請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52481完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋孔彬 | |
| dc.contributor.author | Yi-Hsien Hsiao | en |
| dc.contributor.author | 蕭逸嫻 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:16:01Z | - |
| dc.date.available | 2015-08-19 | |
| dc.date.copyright | 2015-08-19 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | 1. 衛生福利部統計處, 民國103年死因統計年報. 2015.
2. Tearney, G.J., et al., In vivo endoscopic optical biopsy with optical coherence tomography. Science, 1997. 276(5321): p. 2037-9. 3. Schwarz, R.A., et al., Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe. Applied Optics, 2008. 47(6): p. 825-834. 4. Chang, V.T., et al., Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy. Neoplasia, 2009. 11(4): p. 325-32. 5. Arifler, D., et al., Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements. J Biomed Opt, 2006. 11(6): p. 064027. 6. Mahadevan-Jansen, A. and R.R. Richards-Kortum, Raman spectroscopy for the detection of cancers and precancers. J Biomed Opt, 1996. 1(1): p. 31-70. 7. 畢襄辰, 移動式高光譜顯微影像系統之建構與實測. 2012. 8. 施光偉, 移動式漫反射光譜系統建立與人體口腔黏膜參數萃取. 2013. 9. 蘇鈺惠, 利用漫反射光譜及螢光光譜進行仿體強度分佈之分析. 2013. 10. Sung, K.B., et al., Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra. J Biomed Opt, 2014. 19(7): p. 77002. 11. 許芳瑋, 以GPU加速蒙地卡羅演算法並分析漫反射和螢光光譜. 2014. 12. Fox, S., Human Physiology. 2010: McGraw-Hill Education. 13. Schwarz, R.A., et al., Prospective evaluation of a portable depth-sensitive optical spectroscopy device to identify oral neoplasia. Biomedical Optics Express, 2011. 2(1): p. 89-99. 14. Georgakoudi, I., et al., NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res, 2002. 62(3): p. 682-7. 15. Drezek, R., et al., Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications. J Biomed Opt, 2001. 6(4): p. 385-96. 16. van Leeuwen-van Zaane, F., et al., Intrinsic photosensitizer fluorescence measured using multi-diameter single-fiber spectroscopy in vivo. J Biomed Opt, 2014. 19(1): p. 15010. 17. Pavlova, I., et al., Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue. Clin Cancer Res, 2008. 14(8): p. 2396-404. 18. Pavlova, I., et al., Monte Carlo model to describe depth selective fluorescence spectra of epithelial tissue: applications for diagnosis of oral precancer. J Biomed Opt, 2008. 13(6): p. 064012. 19. Lane, P.M., et al., Simple device for the direct visualization of oral-cavity tissue fluorescence. J Biomed Opt, 2006. 11(2): p. 024006. 20. Amelink, A., et al., Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy. J Biomed Opt, 2008. 13(5): p. 054051. 21. Müller, M.G., et al., Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption. Appl Opt, 2001. 40(25): p. 4633-46. 22. Palmer, G.M. and N. Ramanujam, Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media. J Biomed Opt, 2008. 13(2): p. 024017. 23. Liu, C., et al., Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model. J Biomed Opt, 2012. 17(7): p. 077012. 24. Wang, L., S.L. Jacques, and L. Zheng, MCML--Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed, 1995. 47(2): p. 131-46. 25. Hulst, H.C.v.d., Light scattering by small particles. 1981, New York: Dover Publications. 470 p. 26. Ma, X., et al., Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm. Phys Med Biol, 2003. 48(24): p. 4165-72. 27. Bohren, C.F. and D.R. Huffman, Absorption and scattering of light by small particles. 1983, New York: Wiley. xiv, 530 p. 28. Liu, Q. and N. Ramanujam, Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media. J Opt Soc Am A Opt Image Sci Vis, 2007. 24(4): p. 1011-25. 29. Nvidia, C. U. D. A. C programming guide version 7.0. NVIDIA Corporation, Santa Clara, CA, 2010. 30. Welch, A.J., et al., Propagation of fluorescent light. Lasers Surg Med, 1997. 21(2): p. 166-78. 31. Pery, E., et al., Monte Carlo modeling of multilayer phantoms with multiple fluorophores: simulation algorithm and experimental validation. J Biomed Opt, 2009. 14(2): p. 024048. 32. Pfefer, T.J., et al., Multiple-fiber probe design for fluorescence spectroscopy in tissue. Appl Opt, 2002. 41(22): p. 4712-21. 33. Qu, J., et al., Optical properties of normal and carcinomatous bronchial tissue. Appl Opt, 1994. 33(31): p. 7397-405. 34. Pavlova, I., et al., Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties. J Biomed Opt, 2009. 14(1): p. 014009. 35. Pu, Y., et al., Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studied using native fluorescence spectroscopy with selective excitation wavelength. J Biomed Opt, 2010. 15(4): p. 047008. 36. van Gemert, M.J., et al., Skin optics. IEEE Trans Biomed Eng, 1989. 36(12): p. 1146-54. 37. Saidi, I.S., Transcutaneous optical measurement of hyperbilirubinemia in neonates. 1992. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52481 | - |
| dc.description.abstract | 惡性腫瘤為國人近年來十大死因之首,其中十大癌症以大腸癌、口腔癌、子宮頸癌等好發於黏膜之癌症為大宗。由於目前臨床針對上皮黏膜癌化診斷困難,已有許多研究團隊採用生醫光譜技術於黏膜組織之癌前病變診斷。本研究主要目的為建立移動式成像光譜系統之螢光光譜標準校正流程,包含光譜形狀與相對強度校正、利用單層液態仿體校正兩種校正方法,比較兩種方法的校正結果,並進行仿體實驗,驗證系統表現性與本實驗室所撰寫之螢光蒙地卡羅演算法精確性;仿體組成為聚苯乙烯微米小球、血紅蛋白與螢光分子,包含單層液態仿體與雙層固態仿體,亦進行活體口腔黏膜正常組織量測,分析其螢光光譜組成成份,量化自體螢光物質螢光效率。
研究結果顯示利用單層液態仿體校正之光譜與螢光蒙地卡羅順向模擬光譜絕對螢光強度方均根百分誤差約9%至14%,證明此校正方法可成功校正量測光譜,並使校正光譜能夠經由螢光蒙地卡羅演算法量化螢光效率。比較光譜形狀與相對強度校正、利用單層液態仿體校正方法的結果,方均根百分誤差約10%至22%,兩種方法所得到的校正光譜於SDS相對強度與光譜形狀稍有差異。雙層仿體校正結果與順向模擬光譜進行絕對螢光強度比較,方均根百分誤差約11%至48%。雙層仿體濃度設計是依據不同病理狀態下組織光學參數,包含正常、良性發炎、癌前病變黏膜組織,研究結果顯示良性發炎、癌前病變黏膜組織光學參數之雙層仿體放光波峰位移趨勢的不同,能以此作為辨別良性發炎與癌前病變之關鍵。 本研究量測正常受試者口腔黏膜螢光光譜並同點量測漫反射光譜,使用反向疊代蒙地卡羅漫反射光譜擬合工具萃取出組織散射和吸收係數,將此組織光學參數進行螢光蒙地卡羅順向模擬,量化NADH與膠原蛋白螢光效率,證實使用螢光蒙地卡羅演算法量化自體螢光物質螢光效率之可能性。 | zh_TW |
| dc.description.abstract | Malignant tumor has remained the number one leading cause of death in recent years. The main types of cancers include colorectal cancer, oral cancer, and cervical cancer that originates from the mucosa and are difficult to diagnose. Recently, many research teams have been working on the application of biomedical spectroscopy for the diagnosis of precancerous mucosa. The objective of this study is the development of a standard fluorescent spectroscopy calibration process for a movable image spectrograph system, including the calibration of shape and relative intensity as well as calibration by liquid phantoms. In this study, there are the comparison of two different calibration methods and the results of phantom experiments. The phantom experiments, which include liquid phantoms and two-layer phantoms, are to validate the performance of the system and the accuracy of the Monte Carlo algorithm. The compositions of phantoms are polystyrene microspheres, hemoglobin and fluorophores. In addition, we measured fluorescence spectra of normal buccal mucosa to quantify the fluorescence efficiencies of the autofluorescence molecules.
In the results, the root-mean-square percentage errors (RMSPE) of absolute fluorescence between calibrated spectra and Monte Carlo simulation of the liquid phantom ranges from 9% to 14%. This proves that this method can calibrate measured spectra and quantify the efficiencies of fluorescence using the Monte Carlo algorithm. The RMSPE of calibrated spectra of calibration of shape and relative intensity and calibration by liquid phantoms ranges from 10% to 22%. The RMSPE of absolute fluorescence between calibrated spectra and Monte Carlo simulation of the two-layer phantoms ranges from 11% to 48%. According to the optical parameters of normal, benign inflammation, and dysplasia tissue, six two-layer phantoms were designed. In the results, there is a difference of peak-shift direction between two-layer phantoms of benign inflammation and dysplasia tissue in 400 to 420 nm. This difference may be a key point for distinguishing between benign inflammation and dysplasia tissue. When we measured the buccal mucosal fluorescence spectra of normal volunteers, we measured diffuse reflectance spectra simultaneously. We extracted scattering parameters and absorption parameters of tissue by iterative curve fitting tool with inverse Monte Carlo model. We inputted the extracted optical parameters to the Monte Carlo forward model to quantify the fluorescence efficiencies of NADH and collagen. We proved the probability of quantifying the fluorescence efficiency by Monte Carlo algorithm. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:16:01Z (GMT). No. of bitstreams: 1 ntu-104-R02945022-1.pdf: 5272055 bytes, checksum: 25f438df85ccb0ccb02d266f21d1a736 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書.........................................................................................................I
誌謝...............................................................................................................................II 摘要..............................................................................................................................III ABSTRACT.................................................................................................................IV 目錄..............................................................................................................................VI 圖目錄.......................................................................................................................VIII 表目錄..........................................................................................................................XI 第一章 緒論 1.1 前言................................................................................................................1 1.2 研究動機........................................................................................................2 1.3 研究架構........................................................................................................3 第二章 理論與文獻回顧 2.1 上皮組織癌病變及診斷工具........................................................................5 2.2 螢光光譜原理................................................................................................7 2.3 組織自體螢光影像及光譜............................................................................9 2.4 內生性螢光光譜..........................................................................................12 2.5 漫反射蒙地卡羅演算法..............................................................................14 2.6 螢光蒙地卡羅演算法..................................................................................20 第三章 實驗設備與研究方法 3.1 實驗設計簡介..............................................................................................23 3.2 光學系統......................................................................................................23 3.2.1 移動式成像光譜系統..................................................................24 3.2.2 光纖探頭設計……......................................................................25 3.3 仿體製作及濃度設計..................................................................................27 3.3.1 單層液態仿體……......................................................................27 3.3.2 雙層固態仿體……......................................................................28 3.4 系統響應校正流程......................................................................................33 3.4.1 光譜形狀與相對強度校正..........................................................33 3.4.2 利用單層液態仿體進行校正......................................................35 3.5 螢光蒙地卡羅順向模擬..............................................................................37 3.6 反向疊代蒙地卡羅漫反射光譜擬合工具..................................................39 3.6.1 參數設定......................................................................................39 3.6.2 光譜處理......................................................................................41 3.6.3 擬合流程......................................................................................41 第四章 實驗結果與討論 4.1 單層液態仿體校正結果與蒙地卡羅順向模擬之誤差..............................43 4.2 光譜形狀與相對強度校正和單層液態仿體校正結果之比較..................44 4.3 雙層固態仿體實驗結果..............................................................................46 4.3.1 雙層固態仿體校正光譜與蒙地卡羅順向模擬之誤差..............46 4.3.2 不同光學參數之雙層固態仿體校正光譜比較..........................48 4.4 活體量測光譜與量化螢光效率..................................................................52 第五章 結論與未來展望 5.1 結論..............................................................................................................56 5.2 未來展望......................................................................................................57 參考文獻......................................................................................................................58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 螢光光譜 | zh_TW |
| dc.subject | 蒙地卡羅 | zh_TW |
| dc.subject | 黏膜 | zh_TW |
| dc.subject | 良性發炎 | zh_TW |
| dc.subject | 癌前病變 | zh_TW |
| dc.subject | benign inflammation | en |
| dc.subject | Monte Carlo | en |
| dc.subject | mucosa | en |
| dc.subject | dysplasia | en |
| dc.subject | fluorescence spectroscopy | en |
| dc.title | 利用螢光光譜辨別黏膜癌前病變 | zh_TW |
| dc.title | Using Fluorescence Spectroscopy to Distinguish Precancerous Mucosa | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫家偉,黃念祖,林致廷 | |
| dc.subject.keyword | 螢光光譜,蒙地卡羅,黏膜,良性發炎,癌前病變, | zh_TW |
| dc.subject.keyword | fluorescence spectroscopy,Monte Carlo,mucosa,benign inflammation,dysplasia, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 5.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
