請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52480
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳佩貞(Pei-Jen Chen) | |
dc.contributor.author | Yao Chu | en |
dc.contributor.author | 朱曜 | zh_TW |
dc.date.accessioned | 2021-06-15T16:15:59Z | - |
dc.date.available | 2015-08-20 | |
dc.date.copyright | 2015-08-20 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-17 | |
dc.identifier.citation | 厚生省。2012。鉛製給水管布設替りズ関エペ手引わ。
張勝輝,林淑美,史午康。2007。鉛管水質調查研究。自來水會刊,26(2),1-16。 陳佩貞,江峻蔚。2013。自來水配水管材釋出之奈米二氧化鉛對青鱂魚的生物有效性及毒性效應評估。碩士論文。台北。台灣大學農業化學系。 鄭信民,林麗娟。2002。X光繞射應用簡介。工業材料雜誌,181,100-108。 Alves Costa, J.R.M., M. Mela, H.C.d. Silva de Assis, É. Pelletier, M.A.F. Randi and C.A.d. Oliveira Ribeiro. 2007. Enzymatic inhibition and morphological changes in Hoplias malabaricus from dietary exposure to lead (II) or methylmercury. Ecotoxicology and Environmental Safety 67: 82-88. ATSDR, U. 2007. Toxicological profile for lead. US Department of Health and Human Services: 1-582. Cabiscol, E., J. Tamarit and J. Ros. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology 3: 3-8. Chen, D., D. Zhang, J.C. Yu and K.M. Chan. 2011. Effects of Cu2O nanoparticle and CuCl2 on zebrafish larvae and a liver cell-line. Aquatic Toxicology 105: 344-354. Chen, P.-J., S.-W. Tan and W.-L. Wu. 2012. Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish. Environmental Science & Technology 46: 8431-8439. Coello, W. F. and M. A. Q. Khan. 1996. Protein against heavy metal toxicity by mucus and scales in fish. Archives of Environmental Contamination and Toxicology 30: 319-326. Dai, W., L. Fu, H. Du, H. Liu and Z. Xu. 2010. Effects of montmorillonite on Pb accumulation, oxidative stress, and DNA damage in tilapia (Oreochromis niloticus) exposed to dietary Pb. Biological Trace Element Research 136: 71-78. Dave, G. and R. Xiu. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Archives of Environmental Contamination and Toxicology 21: 126-134. Davies, P., J. Goettl Jr, J. Sinley and N. Smith. 1976. Acute and chronic toxicity of lead to rainbow trout salmo gairdneri, in hard and soft water. Water Research 10: 199-206. Diegoli, S., A.L. Manciulea, S. Begum, I.P. Jones, J.R. Lead and J.A. Preece. 2008. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Science of the Total Environment 402: 51-61. Dryer, D.J. and G.V. Korshin. 2007. Investigation of the reduction of lead dioxide by natural organic matter. Environmental Science & Technology 41: 5510-5514. Edwards, M. and A. Dudi. 2004. Role of chlorine and chloramine in corrosion of lead-bearing plumbing materials. Journal American Water Works Association 96: 69-81. Edwards, M., M.R. Schock and T.E. Meyer. 1996. Alkalinity, pH, and copper corrosion by-product release. Journal-American Water Works Association 88: 81-94. Edwards, M., S. Triantafyllidou and D. Best. 2009. Elevated blood lead in young children due to lead-contaminated drinking water: Washington, DC, 2001-2004. Environmental Science & Technology 43: 1618-1623. Elimelech, M., X. Jia, J. Gregory and R. Williams. 1998. Particle deposition & aggregation: measurement, modelling and simulation, Butterworth-Heinemann. Ercal, N., H. Gurer-Orhan and N. Aykin-Burns. 2001. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry 1: 529-539. Federici, G., B.J. Shaw and R.D. Handy. 2007. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology 84: 415-430. Feng, Q., J. Wu, G. Chen, F. Cui, T. Kim and J. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research 52: 662-668. Fu, H. and P. Boffetta. 1995. Cancer and occupational exposure to inorganic lead compounds: a meta-analysis of published data. Occupational and Environmental Medicine 52: 73-81. García-Lestón, J., J. Méndez, E. Pásaro and B. Laffon. 2010. Genotoxic effects of lead: an updated review. Environment International 36: 623-636. Gomes, T.n., J.P. Pinheiro, I. Cancio, C.G. Pereira, C.t. Cardoso and M.J.o. Bebianno. 2011. Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environmental Science & Technology 45: 9356-9362. Griffitt, R.J., K. Hyndman, N.D. Denslow and D.S. Barber. 2009. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicological Sciences 107: 404-415. Griffitt, R.J., J. Luo, J. Gao, J.C. Bonzongo and D.S. Barber. 2008. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry 27: 1972-1978. Griffitt, R.J., R. Weil, K.A. Hyndman, N.D. Denslow, K. Powers, D. Taylor, et al. 2007. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environmental science & technology 41: 8178-8186. Hao, L. and L. Chen. 2012. Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicology and Environmental Safety 80: 103-110. Hong, F., C. Wu, C. Liu, L. Wang, F. Gao, F. Yang, et al. 2007. Direct evidence for interaction between lead ions and kidney DNA from silver crucian carp. Chemosphere 68: 1442-1446. Hwang, S., D. Martinez, P. Perez and C. Rinaldi. 2011. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater. Environmental Pollution 159: 3411-3415. IARC. 1987. Lead and lead compounds, Inorganics. IARC (International Agency for Research on Cancer) Monographs 23. Imlay, J.A. 2003. Pathways of oxidative damage. Annual Reviews in Microbiology 57: 395-418. Isaac, R., L. Gil, A. Cooperman, K. Hulme, B. Eddy, M. Ruiz, et al. 1997. Corrosion in drinking water distribution systems: a major contributor of copper and lead to wastewaters and effluents. Environmental Science & Technology 31: 3198-3203. Ishikawa, Y. 2000. Medakafish as a model system for vertebrate developmental genetics. Bioessays 22: 487-495. Jana, S. and M.A. Choudhuri. 1982. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquatic Botany 12: 345-354. Jang, H., L.E. Pell, B.A. Korgel and D.S. English. 2003. Photoluminescence quenching of silicon nanoparticles in phospholipid vesicle bilayers. Journal of Photochemistry and Photobiology A: Chemistry 158: 111-117. Johnston, B.D., T.M. Scown, J. Moger, S.A. Cumberland, M. Baalousha, K. Linge, et al. 2010. Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environmental Science & Technology 44: 1144-1151. Keller, A.A., H. Wang, D. Zhou, H.S. Lenihan, G. Cherr, B.J. Cardinale, et al. 2010. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environmental Science & Technology 44: 1962-1967. Kinoshita, M., K. Murata, K. Naruse and M. Tanaka. 2009. Medaka: biology, management, and experimental protocols,Wiley-Blackwell. Klaine, S.J., P.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, et al. 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry 27: 1825-1851. Laaksonen, T., P. Ahonen, C. Johans and K. Kontturi. 2006. Stability and Electrostatics of Mercaptoundecanoic Acid‐Capped Gold Nanoparticles with Varying Counterion Size. ChemPhysChem 7: 2143-2149. Labrot, F., D. Ribera, M.S. Denis and J. Narbonne. 1996. In vitro and in vivo studies of potential biomarkers of lead and uranium contamination: lipid peroxidation, acetylcholinesterase, catalase and glutathione peroxidase activities in three non-mammalian species. Biomarkers 1: 21-28. Levin, R. 1997. Lead in drinking water. Economic analysis at EPA: Assessing regulatory impact: 205-232. Li, H., Q. Zhou, Y. Wu, J. Fu, T. Wang and G. Jiang. 2009. Effects of waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicology and Environmental Safety 72: 684-692. Lin, Y.-P. and R.L. Valentine. 2008. The release of lead from the reduction of lead oxide (PbO2) by natural organic matter. Environmental Science & Technology 42: 760-765. Lin, Y.-P. and R.L. Valentine. 2009. Reduction of lead oxide (PbO2) and release of Pb (II) in mixtures of natural organic matter, free chlorine and monochloramine. Environmental Science & Technology 43: 3872-3877. Lin, Y.P. and R.L. Valentine. 2008. Release of Pb(II) from monochloramine-mediated reduction of lead oxide (PbO2). Environmental Science & Technology 42: 9137-9143. Matsumura, Y., K. Yoshikata, S.-i. Kunisaki and T. Tsuchido. 2003. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology 69: 4278-4281. Nel, A., T. Xia, L. Mädler and N. Li. 2006. Toxic potential of materials at the nanolevel. Science 311: 622-627. Ohiai, E.-I. 1995. Toxicity of heavy metals and biological defense: Principles and applications in bioinorganic chemistry-VII. Journal of chemical education 72: 479-484. Panda, S.K. 2007. Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. Journal of Plant Physiology 164: 1419-1428. Paustenbach, D J, 2000. The practice of exposure assessment: A state-of-the-art review (Reprinted from Principles and Methods of Toxicology, 4th edition, 2001). Journal of Toxicology and Environmental Health-Part B-Critical Reviews, 3, 179-291. Reith J, Berking A, Mayer C, 2011. Characterization of an N-acetylmuramic acid/N-acetylglucosamine kinase of Clostridium acetobutylicum. J Bacteriol 193, 5386–5392. Renner, R. 2004. Plumbing the depths of DC's drinking water crisis. Environmental Science & Technology 38: 224a-227a. Renner, R. 2009. Out of plumb when water treatment causes lead contamination. Environmental Health Perspectives 117: A542-A547. Rogers, J., J. Richards and C. Wood. 2003. Ionoregulatory disruption as the acute toxic mechanism for lead in the rainbow trout (Oncorhynchus mykiss). Aquatic toxicology 64: 215-234. SCENIHR. 2007. Opinion on the appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterials. Scientific Committee on Emerging and Newly Identified Health Risks. Shafiq-ur-Rehman. 2003. Lead-exposed increase in movement behavior and brain lipid peroxidation in fish. Journal of Environmental Science and Health, Part A 38: 631-643. Shaw, B.J., G. Al-Bairuty and R.D. Handy. 2012. Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout (Oncorhynchus mykiss): Physiology and accumulation. Aquatic Toxicology. Shaw, B.J. and R.D. Handy. 2011. Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environment International 37: 1083-1097. Shi, Z. and A.T. Stone. 2009. PbO2 (s, plattnerite) reductive dissolution by aqueous manganous and ferrous ions. Environmental Science & Technology 43: 3596-3603. Silbergeld, E.K. 2003. Facilitative mechanisms of lead as a carcinogen. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 533: 121-133. Thill, A., O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan, et al. 2006. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environmental Science & Technology 40: 6151-6156. Triantafyllidou, S., J. Parks and M. Edwards. 2007. Lead particles in potable water. Journal American Water Works Association 99: 107-117. Vasquez, F.A., R. Heaviside, Z.J. Tang and J.S. Taylor. 2006. Effect of free chlorine and chloramines on lead release in a distribution system. Journal American Water Works Association 98: 144-154. Vevers, W.F. and A.N. Jha. 2008. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17: 410-420. Wakefield, G., M. Green, S. Lipscomb and B. Flutter. 2004. Modified titania nanomaterials for sunscreen applications–reducing free radical generation and DNA damage. Materials Science and Technology 20: 985-988. Wang, Y., J. Wu, Z. Wang, A. Terenyi and D.E. Giammar. 2012. Kinetics of PbO2 reductive dissolution: Role of Pb (II) adsorption and surface speciation. Journal of Colloid and Interface Science. Wang, Y., Y.J. Xie, W.L. Li, Z.M. Wang and D.E. Giammar. 2010. Formation of lead(IV) oxides from lead(II) compounds. Environmental Science & Technology 44: 8950-8956. WHO. 2006. Water Sanitation and Health: Guidelines by World Health Organization for drinking-water quality. WHO. 2011. Lead in drinking-water. Background document for development of WHO guidelines for drinking-water quality. Wittbrodt, J., A. Shima and M. Schartl. 2002. Medaka—a model organism from the far East. Nature Reviews Genetics 3: 53-64. Wu, Y. and Q. Zhou. 2013. Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environmental Toxicology and Chemistry 32: 165-173. Wu, Y., Q. Zhou, H. Li, W. Liu, T. Wang and G. Jiang. 2010. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquatic Toxicology 100: 160-167. Xie, Y. 2010. Dissolution, formation, and transformation of the lead corrosion product PbO2: rates and mechanisms of reactions that control lead release in drinking water distribution systems, Washington University. Yang, K., D. Lin and B. Xing. 2009. Interactions of humic acid with nanosized inorganic oxides. Langmuir 25: 3571-3576. Yeo, M. and M. Kang. 2008. Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bulletin-Korean Chemical Society 29: 1179. Zhang, Y. and Y.-P. Lin. 2011. Determination of PbO2 formation kinetics from the chlorination of Pb (II) carbonate solids via direct PbO2 measurement. Environmental Science & Technology 45: 2338-2344. Zhang, Y. and Y.-P. Lin. 2012. Adsorption of Free Chlorine on Tetravalent Lead Corrosion Product (PbO2). Environmental Engineering Science 29: 52-58. Zhang, Y., D.-Q. Ng and Y.-P. Lin. 2012. Iodide-assisted total lead measurement and determination of different lead fractions in drinking water samples. Journal of Environmental Monitoring 14: 1846-1852. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52480 | - |
dc.description.abstract | 奈米二氧化鉛 (nPbO2(s)) 為氯氣消毒之自來水系統中鉛管腐蝕產物的組成之一,其可能透過水質的改變 (pH、Eh及有機質含量等) 進而釋放出可溶性鉛離子 (Pb2+ (aq))。此外,nPbO2(s) 可能透過水流速度改變進而脫附,並直接提高自來水中的鉛總濃度。前人研究指出nPbO2(s) 在水溶液中的動力變化 (顆粒聚集及沉降行為) 會影響青鱂魚 (Oryzias latipes) 之生物有效性 (Bioavailability)。此外nPbO2(s) 會抑制青鱂魚幼魚的乙醯膽鹼酯酶 (Acetylcholinesterase, AChE) 活性。然而nPbO2(s) 進入青鱂魚體內的途徑、不同鉛物種對青鱂魚的生物可及性 (Bioaccessibility)、生物累積 (Bioaccumulation) 之情形,以及顆粒粒徑是否影響其毒性行為等尚待釐清。
本研究將青鱂魚分別暴露於nPbO2(s) (20-40 mg/L)、大顆粒二氧化鉛 (bPbO2(s)) (20-40 mg/L) 及硝酸鉛 (Pb2+(aq)) (200-325 µ/L) 三種材料3天至14天,並藉由X光吸收近邊緣結構 (X-ray Absorption Near-Edge Structures,XANES) 以及伏安法 (Voltammetry) 分析其暴露途徑器官 (鰓、消化道) 中鉛物種的變化,進而探討不同粒徑材料的生物可及性差異。此外,透過分析魚腦及魚肝內的鉛累積含量,以比較不同材料間所造成的鉛元素生物累積之差異情形。最後,評估不同粒徑材料對其神經毒性、氧化壓力以及鈉鉀幫浦活性影響之程度。 研究結果顯示,nPbO2(s) 及bPbO2(s) 在鰓上具有比消化道較高的解離程度。這可能表示在水中解離性低的nPbO2(s) 會在鰓的表面發生還原溶解的現象,其中又以nPbO2(s) 較bPbO2(s) 有較明顯的溶解現象。雖然消化道的鉛解離程度較低,其總鉛濃度卻較鰓高,因此消化道應仍是青鱂魚攝入PbO2(s) 顆粒之主要途徑之一。XANES圖譜也顯示鰓上的鉛物種型態較接近於Pb2+(aq),消化道內的鉛物種變化則較不明顯。魚肝的鉛累積濃度結果,三種材料間無明顯差異,魚腦的鉛累積濃度則為bPbO2(s) 最高,nPbO2(s) 與Pb2+(aq) 累積濃度較低且近似。神經毒性方面,暴露7天三種材料皆會抑制青鱂魚成魚腦部AChE活性,但14天暴露下,硝酸鉛 (325 µ/L)、nPbO2(s) (40 mg/L) 及 bPbO2(s) (40 mg/L) 暴露之青鱂魚腦部之AChE活性卻沒有受到抑制,並與控制組間沒有顯著差異。可能是14天較高鉛濃度暴露下,誘導了青鱂魚腦部AChE活性的上升以及回復,氧化壓力的結果顯示,暴露14天的處理之下,以硝酸鉛 (325 µ/L) 的處理組青鱂魚肝臟中的脂質過氧化產物MDA含量最高,nPbO2(s) 及 bPbO2(s) 的MDA含量則較少,顯示鉛離子可能是主要導致脂質過氧化的因子。魚鰓之NKA活性則在第14天才開始有顯著的變化,其中以硝酸鉛 (325 µ/L) 的處理組有較明顯的抑制現象,nPbO2(s) 及 bPbO2(s) 雖然有抑制的趨勢,但是較不明顯。綜合上述的結果推測nPbO2(s)、bPbO2(s) 皆可能會造成水生生物的神經毒性、氧化壓力以及鈉鉀幫浦的干擾,然而詳細的作用機制仍待後續研究進一步探討。 | zh_TW |
dc.description.abstract | Previous study indicates that nPbO2(s) causes inhibition of acetylcholinesterase (AChE) activity in larvae of medaka fish (Oryzias latipes). The bioavailability of nPbO2(s) is affected by particle aggregation and precipitation in water. However the uptake mechanism of nPbO2(s) in medaka fish and its bioaccessibility, bioaccumulation, and toxicity potency to aquatic organisms remain unclear. The objectives of this study is to understand the uptake mechanisms, bioaccumulation and toxic effects (on nervous system disruption) of 3 lead species [nPbO2(s), bulky lead dioxide bPbO2(s), and Pb2+(aq)] in medaka fish. Particle diameters of nPbO2(s) and bPbO2(s) measured with Transmission Electron Microscopy (TEM) were 34.5 ± 11.4 and 132.4 ± 54.2 nm respectively. The hydrodynamic diameters of nPbO2(s) and bPbO2(s) meausred with Dynamic light scattering (DLS) were 132.6 ± 36.9 and 217.3 ± 57.0 nm respectively. Results showed that both of nPbO2(s) and bPbO2(s) revealed low water solubility in dosing solutions, but nPbO2(s) had higher solubility than bPbO2(s). X-ray absorption near-edge structure (XANES) spectra also showed that both lead dioxide particles were stable in dosing solutions. However, XANES results and quantification of lead speciation showed that both nPbO2(s) and bPbO2(s) can be reductively dissolved into Pb(II) in gill and intestine with higher extend in gill tissues. As well, the nPbO2(s) has higher dissolution than bPbO2(s) in fish intestine. In addition, lead bioconcentration in liver of treated fish have no difference among lead groups; however, bPbO2(s) treatment appeared to result in higher lead bioaccumulation in fish brain, as compared with nPbO2(s) and Pb2+(aq) treatment. We observed dose-dependent inhibition of AChE activity in the brain of treated fish with 7-day exposures to three lead solutions; however, such inhibition appeared to be restored with 14-day exposure at higher concentrations. Both of nPbO2(s) and bPbO2(s) can increase the content of MDA in liver dose-dependently and the highest MDA content was found in Pb2+(aq) treated fish liver. Finally, the inhibition of NKA activity in gill was observed in nPbO2(s) and bPbO2(s) treated fish with 14-day exposure, and greatest inhibition was found in Pb2+(aq) treated fish with 14-day exposure. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:15:59Z (GMT). No. of bitstreams: 1 ntu-104-R02623021-1.pdf: 3304057 bytes, checksum: 999cbde601802163a6d6463a4a0b43b5 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目錄
誌謝 II 縮寫對照表 IIII 摘要 IV Abstract VI 目錄 VIII 圖目錄 XI 表目錄 XIII 一、前言及研究動機 1 二、文獻回顧 2 2.1 奈米二氧化鉛 (nPbO2(s)) 的形成機制 2 2.2 美國華盛頓地區之自來水鉛汙染案例 4 2.3 鉛管分布現況 5 2.4 Pb2+(aq) 的生物毒性 6 2.5 Pb2+(aq) 對於人體之健康危害 6 2.6 nPbO2(s) 進入環境中的可能途徑及在環境中的行為與宿命 7 2.7 奈米顆粒之生物攝入途徑、生物可及性、生物累積、生物分布及生物毒性相關研究之回顧 8 2.7.1 水生生物攝入奈米顆粒之途徑相關研究之回顧 8 2.7.2奈米顆粒之生物可及性相關研究之回顧 8 2.7.3 奈米顆粒之生物累積性相關研究之回顧 9 2.7.4 奈米顆粒之生物分布相關研究之回顧 9 2.7.5 奈米顆粒之生物毒性 10 2.7.5.1 NPs在細胞層次之毒性作用機制 10 2.7.5.2 NPs對水生生物之毒性效應 13 2.7.5.3 NPs及金屬離子間毒性效應的差異 14 2.8 模式生物 16 2.9 研究目的 17 三、材料與方法 18 3.1 研究架構及說明 18 3.2 實驗材料 21 3.2.1 化學藥品與試劑 21 3.2.2 儀器設備 22 3.3 二氧化鉛顆粒 (nPbO2與bPbO2) 的基本性質分析 23 3.3.1 一次粒徑 (Pimary particle size) 以及形態觀測 23 3.3.2 水合直徑 (Hydrodynamic diameter) 測定 23 3.3.3 界達電位 (Zeta potential) 測定 24 3.3.4 比表面積 (Specific surface area) 測定 24 3.3.5 X光粉末繞射 (X-ray powder diffraction) 25 3.3.6 X光吸收近邊緣結構(X-ray Absorption Near Edge Structure,XANES) 25 3.4 模式生物飼養條件 26 3.5 去氯自來水基本性質 27 3.5.1 陰離子之測定 27 3.5.2 陽離子之測定 27 3.6 nPbO2(s)、bPbO2(s) 及Pb2+(aq) 暴露溶液的可溶性鉛定量、物種分析與鉛物種平衡型態之預測 28 3.6.1 暴露溶液配製方法 28 3.6.2 暴露溶液之定量分析-可溶性鉛 [Pb2+] 28 3.6.3 暴露溶液中的鉛物種變化-XANES 29 3.6.4 鉛物種平衡型態之預測分析 29 3.7 nPbO2(s) 及bPbO2(s) 於鰓以及消化道組織的分布觀測 30 3.7.1 實驗設計 30 3.7.2 暴露溶液配製方法 30 3.7.3 樣品製備以及觀測 30 3.8 nPbO2(s)、bPbO2(s) 及 Pb2+(aq) 於青鱂魚暴露途徑器官之鉛物種變化 32 3.8.1 實驗設計 32 3.8.2 暴露溶液配製方法 34 3.8.3 樣品製備以及觀測 35 3.9 青鱂魚暴露nPbO2(s)、bPbO2(s) 及 Pb2+(aq) 之生物可及性與生物累積實驗 36 3.9.1 實驗設計 38 3.9.2 暴露溶液配製方法 38 3.9.3 生物組織可溶性鉛 (Pb2+)、殘餘鉛 (Residue Pb) 及總鉛 (Total Pb) 38 3.10 生物急毒性實驗 40 3.11 非致死毒性效應試驗 40 3.11.1 魚體樣本均質 (homogenization) 及蛋白質濃度定量 41 3.11.2 nPbO2(s)、bPbO2(s) 及 Pb2+(aq) 對青鱂魚成魚之神經毒性 41 3.11.3 nPbO2(s)、bPbO2(s) 及 Pb2+(aq) 對青鱂魚成魚之滲透壓調節干擾 42 3.11.4 nPbO2(s)、bPbO2(s) 及 Pb2+(aq) 對青鱂魚成魚之氧化傷害 43 3.12 統計分析 44 四、結果與討論 45 4.1 二氧化鉛顆粒基本性質分析結果 45 4.2 去氯自來水基本性質分析結果 51 4.3 暴露溶液24小時內二氧化鉛溶解度、鉛物種分析、水質監測與鉛物種之預測結果 52 4.3.1 暴露溶液24小時內二氧化鉛溶解度之變化 52 4.3.2 暴露溶液之鉛物種分析 54 4.3.3 暴露期間水質監測結果 56 4.3.4 暴露溶液之鉛物種之預測分析 58 4.4 攝入途徑以及毒性機制之探討 59 4.4.1 nPbO2(s) 與 bPbO2(s) 於暴露途徑器官組織之分布情形 (Transmission x-ray microscope, TXM) 59 4.4.2 nPbO2(s) 與 bPbO2(s) 於暴露途徑器官之鉛物種分析 (X-ray absorption near edge structure, XANES) 62 4.4.3 nPbO2(s) 與 bPbO2(s) 於暴露器官之還原溶解定量分析 (Pb2+/Total Pb (%)) 64 4.5 生物累積效應之探討 66 4.6 生物毒性效應 69 4.6.1 生物急毒性試驗 69 4.6.2 非致死毒性效應試驗 71 4.6.2.1 nPbO2(s)、bPbO2(s) 及 Pb2+(aq) 對青鱂魚成魚之神經毒性結果 71 4.6.2.2 nPbO2(s)、bPbO2(s) 及 Pb2+(aq) 對青鱂魚成魚之鈉鉀幫浦活性干擾結果 73 4.6.2.3 nPbO2(s)、bPbO2(s) 及 Pb2+(aq) 對青鱂魚成魚之氧化壓力傷害結果 75 五、結論 77 六、附錄圖表 77 6.1不同鉛化合物標準品之XANES原始圖譜 79 6.2不同暴露溶液於24小時內之鉛物種分析XANES原始圖譜,(A) 為暴露溶液懸浮液之圖譜;(B) 為暴露溶液沉澱物之圖譜 80 七、參考文獻 82 圖目錄 圖2.1 鉛管腐蝕產物 nPbO2(s) 的形成機制 3 圖2.2 受腐蝕之鉛管縱切剖面圖 3 圖2.3 NPs產生ROS並對生物體造成氧化相關的毒性傷害 12 圖3.1 論文實驗架構 20 圖3.2 青鱂魚暴露途徑器官之鉛物種變化實驗設計示意圖 33 圖3.3 青鱂魚生物可及性與生物累積試驗實驗設計示意圖 37 圖3.4 雙酵素 (PK與LDH) 與三磷酸腺苷酶 (ATPase) 的反應式 42 圖3.5 統計分析檢定之流程 44 圖4.1 以SEM掃描 nPbO2(s) 之電顯圖 47 圖4.2 TEM 所拍攝之去離子水中 (a) nPbO2(s) 及 (b) bPbO2(s) 之影像 47 圖4.3 XRD圖譜 (a) nPbO2(s)、(b) bPbO2(s) 與 (c) 標準品β-PbO2 49 圖 4.4 不同鉛化合物標準品之XANES圖譜 50 圖 4.5 不同暴露溶液於24小時內之可溶性鉛之濃度 53 圖 4.6 不同暴露溶液於24小時內之鉛物種分析XANES圖譜,(A) 為暴露溶液懸浮液之圖譜;(B) 為暴露溶液沉澱物之圖譜 55 圖 4.7 水質監測結果 (A) pH;(B) DO;(C) ORP 57 圖 4.8 青鱂魚消化道之TXM影像 60 圖 4.9 青鱂魚鰓組織之TXM影像 61 圖 4.10 暴露途徑器官組織之鉛物種分析XANES圖譜,(A) 為24小時內青鱂魚消化道之XANES圖譜;(B) 為暴露三天後青鱂魚消化道以及外添加樣本之XANES圖譜;(C) 為暴露三天後青鱂魚鰓組織以及外添加樣本之XANES圖譜 63 圖 4.11 暴露三天之青鱂魚 (A) 肝與 (B) 腦當中鉛元素之累積量 68 圖 4.12 青鱂魚成魚急毒性試驗結果 (A) 20 - 120 mg/L之Pb(NO3)2以及 (B) 125 – 1000 mg/L之bPbO2(s) 70 圖 4.13 青鱂魚成魚腦部AChE活性變化 72 圖 4.14 青鱂魚成魚鰓組織NKA活性變化 74 圖 4.15 暴露處理14天之青鱂魚成魚肝臟MDA含量 76 圖 6.1 不同鉛化合物標準品之XANES原始圖譜 79 圖 6.2 不同暴露溶液於24小時內之鉛物種分析XANES原始圖譜,(A) 為暴露溶液懸浮液之圖譜;(B) 為暴露溶液沉澱物之圖譜 80 表目錄 表3.1 微波消化的溫度與時間控制 39 表4.1 nPbO2(s) 與 bPbO2(s) 基本性質 48 表4.2 去氯自來水中的陰離子與陽離子之濃度 51 表4.3 利用Visual MINTEQ軟體所預測之暴露溶液中的鉛物種 58 表4.4 暴露途徑器官 (消化道、鰓) 上二氧化鉛顆粒還原溶解定量分析 (Pbퟐ+ ⁄ Total Pb) 結果 65 表6.1 暴露途徑器官組織之鉛物種分析XANES圖譜線性擬合結果 (Linear combinationfitting) 81 | |
dc.language.iso | zh-TW | |
dc.title | 不同粒徑之二氧化鉛對青鱂魚成魚的生物可及性、生物累積及毒性效應評估 | zh_TW |
dc.title | The bioaccessibility, bioaccumulation and toxicity of lead dioxide nanoparticles in adult medaka (Oryzias latipes): A comparative study with its bulk counterparts | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王尚禮(Shan-Li Wang),林逸彬(Yi-Pin Lin),侯文哲(Wen-Che Hou) | |
dc.subject.keyword | 奈米二氧化鉛,青?魚,生物可及性,生物累積性,生物有效性,急毒性試驗,神經毒性, | zh_TW |
dc.subject.keyword | nanoscale lead dioxide (nPbO2(s)),bioaccessibility,bioaccumulation,medaka (Oryzias Latipes),bioavailability,acute toxicity test,neurotoxicity, | en |
dc.relation.page | 87 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。