請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52475完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳瑞北(Ruey-Beei Wu) | |
| dc.contributor.author | Chen-Yeh Tung | en |
| dc.contributor.author | 童晟業 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:15:50Z | - |
| dc.date.available | 2015-08-20 | |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | [1] J.-S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications, John Wiley & Sons, Inc., 2001
[2] G. L. Matthaei, N. O. Fenzi, R. J. Forse, and S. M. Rohlfing, “Hairpincomb filters for HTS and other narrowband applications,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 8, pp. 1226–1231, Aug. 1997. [3] J.-S. Hong and M. J. Lancaster, “Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 7, pp. 1098–1107, Jul. 2000. [4] J.-T. Kuo, M.-J. Maa, and P.-H. Lu, “A microstrip elliptic function filter with compact miniaturized hairpin responses,” IEEE Microw. Wireless Compon. Lett., vol. 10, no. 3, pp. 94–95, Mar. 2000. [5] S.-Y. Lee and C.-M. Tsai, “New cross-coupled filter design using improved hairpin resonators,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2482–2490, Dec. 2000. [6] C.-C. Chen, Y.-R. Chen, and C.-Y. Chang, “Miniaturized microstrip crosscoupled filters using quarter-wave or quasi-quarter-wave resonators,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, pp. 120–131, Jan. 2003. [7] M. Makimoto and S.Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. MTT-28, no. 12, pp. 1413–1417, Dec. 1980. [8] M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 7, pp. 1078–1085, Jul. 1997. [9] J.-S. Park, J.-S. Yun, and D. Ahn, “A design of the novel coupledline bandpass filter using defected ground structure with wide stopband performance,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 2037–2043, Sep. 2002. [10] A. A-Rahman, A. R. Ali, S. Amari, and A. S. Omar, “Compact bandpass filters using defected ground structure (DGS) coupled resonators,” in IEEE MTT-S Int. Dig., pp. 1479–1482, Jun. 2005 [11] T. Yang, M. Tamura, and T. Itoh, “Compact hybrid resonator with series and shunt resonances used in miniaturized filters and balun filters,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 390–402, Feb. 2010. [12] X.-Y. Zhang and Q. Xue, “Harmonic-suppressed bandpass filter based on discriminating coupling,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 11, pp. 695–697, Nov. 2009. [13] C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “Novel compact net-type resonators and their applications to microstrip bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 755–762, Feb. 2006. [14] L.-K. Yeung and K.-L. Wu, “A compact second-order LTCC bandpass filter with two finite transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 337–341, Feb. 2003. [15] C.-F. Chang and S.-J. Chung, “Bandpass filter of serial configuration with two finite transmission zeros using LTCC technology,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2383–2388, Jul. 2005. [16] H.-H. Huang, S.-Y. Xu, and T.-S. Horng, “Fast prototype-based design approach to miniaturized LTCC band-pass filters using two reflection zeros,” Proceedings of the 36th European Microwave Conference, pp.545-548, Sep. 2006. [17] T. Yang, M. Tamura, and T. Itoh, “Super compact low-temperature co-fired ceramic bandpass filters using the hybrid resonator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 11, pp. 2896–2907, Nov. 2010. [18] X.-G. Wang, Y. Yun, and I.-H. Kang, “Compact multi-harmonic suppression LTCC bandpass filter using parallel short-ended coupled-line structure,” ETRI J., vol. 31, no. 3, pp. 254-262, Jun. 2009. [19] X.-Y. Zhang, X. Dai, H.-L. Kao, B.-H. Wei, Z.-Y. Cai, and Q. Xue, “Compact LTCC bandpass filter with wide stopband using discriminating coupling”, IEEE Trans. Compon., Packag. Manufact. Technol., vol. 4, no. 4, pp. 656-663, Apr. 2014. [20] C.-W. Tang and S.-F. You, “Design methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 717–723, Feb. 2006. [21] T. Yang, P.-L. Chi, and T. Itoh, “High isolation and compact diplexer using the hybrid resonators,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 551–553, Oct. 2010. [22] C.-F. Chen, T.-Y. Huang, C.-P. Chou, and R.-B. Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1945–1952, May 2006. [23] T. Yang, P.-L. Chi, and T. Itoh, “Compact quarter-wave resonator and its applications to miniaturized diplexer and triplexer,” IEEE Trans., Microw. Theory Tech., vol. 59, no. 2, pp. 260–269, Feb. 2011. [24] M.-L. Chuang and M.-T. Wu, “Microstrip diplexer design using common T-shaped resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 583–585, Nov. 2011. [25] H. W. Liu, W. Y. Xu, Z. C. Zhang, and X. Guan, “Compact diplexer using slotline stepped impedance resonator,” IEEE Trans., Microw. Wireless Compon. Lett., vol. 23, no. 2, pp. 75–77, Feb. 2013. [26] H. W. Liu, W. Y. Xu, Z. C. Zhang, and X. Guan, “Compact diplexer using slotline stepped impedance resonator,” IEEE Trans., Microw. Wireless Compon. Lett., vol. 23, no. 2, pp. 75–77, Feb. 2013. [27] J.-H. Lim, W.-X. Sheng, and Y.-Y. Zheng, “Implementation of a 5 GHz LTCC bandpass filter using vertically-interdigitated capacitor and via engineering,” Microw. Opt. Technol. Lett., vol. 50, no. 2, pp. 339–341, Feb. 2008. [28] B. Zhou, D.-Y. Jung, C.-S. Park, and S.-W. Hwang, “Miniaturized lumped-element LTCC filter with spurious spikes suppressed vertically-interdigital-capacitors,” IEEE Microwave Wireless Comp. Lett., vol. 24, no. 10, pp. 692–694, Oct. 2014. [29] T. Ishizaki, M. Yamada, R. Miyamoto, and M. Yoneda, 'Super miniaturized LTCC filter using novel composite resonators,' in Asia Pacific Microwave Conference Proceedings , pp. 770-772, Dec. 2012 [30] S. Amari, U. Rosenberg, and J. Bornemann, “Adaptive synthesis and design of resonator filters with source/load-multiresonator coupling,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 8, pp. 1969–1978, Aug. 2002. [31] J. Y. Lee, S. W. Choi, and K. B. Lee, “Development of 2GHz band micro LTCC duplexer by combining BPF and diplexer,” Proc. Asia-Pacific Microw. Conf., pp. 1047-1050, Dec. 2011. [32] V. Novgorodov, S. Freisleben, P. Heide, and M. Vossiek, 'Modified ladder-type 2.4GHz SAW filter with transmission zero,' IEEE International Ultrasonics Symposium (IUS) Proceedings, pp. 2083-2086, Oct. 2010. [33] TriQuint 885128 2.4 GHz WLAN/BT LTE Co-Existence Filter Datasheet. [Online]:http://www.triquint.com/products/d/DOC-E-00000870 [34] Avago ACPF-7424 Wi-Fi/ISM Bandpass Filter (2401 – 2482 MHz) Datasheet. [Online]:http://www.avagotech.com/products/wireless/fbar/filters/acpf-7424# [35] D. M. Pozar, Microwave Engineering, 2nd ed., New York: Wiley, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52475 | - |
| dc.description.abstract | 本篇論文提出以垂直指叉共振器實現應用於微波頻段之小尺寸濾波器以及雙工器,並將電路製作於低溫共燒陶瓷(low-temperature co-fired ceramic, LTCC)基板上。首先以垂直指叉共振器搭實作濾波器,該濾波器具有鄰近通帶的傳輸零點,提升選擇性;其次則利用T接面(T-junction)組接兩個不同頻段的濾波器,完成雙工器設計;最後則以共用共振器架構取代T接面。
垂直指叉共振器由多層指叉電容並聯金屬線電感組成。利用多層特性大幅縮小共振器尺寸,且此濾波器在通帶附近有兩個零點,加強通帶選擇性。如此在製作頻率比介於1.1到1.2之雙工器上仍能保有不錯的隔離度。 本論文首先於WiFi頻段設計一中心頻率2.45 GHz,比例頻寬7.8 %之二階柴比雪夫響應(Chebyshev response)濾波器。使用基板為璟德電子之低溫共燒陶瓷,介電常數為7.5,正切損耗為0.006。量測的插入損耗約為2.1 dB,工作頻段內|S11|低於14 dB。與相關文獻比較[17],此濾波器包含2個傳輸零點,波長面積縮小一半,且插入損耗減少0.4 dB。此外,本論文為了實作行動通訊頻段之雙工器,亦設計了中心頻率分別為1.95 GHz 與2.14 GHz,比例頻寬皆為4.5 %的兩個二階柴比雪夫響應濾波器。1.95 GHz濾波器之量測插入損耗約為4.5 dB,工作頻段內|S11|低於14 dB;2.14 GHz濾波器之量測插入損耗約為4.0 dB,工作頻段內|S11|低於14 dB。 將前述兩個不同頻段的垂直指叉共振器濾波器以T接面連接,即可組成兩通帶中心頻率分別位於1.95 GHz與2.14 GHz,比例頻寬皆為4.5 %的雙工器。此結構兩通帶量測插入損耗分別約4.8 dB及5.2 dB,工作頻段內的|S11|皆低於14 dB,隔離度20 dB以上。雖然以垂直指叉共振器成功將濾波器微小化,但於此頻段使用T接面實作雙工器卻會大幅增加電路面積,無法達到電路縮小化之效果。 觀察前述雙工器可發現T接面約佔整體電路92 %的面積,若能將T接面以垂直指叉共用共振器取代,即可大幅縮小電路面積,同時減少因T接面造成的插入損耗。使用此架構實作之雙工器,可把電路縮小化至商業尺寸(3.2 × 2.5 mm^2)。模擬結果顯示1.74與2.14 GHz插入損耗分別約為3 dB與5 dB;1.74 GHz工作頻段內的|S11|低於16 dB,2.14 GHz工作頻段內的|S11|最高可達10 dB,隔離度25 dB以上 | zh_TW |
| dc.description.abstract | This thesis proposes design concepts for compact microwave filters and duplexers by vertically interdigitated resonators (VIRs), implemented on low temperature co-fired ceramic (LTCC) substrates. Filter designs with transmission zeroes near the passbands are firstly proposed using VIRs to achieve small size and high selectivity. By connecting two VIR filters in different frequency with T-junction, a duplexer design is then realized. Finally, the T-junction can be replaced with a dual band vertically interdigitated common resonator to achieve maximum size reduction.
The proposed VIR is constructed with multi-layer shunt interdigitated capacitors and a shunt metal line inductor. Multi-layer structure makes filters smaller and introduces two transmission zeros near passbands to enhance selectivity. Therefore, these filters can be good solutions for design of duplexer having frequency ratio from 1.1 to 1.2 with acceptable isolation. First of all, a 2nd order Chebyshev response filter with center frequency 2.45 GHz and 7.8 % fractional bandwidth (FBW) is designed. This filter is implemented on ACX LTCC substrates with dielectric constant and loss tangent 7.5 and 0.006, respectively. Measured results of the filter show an in-band insertion loss less than 2.1 dB and a return loss greater than 14 dB. Compare with [17], the proposed filter halves the area in wavelength and lowers the insertion loss for about 0.4 dB. For realizing a duplexer which is used in mobile communication system, this thesis also designs two 2nd order Chebyshev filters with FBW 4.5 % and center frequencies 1.95 GHz and 2.14 GHz, respectively. Measured results of the 1.95-GHz filter show an in-band insertion loss 4.5 dB and a return loss greater than 14 dB, while the measured results of the 2.14-GHz filter show an in-band insertion loss less than 4 dB and a return loss greater than 14 dB. Connecting the two aforementioned filters with T-junction creates a duplexer with two 4.5%-FBW passbands atcenter frequencies 1.95 and 2.14 GHz. Measured results show insertion losses of two channels about 4.8 dB and 5.2 dB, respectively. Both the return losses of the two channels are over 14 dB and channel isolation is over 20 dB. It should be noted that although VIR reaches size reduction in filter design successfully, the area increase introduced by the T-junction makes the duplexer unable to achieve compact size. Since the T-junction occupies almost 92 % area of aforementioned duplexer, size reduction can be achieved by replacing the T-junction with a vertically interdigitated common resonator. Extra insertion loss caused by T-junction can also be avoided in the meanwhile. The proposed duplexer using vertically interdigitated common resonator can reach commercial size (3.2 × 2.5 mm^2). Simulation results show the insertion losses of the two channels about 3 dB and 5 dB, respectively. The return losses of the two channels are over 16 dB and 10 dB, respectively. Channel isolation is over 25 dB. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:15:50Z (GMT). No. of bitstreams: 1 ntu-104-R02942017-1.pdf: 8430897 bytes, checksum: 4a643ea5694af307755286c6fba3bde1 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III ABSTRACT V 第一章 緒論 13 1.1. 研究動機 13 1.2. 文獻回顧 14 1.3. 論文貢獻 18 1.4. 章節內容概述 19 第二章 基礎理論 20 2.1. 轉換函數 20 2.1.2. 柴比雪夫響應 21 2.2. 耦合共振器電路 22 2.2.2. 廣義耦合理論 22 2.2.3. 外部品質因子 29 第三章 垂直指叉共振器之帶通濾波器 33 3.1. 垂直指叉結構共振器設計概念與結構 33 3.1.1. 設計概念與等效電路 33 3.1.2. 耦合結構與饋入電路 38 3.2. 應用於2.45 GHZ之帶通濾波器 42 3.2.1. 設計規格與電路結構 42 3.2.2. 模擬與量測結果比較 47 3.3. 應用於1.95 GHZ之帶通濾波器 48 3.3.1. 設計規格與電路結構 48 3.3.2. 模擬與量測結果比較 52 3.4. 應用於2.14 GHZ之帶通濾波器 54 3.4.1. 設計規格與電路結構 54 3.4.2. 模擬與量測結果比較 55 3.5. 傳輸零點分析 56 3.6. 濾波器製程誤差分析 61 第四章 垂直指叉共振器之雙工器 78 4.1. 運用T-JUNCTION之雙工器設計 78 4.1.1. 設計規格與電路結構 78 4.1.2. 模擬與量測結果比較 84 4.2. 運用垂直指叉共用共振器之雙工器 88 4.2.1. 垂直指叉共用共振器耦合與饋入結構 88 4.2.2. 設計規格 99 4.2.3. 模擬結果 103 第五章 結論 106 參考文獻 110 | |
| dc.language.iso | zh-TW | |
| dc.subject | 垂直指叉共振器 | zh_TW |
| dc.subject | 低溫共燒陶瓷 | zh_TW |
| dc.subject | 智慧型手機應用 | zh_TW |
| dc.subject | 小型微波濾波器 | zh_TW |
| dc.subject | 小型微波雙工器 | zh_TW |
| dc.subject | compact microwave duplexer | en |
| dc.subject | low temperature co-fired ceramics | en |
| dc.subject | smartphone applications | en |
| dc.subject | compact microwave filter | en |
| dc.subject | vertically interdigitated resonator | en |
| dc.title | 使用垂直指叉共振器之縮小化微波濾波器與雙工器設計 | zh_TW |
| dc.title | Design of Compact Size Microwave Filters and Duplexers Using Vertically Interdigitated Resonators | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭仁財(Jen-Tsai Kuo),鍾世忠(Shyh-Jong Chung),洪子聖(Tzyy-Sheng Horng),陳錡楓(Chi-Feng Chen) | |
| dc.subject.keyword | 垂直指叉共振器,低溫共燒陶瓷,智慧型手機應用,小型微波濾波器,小型微波雙工器, | zh_TW |
| dc.subject.keyword | vertically interdigitated resonator,low temperature co-fired ceramics,smartphone applications,compact microwave filter,compact microwave duplexer, | en |
| dc.relation.page | 112 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 8.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
