Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52500
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 蘇南維 | |
dc.contributor.author | Chia-Ying Lee | en |
dc.contributor.author | 李佳穎 | zh_TW |
dc.date.accessioned | 2021-06-15T16:16:37Z | - |
dc.date.available | 2020-08-20 | |
dc.date.copyright | 2015-08-20 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-17 | |
dc.identifier.citation | 行政院衛生署,「台灣地區食品營養成分資料庫」
https://consumer.fda.gov.tw/FoodAnalysis/ingredients.htm 蔡文福 (1994)。雜糧作物各論。臺北市:台灣糧食發展基金會 常致綱 (2006)。大豆異黃酮定量方法之改良及加工方式對大豆異黃酮種類轉換之研究。臺灣大學農業化學系碩士論文。 Barnes, S. (2010). The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphatic research and biology, 8(1), 89-98. Cao, H., Chen, X., Jassbi, A. R., & Xiao, J. (2015). Microbial biotransformation of bioactive flavonoids. Biotechnology advances, 33(1), 214-223. Cederroth, C. R., & Nef, S. (2009). Soy, phytoestrogens and metabolism: A review. Molecular and cellular endocrinology, 304(1), 30-42. Cena, E., & Steinberg, F. (2011). Soy may help protect against cardiovascular disease. California Agriculture, 65(3), 118-123. Chen, J., Lin, H., & Hu, M. (2003). Metabolism of flavonoids via enteric recycling: role of intestinal disposition. Journal of Pharmacology and Experimental Therapeutics, 304(3), 1228-1235. Chen, K.-I., Lo, Y.-C., Liu, C.-W., Yu, R.-C., Chou, C.-C., & Cheng, K.-C. (2013). Enrichment of two isoflavone aglycones in black soymilk by using spent coffee grounds as an immobiliser for β-glucosidase. Food chemistry, 139(1), 79-85. Chen, K.-I., Lo, Y.-C., Su, N.-W., Chou, C.-C., & Cheng, K.-C. (2012). Enrichment of two isoflavone aglycones in black soymilk by immobilized β-glucosidase on solid carriers. Journal of agricultural and food chemistry, 60(51), 12540-12546. Chien, H.-L., Huang, H.-Y., & Chou, C.-C. (2006). Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food microbiology, 23(8), 772-778. Cho, K. M., Lee, J. H., Yun, H. D., Ahn, B. Y., Kim, H., & Seo, W. T. (2011). Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. Journal of Food Composition and Analysis, 24(3), 402-410. Chuankhayan, P., Rimlumduan, T., Svasti, J., & Cairns, J. R. K. (2007). Hydrolysis of soybean isoflavonoid glycosides by Dalbergia β-glucosidases. Journal of agricultural and food chemistry, 55(6), 2407-2412. Cowan, A. E., Koppel, D. E., Setlow, B., & Setlow, P. (2003). A soluble protein is immobile in dormant spores of Bacillus subtilis but is mobile in germinated spores: implications for spore dormancy. Proceedings of the National Academy of Sciences, 100(7), 4209-4214. Demmig-Adams, B., & McCauley, L. (2005). Breast cancer, estrogen, soy genistein, and other dietary factors: Towards an understanding of their mechanistic interactions. Nutrition & Food Science, 35(1), 35-42. Dixon, R. A., & Ferreira, D. (2002). Genistein. Phytochemistry, 60(3), 205-211. Dressman, J. B., & Reppas, C. (2010). Oral drug absorption: Prediction and assessment (Vol. 193): CRC Press. Esaki, H., Onozaki, H., & Osawa, T. (1994). Antioxidative activity of fermented soybean products. Paper presented at the ACS symposium series (USA). Esaki, H., Watanabe, R., Onozaki, H., Kawakishi, S., & Osawa, T. (1999). Formation mechanism for potent antioxidative o-dihydroxyisoflavones in soybeans fermented with Aspergillus saitoi. Bioscience, biotechnology, and biochemistry, 63(5), 851-858. Grossman, A. D., & Losick, R. (1988). Extracellular control of spore formation in Bacillus subtilis. Proceedings of the National Academy of Sciences, 85(12), 4369-4373. Hsu, C., Ho, H.-W., Chang, C.-F., Wang, S.-T., Fang, T.-F., Lee, M.-H., & Su, N.-W. (2013). Soy isoflavone-phosphate conjugates derived by cultivating Bacillus subtilis var. natto BCRC 80517 with isoflavone. Food Research International, 53(1), 487-495. doi: 10.1016/j.foodres.2013.05.027 Huynh, N. T., Van Camp, J., Smagghe, G., & Raes, K. (2014). Improved release and metabolism of flavonoids by steered fermentation processes: a review. International journal of molecular sciences, 15(11), 19369-19388. Ismail, B., & Hayes, K. (2005). β-Glycosidase activity toward different glycosidic forms of isoflavones. Journal of agricultural and food chemistry, 53(12), 4918-4924. Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M., . . . Kikuchi, M. (2000). Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. The Journal of nutrition, 130(7), 1695-1699. Jones, S., Selitsianos, D., Thompson, K. J., & Toms, S. M. (2003). An Improved Method for Lewis Acid Catalyzed Phosphoryl Transfer with Ti(t-BuO)4. ChemInform, 34(42), no-no. doi: 10.1002/chin.200342177 Keshun, L. (1997). Soybeans: chemistry, technology, and utilization: Chapman & Hall. Klump, S. P., Allred, M. C., MacDonald, J. L., & Ballam, J. M. (2001). Determination of isoflavones in soy and selected foods containing soy by extraction, saponification, and liquid chromatography: collaborative study. Journal of AOAC International, 84(6), 1865-1883. Ko, J. H., Kim, B. G., & Joong-Hoon, A. (2006). Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus. FEMS microbiology letters, 258(2), 263-268. Kostrzewa-Susłow, E., Dmochowska-Gładysz, J., Białońska, A., & Ciunik, Z. (2008). Microbial transformations of flavanone by Aspergillus niger and Penicillium chermesinum cultures. Journal of Molecular Catalysis B: Enzymatic, 52, 34-39. Kunst, F., Ogasawara, N., Moszer, I., Albertini, A., Alloni, G., Azevedo, V., . . . Borchert, S. (1997). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 390(6657), 249-256. Kuo, L.-C., Cheng, W.-Y., Wu, R.-Y., Huang, C.-J., & Lee, K.-T. (2006). Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Applied microbiology and biotechnology, 73(2), 314-320. Kurzer, M. S. (2000). Hormonal effects of soy isoflavones: studies in premenopausal and postmenopausal women. The Journal of nutrition, 130(3), 660S-661S. Kwak, H. S., Park, S. Y., Kim, M. G., Yim, C. H., Yoon, H. K., & Han, K. O. (2009). Marked Individual Variation in Isoflavone Metabolism After a Soy Challenge Can Modulate the Skeletal Effect of Isoflavones in Premenopausal Women. Journal of Korean Medical Science, 24(5), 867-873. Legette, L. L., Prasain, J., King, J., Arabshahi, A., Barnes, S., & Weaver, C. M. (2014). Pharmacokinetics of Equol, a Soy Isoflavone Metabolite, Changes with the Form of Equol (Dietary versus Intestinal Production) in Ovariectomized Rats. Journal of agricultural and food chemistry, 62(6), 1294-1300. Li, D., Park, J.-H., Park, J.-T., Park, C. S., & Park, K.-H. (2004). Biotechnological production of highly soluble daidzein glycosides using Thermotoga maritima maltosyltransferase. Journal of agricultural and food chemistry, 52(9), 2561-2567. Luo, J., Liang, Q., Shen, Y., Chen, X., Yin, Z., & Wang, M. (2014). Biotransformation of bavachinin by three fungal cell cultures. Journal of bioscience and bioengineering, 117(2), 191-196. McKenney, P. T., Driks, A., & Eichenberger, P. (2013). The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nature Reviews Microbiology, 11(1), 33-44. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., & Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews, 64(3), 548-572. Okabe, Y., Shimazu, T., & Tanimoto, H. (2011). Higher bioavailability of isoflavones after a single ingestion of aglycone‐rich fermented soybeans compared with glucoside‐rich non‐fermented soybeans in Japanese postmenopausal women. Journal of the Science of Food and Agriculture, 91(4), 658-663. Okamoto, A., Hanagata, H., Kawamura, Y., & Yanagida, F. (1995). Anti-hypertensive substances in fermented soybean, natto. Plant foods for human nutrition, 47(1), 39-47. Pandey, B. P., Roh, C., Choi, K. Y., Lee, N., Kim, E. J., Ko, S., . . . Kim, B. G. (2010). Regioselective hydroxylation of daidzein using P450 (CYP105D7) from Streptomyces avermitilis MA4680. Biotechnology and bioengineering, 105(4), 697-704. Pham, T. T., & Shah, N. P. (2009). HYDROLYSIS OF ISOFLAVONE GLYCOSIDES IN SOY MILK BY β‐GALACTOSIDASE AND β‐GLUCOSIDASE. Journal of food biochemistry, 33(1), 38-60. Piskula, M. K., Yamakoshi, J., & Iwai, Y. (1999). Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS letters, 447(2), 287-291. Potter, V. R., & DuBois, K. P. (1943). Studies on the mechanism of hydrogen transport in animal tissues: VI. Inhibitor studies with succinic dehydrogenase. The Journal of general physiology, 26(4), 391. Rautio, J., Kumpulainen, H., Heimbach, T., Oliyai, R., Oh, D., Jarvinen, T., & Savolainen, J. (2008). Prodrugs: design and clinical applications. Nature Reviews Drug Discovery, 7(3), 255-270. Roh, C., Seo, S.-H., Choi, K.-Y., Cha, M., Pandey, B. P., Kim, J.-H., . . . Kim, B.-G. (2009). Regioselective hydroxylation of isoflavones by Streptomyces avermitilis MA-4680. Journal of bioscience and bioengineering, 108(1), 41-46. Ronis, M. J., Little, J. M., Barone, G. W., Chen, G., Radominska-Pandya, A., & Badger, T. M. (2006). Sulfation of the isoflavones genistein and daidzein in human and rat liver and gastrointestinal tract. Journal of medicinal food, 9(3), 348-355. Ross, J. A., & Kasum, C. M. (2002). Dietary flavonoids: bioavailability, metabolic effects, and safety. Annual review of Nutrition, 22(1), 19-34. Setchell, K. D., Brown, N. M., Desai, P. B., Zimmer-Nechimias, L., Wolfe, B., Jakate, A. S., . . . Heubi, J. E. (2003). Bioavailability, disposition, and dose-response effects of soy isoflavones when consumed by healthy women at physiologically typical dietary intakes. The Journal of nutrition, 133(4), 1027-1035. Setchell, K. D., Brown, N. M., Zimmer-Nechemias, L., Brashear, W. T., Wolfe, B. E., Kirschner, A. S., & Heubi, J. E. (2002). Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. The American journal of clinical nutrition, 76(2), 447-453. Setchell, K. D., & Cassidy, A. (1999). Dietary isoflavones: biological effects and relevance to human health. The journal of nutrition, 129(3), 758S-767S. Setchell, K. D., & Clerici, C. (2010). Equol: history, chemistry, and formation. The Journal of nutrition, 140(7), 1355S-1362S. Setlow, P. (2003). Spore germination. Current opinion in microbiology, 6(6), 550-556. Setlow, P. (2006). Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. Journal of applied microbiology, 101(3), 514-525. Sfakianos, J., Coward, L., Kirk, M., & Barnes, S. (1997). Intestinal uptake and biliary excretion of the isoflavone genistein in rats. The Journal of nutrition, 127(7), 1260-1268. Shelnutt, S. R., Cimino, C. O., Wiggins, P. A., & Badger, T. M. (2000). Urinary pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein. Cancer Epidemiology Biomarkers & Prevention, 9(4), 413-419. Shin, E.-C., Lee, J. H., Hwang, C. E., Lee, B. W., Kim, H. T., Ko, J. M., . . . Seo, W. T. (2014). Enhancement of total phenolic and isoflavone-aglycone contents and antioxidant activities during Cheonggukjang fermentation of brown soybeans by the potential probiotic Bacillus subtilis CSY191. Food Science and Biotechnology, 23(2), 531-538. Sietske, A., & Diderichsen, B. (1991). On the safety of Bacillus subtilis and B. amyloliquefaciens: a review. Applied microbiology and biotechnology, 36(1), 1-4. Sonenshein, A. L., Hoch, J. A., & Losick, R. (1993). Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics. Song, X., Xue, Y., Wang, Q., & Wu, X. (2011). Comparison of three thermostable β-glucosidases for application in the hydrolysis of soybean isoflavone glycosides. Journal of agricultural and food chemistry, 59(5), 1954-1961. Soukup, S. T., Spanier, B., Grunz, G., Bunzel, D., Daniel, H., & Kulling, S. E. (2012). Formation of phosphoglycosides in Caenorhabditis elegans: a novel biotransformation pathway. PLoS One, 7(10), e46914. doi: 10.1371/journal.pone.0046914 Spencer, J. P., & Crozier, A. (2012). Flavonoids and related compounds: Bioavailability and function: CRC Press. Toebes, A. H., de Boer, V., Verkleij, J. A., Lingeman, H., & Ernst, W. H. (2005). Extraction of isoflavone malonylglucosides from Trifolium pratense L. Journal of agricultural and food chemistry, 53(12), 4660-4666. Vitale, D. C., Piazza, C., Melilli, B., Drago, F., & Salomone, S. (2013). Isoflavones: estrogenic activity, biological effect and bioavailability. European journal of drug metabolism and pharmacokinetics, 38(1), 15-25. Waldmann, S., Almukainzi, M., Bou-Chacra, N. A., Amidon, G. L., Lee, B.-J., Feng, J., . . . Bolger, M. B. (2012). Provisional biopharmaceutical classification of some common herbs used in Western medicine. Molecular pharmaceutics, 9(4), 815-822. Wang, A., Zhang, F., Huang, L., Yin, X., Li, H., Wang, Q., . . . Xie, T. (2010). New progress in biocatalysis and biotransformation of flavonoids. J Med Plants Res, 4(10), 847-856. Wang, H.-j., & Murphy, P. A. (1994). Isoflavone content in commercial soybean foods. Journal of agricultural and food chemistry, 42(8), 1666-1673. Wang, H.-J., & Murphy, P. A. (1996). Mass balance study of isoflavones during soybean processing. Journal of Agricultural and Food Chemistry, 44(8), 2377-2383. Wang, S.-T., Fang, T.-F., Hsu, C., Chen, C.-H., Lin, C.-J., & Su, N.-W. (2015). Biotransformed product, genistein 7-O-phosphate, enhances the oral bioavailability of genistein. Journal of Functional Foods, 13, 323-335. Westers, L., Westers, H., & Quax, W. J. (2004). Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1694(1), 299-310. Wu, C.-H., & Chou, C.-C. (2009). Enhancement of aglycone, vitamin K2 and superoxide dismutase activity of black soybean through fermentation with Bacillus subtilis BCRC 14715 at different temperatures. Journal of agricultural and food chemistry, 57(22), 10695-10700. Xu, X., Wang, H.-J., Murphy, P. A., & Hendrich, S. (2000). Neither background diet nor type of soy food affects short-term isoflavone bioavailability in women. The Journal of nutrition, 130(4), 798-801. Yang, Z., Kulkarni, K., Zhu, W., & Hu, M. (2012). Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anti-cancer agents in medicinal chemistry, 12(10), 1264. Yonemoto-Yano, H., Maebuchi, M., Fukui, K., Tsuzaki, S., Takamatsu, K., & Uehara, M. (2014). Malonyl Isoflavone Glucosides Are Chiefly Hydrolyzed and Absorbed in the Colon. Journal of agricultural and food chemistry, 62(10), 2264-2270. Yu, L., Gao, F., Yang, L., Xu, L., Wang, Z., & Ye, H. (2012). Biotransformation of puerarin into puerarin-6 ″-O-phosphate by Bacillus cereus. Journal of industrial microbiology & biotechnology, 39(2), 299-305. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52500 | - |
dc.description.abstract | 大豆異黃酮(isoflavone)為存在於黃豆中的二次代謝物,因其具有雌激素活性而被廣泛研究,依結構可分為四大類,malonyl glucosides、acetyl glucosides、glucosides和aglycones,其中aglycones之生理活性最佳,但其水溶性差且生物可利用率(bioavailability)不佳。本研究室先前發現Bacillus subtilis var. natto BCRC 80517可將配醣基異黃酮(aglycones)轉換成水溶性高的異黃酮磷酸酯(isoflavone 7-O-phosphate);亦可將glucosides去醣基(deglycosylation)產生aglycones再轉換成isoflavone 7-O-phosphate;malonyl glucosides僅能被去醣基生成aglycones,無法進一步生成isoflavone 7-O-phosphate。為了闡明malonyl glucosides無法被轉換生成異黃酮磷酸酯的原因,本研究首先探討malonyl glucosides是否影響菌體的生長,結果顯示當菌體和250 μM malonyl glucosides共培養時,對菌體的生長並無顯著影響;接著探討是否為malonyl glucosides經由β-葡萄糖苷酶作用的水解產物會抑制BCRC 80517對aglycones的磷酸化作用,結果顯示malonic acid和glucose 6-malonate皆不會抑制反應系統中isoflavone 7-O-phosphate產生;BCRC 80517和malonyl glucosides共培養的其他代謝物中,也未發現有抑制aglycones磷酸化作用之物質。探討BCRC 80517在不同生長階段對aglycones生物轉換效率的結果顯示,在生長初期之生物轉換效率最佳,隨著菌體生長進入停滯期(stationary phase)後,生物轉換效率逐漸下降,且觀察到菌體之內孢子(endospore)逐漸生成。另外探討BCRC 80517之β-葡萄糖苷酶對不同帶醣基異黃酮的去醣基效率,在反應24小時後,glucosides和malonyl glucosides的去醣基率分別為100%和19%,顯示BCRC 80517對glucosides的水解效率顯著大於malonyl glucosides。由於malonyl glucosides在生物轉換過程中,BCRC 80517對malonyl glucosides之醣苷鍵水解效率不佳,且生物轉換速率隨著菌體生長過程逐漸下降,僅有少量在菌體生長初期生成之aglycones被進一步磷酸化,導致B. subtilis BCRC 80517無法有效將malonyl glucosides轉換生成isoflavone 7-O-phosphate。 | zh_TW |
dc.description.abstract | Isoflavones are a group of plant secondary metabolites that occur mostly in soybean (Glycine max). There are 4 types of isoflavones found in soybeans, consisting of isoflavone aglycones and their corresponding conjugation forms (malonyl glucosides, acetyl glucosides and glucosides). Due to the similar chemical structure between isoflavone aglycones and estradiol, aglycones were referred to be a class of phytoestrogens. Among all types of soy isoflavones, aglycones have been reported as the bioactive forms. However, aglycones have shown low bioavailability owing to their poor water solubility. In our previous study, Bacillus subtilis var. natto BCRC 80517 showed the capability to convert isoflavone aglycones into isoflavone 7-O-phosphates which are highly water-soluble. Glucosides would be deglycosylated into their corresponding aglycones then further converted into isoflavone 7-O-phosphates. However, malonyl glucosides could only be deglycosylated into their corresponding aglycones without forming phosphate conjugates. The aim of this work was to figure out the reason why malonyl glucosides contribute to the failure of biotransformation by BCRC 80517. Firstly, we found that there was no significant effect on the bacterial growth while BCRC 80517 cultivated with malonyl glucosides. Then, we explored whether the hydrolysate of malonyl glucosides by β-glucosidase impact on the phosphorylation of aglycones by BCRC 80517. The results revealed that neither malonic acid nor glucose 6-malonate could inhibit the production of isoflavone 7-O-phosphates during the biotransformation. Moreover, the metabolites from the culture broth of BCRC 80517 with malonyl glucosides showed no inhibition on the phosphorylation of aglycones, either. And meanwhile, we found that the biotransformation performance varied considerably by the growth status of BCRC 80517 cells. The biotransformation rate was the most efficient when the bacteria grew at the exponential phase of growth, and the performance of biotransformation decreased gradually along with the bacterial growth. Besides, the results from comparing the deglycosylation efficiency between malonyl glucosides and glucosides of soy isoflavone by Bacillus subtilis var. natto BCRC 80517 revealed that malonyl glucosides were carried out more slowly than glucosides. Therefore, we concluded the dominant factors of the phosphate esters of isoflavone not being generated by the biotransformation with malonyl glucosides of soy isoflavone would be highly related to inferior substrate specificity with deglycosylation and the attenuation of phosphorylation along with the bacterial growth. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:16:37Z (GMT). No. of bitstreams: 1 ntu-104-R02623011-1.pdf: 4974966 bytes, checksum: c8aec1e5638b5ee4028600a197df0b08 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書
誌謝 I 中文摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XI 附錄 XI 縮寫對照表 XII 第一章 前言 1 第二章 文獻回顧 2 第一節 大豆異黃酮 2 1. 大豆簡介 2 2. 異黃酮之結構與生理活性 2 3. 異黃酮於人體之吸收與代謝 3 4. 異黃酮之生體可用率 4 第二節 異黃酮之生物催化與生物轉換 16 1. 類黃酮之生物催化與生物轉換 16 2. 去醣基化 (Deglycosylation) 16 3. 醣基化 (Glycosylation) 18 3. 羥基化 (Hydroxylation) 19 4. 磷酸化 (Phosphorylation) 19 第三節 納豆菌 (Bacillus subtilis var. natto) 26 第三章 材料與方法 29 第一節 實驗材料 29 1. 實驗菌株 29 2. 大豆異黃酮 29 3. 培養基組成 30 4. 藥品與溶劑 30 5. 儀器設備 31 第二節 實驗方法 32 1. 種菌之培養 32 2. 配醣基異黃酮(aglycones)之生物轉換系統 32 3. Malonyl glucosides對B. subtilis BCRC 80517生長之影響 32 4. Malonyl glucosides, malonic acid和glucose 6-malonate對aglycones進行生物轉換之影響 33 5. B. subtilis BCRC 80517和malonyl glucosides共培養之代謝物對aglycones進行生物轉換之影響 34 6. Malonyl glucosides經由菌體自身酵素水解之產物對aglycones進行生物轉換之影響 35 7. B. subtilis BCRC 80517不同生長階段的生物轉換效率 35 8. B. subtilis BCRC 80517之產孢試驗 36 9. B. subtilis BCRC 80517對不同帶醣基異黃酮的去醣基效率 36 10. 異黃酮之高效液相層析儀分析條件 37 11. 異黃酮含量之計算 38 12. 異黃酮磷酸酯生物轉換率之計算方式 39 13. 統計分析 39 第四章 結果與討論 40 第一節 Malonyl glucosides對B. subtilis BCRC 80517生長之影響 40 第二節 探討影響aglycones進行生物轉換之可能因素 40 1. Malonyl glucosides, malonic acid和glucose 6-malonate對aglycones進行生物轉換之影響 40 2. B. subtilis BCRC 80517和malonyl glucosides共同培養之代謝物對aglycones進行生物轉換之影響 43 3. Malonyl glucosides經由菌體自身酵素水解之產物對aglycones進行生物轉換之影響 44 第三節 B. subtilis BCRC 80517不同生長階段的生物轉換效率 62 第四節 B. subtilis BCRC 80517之產孢過程 64 第五節 B. subtilis BCRC 80517對不同帶醣基異黃酮的去醣基效率 66 第六節 綜合討論 68 第五章 結論 72 第六章 參考文獻 73 附錄 82 | |
dc.language.iso | zh-TW | |
dc.title | Bacillus subtilis var. natto BCRC 80517對丙二醯葡萄糖苷異黃酮生物轉換成磷酸酯衍生物之研究 | zh_TW |
dc.title | Studies on the Biotransformation of Malonyl Glucosides of Isoflavone to 7-O-phosphate Conjugates by Bacillus subtilis var. natto BCRC 80517 | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李敏雄,陳錦樹,鍾玉明,胡紹揚 | |
dc.subject.keyword | Bacillus subtilis,大豆異黃酮,丙二醯葡萄糖?異黃酮,生物轉換,磷酸酯衍生物, | zh_TW |
dc.subject.keyword | Bacillus subtilis,soy isoflavone,malonyl glucosides,biotransformation,phosphate esters, | en |
dc.relation.page | 85 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
dc.date.embargo-lift | 2300-01-01 | - |
Appears in Collections: | 農業化學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-104-1.pdf Restricted Access | 4.86 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.