4 花藥再生水稻突變系DNA萃取 18
4.1.5 Multiplex PCR評估花藥分化植株轉位 18
4.1.6 南方墨點法評估起始系為單一拷貝 18
4.1.7 Thermal asymmetric interlaced PCR分析插入突變系側翼序列 20
4.1.8. Multiplex PCR評估插入突變系為同質結合突變體 21
4.2 鑑別水稻生殖細胞專一啟動子 22
4.2.1 篩選水稻花粉專一表現基因 22
4.2.2 構築三基因啟動子片段於GUS表現系統 22
4.2.3 農桿菌轉型 23
4.2.4 水稻及菸草轉殖 23
4.2.5 PCR檢測轉殖株 25
4.2.6 花藥GUS染色及花粉發育時期評估 25
4.3 生殖細胞專一轉位系統 25
4.3.1 構築生殖細胞轉位系統 25
4.3.2 農桿菌轉型 26
4.3.3 水稻及菸草轉殖 26
4.3.4 PCR確定轉殖株及評估無自發轉位 26
4.3.5 南方墨點法判斷起始系為單一拷貝 26
4.3.6 水稻和菸草花藥培養 26
4.3.7 Multiplex PCR評估花藥分化植株轉位 27
第五章 結果 28
5.1 水楊酸誘導轉位系統 28
5.1.1 水楊酸誘導COKC轉位系統 28
5.1.2 COKC系統轉位評估 29
5.1.3 Multiplex PCR評估插入突變系為同質結合突變體 29
5.2 鑑別水稻生殖細胞專一性啟動子 31
5.2.1 候選基因具生殖細胞專一表現 31
5.2.2 轉殖水稻、菸草GUS蛋白表現評估 33
5.3 生殖細胞專一轉位系統 35
5.3.1 0380PL構築 35
5.3.2 生產轉位系統起始系 36
5.3.3 生殖細胞轉位系統進行花藥培養 37
第六章 討論 39
6.1 細胞專一性轉位 39
6.2 突變系特性 40
6.3 花藥培養生產同質結合突變體效率 41
6.4 水稻生殖細胞轉錄體 42
6.5 啟動子調控序列 43
第七章 引用文獻 46
圖目錄
圖一 水稻小孢子與花藥培養再分化植株 57
圖二 Multiplex PCR評估COKC轉殖株SA誘導花藥分化植株轉位 58
圖三 南方墨點法分析COKC轉殖株經水楊酸誘導花藥再分化植株轉位59
圖四 Multiplex PCR評估花藥分化植株插入突變體之同質性 60
圖五 RT-PCR 評估水稻三基因表現專一性 61
圖六 水稻花粉專一表現啟動子構築流程 62
圖七 OsP1啟動子序列及雄性生殖細胞專一性順式作用元件 63
圖八 OsP41啟動子序列及雄性生殖細胞專一性順式作用元件 64
圖九 OsP128啟動子序列及雄性生殖細胞專一性順式作用元件 65
圖十 三候選花粉專一性啟動子於轉殖水稻花藥GUS表現 66
圖十一 三候選花粉專一性啟動子於轉殖菸草花藥GUS表現 67
圖十二 三候選花粉專一性啟動子於水稻花粉不同核型發育期GUS表現 68
圖十三 三候選花粉專一性啟動子於菸草花粉不同核型發育期GUS表現 69
圖十四 OsP41啟動子系列刪除轉殖水稻花器GUS表現 70
圖十五 生殖細胞專一轉位系統0380PL構築流程 71
圖十六 PCR及multiplex PCR評估0380PL水稻轉殖株 72
圖十七 PCR及multiplex PCR篩選0380PL菸草轉殖株 73
圖十八 0380PL轉殖菸草花藥培養分化植株 74
圖十九 COKC轉殖水稻突變系定序結果 75
圖二十 三花粉專一啟動子相關順式作用元件分佈示意圖 76
表目錄
表一 轉殖水稻COKC插入突變系之側翼序列及專一性引子資訊 77
表二 花粉專一表現基因啟動子片段資訊 78
表三 花粉專一啟動子共同順式作用元件 79
表四 花粉專一啟動子雄性生殖細胞相關順式作用元件 80
表五 0380PL水稻及菸草轉殖系之單一拷貝起始系資訊 81
表六 系列刪除啟動子0380PL轉位系統轉殖系資訊 82
附錄目錄
附錄一 玉米Ac/Ds轉位子簡介 83
附錄二 Ac轉位子 轉位足跡形成機制 84
附錄三 雙構築及單一構築之轉位子插入型突變系統 85
附錄四 可誘導之轉位子插入型突變系統 86
附錄五 轉位子反劑量效應 87
附錄六 Ac/Ds單一構築轉位系統 88
附錄七 可誘導單次轉位系統COKC 89
附錄八 花粉專一表現基因於水稻花粉發育及各組織轉錄體分析結果90
附錄九 關鍵字對照及註釋 91
附錄十 本論文所使用引子一覽表 92
附錄十一 本論文所使用之培養基配方 94
附錄十二 本論文所使用之藥品來源 98
dc.language.isozh-TW
dc.subject異質結合突變體zh_TW
dc.subject花粉專一表現啟動子zh_TW
dc.subjectAc/Ds轉位子zh_TW
dc.subjectPR-1a啟動子zh_TW
dc.subject體細胞轉位zh_TW
dc.subject生殖細胞轉位zh_TW
dc.subject轉位子釣取系統zh_TW
dc.subject插入型突變zh_TW
dc.subject花藥培養zh_TW
dc.subject同質結合突變體zh_TW
dc.subjectgerminal transpositionen
dc.subjectsomatic transpositionen
dc.subjectpathogenesis related-1aen
dc.subjectpollen-specific promotersen
dc.subjectone-time inducible Ac/Ds transposable systemen
dc.subjecthomozygous mutantsen
dc.subjectgerminal transposon tagging systemsen
dc.subjectanther cultureen
dc.title構築生殖轉位系統生產同質結合突變體zh_TW
dc.titleConstruction of transposon tagging system in germinal cells for creating homozygous mutantsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee杜鎮,洪傳揚,蔡育彰,黃永芬
dc.subject.keyword轉位子釣取系統,插入型突變,生殖細胞轉位,體細胞轉位,Ac/Ds轉位子,PR-1a啟動子,花藥培養,同質結合突變體,異質結合突變體,花粉專一表現啟動子,zh_TW
dc.subject.keywordanther culture,germinal transposition,germinal transposon tagging systems,homozygous mutants,one-time inducible Ac/Ds transposable system,pollen-specific promoters,pathogenesis related-1a,somatic transposition,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2015-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved