Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52437
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張育森(Yu-Sen Chang)
dc.contributor.authorPei-Chun Tuen
dc.contributor.author凃佩君zh_TW
dc.date.accessioned2021-06-15T16:14:46Z-
dc.date.available2017-08-19
dc.date.copyright2015-08-19
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation王兩全、林木連、何信鳳. 1991. 利用積溫預測台茶8號品種之採摘期. 臺灣茶葉研究彙報 10:41-49.
吳淑均、張育森. 1996. 溫度對矮仙丹生長與開花之影響. 中國園藝42:123-130.
宋馥華. 1996. 平戶杜鵑開花習性與花芽發育之研究. 國立臺灣大學園藝學研究所碩士論文. 臺北.
卓家榮. 2005. 土壤肥力檢測及營養診斷. 臺南區農業改良場技術專刊 132:63-74.
張育森、呂美麗. 2005. 杜鵑花. p.823-830. 刊於:行政院農業委員會編著. 台灣農家要覽增訂(三版)-農作二. 豐年社. 臺北.
張致盛、張林仁. 1998. 兩種速測法在果樹葉片葉綠素含量測定之應用. 臺中區農業改良場研究彙報59: 37-45.
許福星. 1990. 度積溫在作物栽培管理上之應用. 科學農業38:138-141.
連深. 1980 作物營養障礙症狀. 作物需肥診斷技術13:60-65.
陳盈雯、劉東啟. 2010. 台灣原生杜鵑棲地地文環境特性之研究. 興大園藝 35:117-129.
黃校翊. 2007. 聖誕紅氮素營養與氮肥診斷之研究. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 臺灣.
楊純明、沈百奎、余志儒、羅朝村、吳正宗. 2003. 利用葉綠素測計估測莧菜植體葉綠素及氮素狀態. 中華農業研究 52:107-118.
蓋樹鵬、張風、張玉喜、鄭國生. 2012. 低溫解除牡丹休眠進程中基因組 DNA 甲基化敏感擴增多態性(MSAP)分析. 農業生物技術學報 20:261-267.
鍾翊嫻、張育森. 2003. 氮肥施用對地毯草生育之影響與應用葉綠素計於氮素狀態診測之探討. 中國園藝 49: 361-374.
A´lvarez-Ferna´ndez, A., P. Garcı´a-Lavin˜a, J. Fidalgo, J. Abadı´a, and A. Abadı´a. 2004. Foliar fertilization to control iron chlorosis in pear (Pyrus communis L.) trees. Plant Soil 263:5-15.
A´lvarez-Ferna´ndez, A., P. Paniagua, J. Abadı´a, and A. Abadı´a. 2003. Effects of Fe deficiency chlorosis on yield and fruit quality in peach (Prunus persica L. Batsch). J. Agric. Food Chem. 51:5738-5744.
Albano J.P. and W.B. Miller. 2001. Photodegradation of FeDTPA in nutrient solutions. Ⅱ. Effects of root physiology and foliar Fe and Mn levels in marigold. HortScience 36:317-320.
Alvarez, S., A. Navarro, S. Ban˜o´n, and M.J. Sa´nchez-Blanco. 2009. Regulated deficit irrigation in potted Dianthus plants: Effects of severe and moderate water stress on growth and physiological responses. Scientia Hort. 122:579-585.
Anyia, A.O. and H. Herzog. 2004. Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. Europ. J. Agr. 20:327-339.
Armitage, A.M. 1995. Photoperiod, irradiance, and temperature influence flowering of Hamelia patens (Texas firebush). HortScience 30:255-256.
Beeson, R.C. 1992. Restricting overhead irrigation to dawn limits growth in container grown woody ornamentals. HortScience 27:996-999.
Ben Mimoun, M. and T.M. DeJong. 1999. Using the relation between growing degree hours and harvest date to estimate run-times for peach: a tree growth and yield simulation model. Acta Hort. 499:107-114.
Bonet, A., C. Poschenrieder, and J. Barcelo. 1991. Chromium III-iron interaction in Fe-deficient and Fe-sufficient bean plants. I. Growth and nutrient content. J. plant Nutr. 14:403-414.
Burnett, S.E. and M.W. van Iersel. 2008. Morphology and irrigation efficiency of Gaira lindheimeri grown with capacitance sensor-controlled irrigation. HortScience 43:1555-1560.
Cakmak, I., B. Torun, B. Erenog˘lu, L. Oぴ ztuぴ rk, H. Marschner, M. Kalayci, H. Ekiz and A. Yilmaz. 1998. Morphological and physiological differences in the response of cereals to zinc deficiency. Euphytica 100:349-357.
Cakmak, S., K.Y. Gülüt, H. Marschner, and R. D. Graham. 1994. Effect of zinc and iron deficiency on phytos1derophore release in wheat genotypes differing in zinc efficiency. J. Plant Nutr. 17:1-17.
Cameron R.W.F., R.S. Harrison-Murray, C.J. Atkinson, and H.L. Judd. 2006. Regulated deficit irrigation - a means to control growth in woody ornamentals. J. Hortic. Sci. Biotech. 81: 435-443.
Campbell, R.J., K.N. Mobley, R.P. Marini, and D.G. Pfeiffer. 1990. Growing conditions alter the relationship between SPAD-501 values and apple leaf chlorophyll. HortScience 25:330-331.
Cardenas-Lailhacar, B. and M.D. Dukes. 2010. Precision of soil moisture sensor irrigation controllers under field conditions. Agric. Water Manage. 97:666-672.
Ceulemans, R., I. Impens, and R. Gabriels. 1980. Comparative study of photosynthesis, transpiration, diffusion resistances and water-use efficiency of two azalea cultivars. Scientia Hort. 13:283-288.
Ceulemans, R., R. Gabriels, and I. Impens. 1983. Antitranspirant effects on transpiration, net CO2 exchange rate and water-use efficiency of azalea. Scientia Hort. 19:125-131.
Chavarria, G., F.G. Herter, M.C.B. Raseira, A.C. Rodrigues, C. Resser, and J.B. Silva. 2009. Mild temperatures on bud breaking dormancy in peaches. Ciência Rural 39:2016-2021.
Christiaens, A., M.C.V. Labeke, E. Pauwels, B. Gobin, E.D. Keyser, and J.D. Riek. 2012. Flowering quality of azalea (Rhododendron simsii.) following treatments with plant growth regulators. Acta Hort. 937:219-224.
Dole, J.M. and H.F. Wilkins. 2005. Rhododendron, p.797-807. In: Dole, J. M., and H. F. Wilkins (eds.). Floriculture: Principles and Species. 2nd ed. Prentice Hall, Upper Saddle River, N.J.
Egea, J., E. Ortega, P. Martı´nez-Go´mez, and F. Dicenta. 2003. Chilling and heat requirements of almond cultivars for flowering. Environ. Expt. Bot. 50:79-85.
Engelbrecht, B.M.J., M.T. Tyree, and T.A. Kursar. 2007. Visual assessment of wilting as a measure of leaf water potential and seedling drought survival. J. Trop. Ecol. 23:497-500.
Erdal, I., K. Kepenek, and I. Kizilgos. 2004. Effect of foliar iron applications at different growth stages on iron and some nutrient concentrations in strawberry cultivars. Turk J. Agric. For. 28: 421-427.
Fanizza, G., L. Ricciardi, and C. Bagnulo. 1991. Leaf greenness measurements to evaluate water stressed genotypes in Vitis vinifera. Euphytica 55:27-31.
Farguhar G.D. and T.D. Sharkey. 1982. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. 33:317-345.
Fellows, R.J., and J.S. Boyer. 1978. Altered ultrastructure of cells of sunflower leaves having low water potentials. Protoplasma 93:381-395.
Ferna´ndez, V., G. Ebert, and G. Winkelmann. 2005. The use of microbial siderophores for foliar iron application studies. Plant Soil 272:245-252.
Ferna´ndez, V., V. Del Rı´o, J. Abadı´a, and A. Abadı´a. 2006. Foliar iron fertilization of peach (Prunus persica L.Batsch): Effects of iron compounds, surfactants and other adjuvants. Plant Soil 289:239-252.
Fetcher, N., B.R. Strain, and S.F. Oberbauer. 1983. Effects of light regime on the growth, leaf morphology, and water relations of seedlings of two species of tropical trees. Oecologia (Berlin) 58:314-319.
Fitter, A.H., R.S.R. Fitter, I.T.B. Harris, and M.H. Williamson. 1995. Relationships between first flowering date and temperature in the flora of a locality in central England. Funct. Enol. 9:55-60.
Grant, O.M., Ł. Tronina, H.G. Jones, and M.M. Chaves. 2007. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. J. Exp. Bot. 58:815-825.
Guo, L., J. Dai, S. Ranjitkar, H. Yu, J. Xu, and E. Luedeling. 2014. Chilling and heat requirements for flowering in temperatefruit trees. Intl. J. Biol. Biometeorol. 58:1195-1206.
Hsiao, T.C. 1973. Plant response to water stress. Ann. Rev. Plant Physiol. 24:519-570.
Jaleel, C.A., P. Manivannan, A. Wahid, M. Farooq, H.J. Al-Juburi, R. Somasundaram, and R. Panneerselvam. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 11:100-105.
Jarvis, P.G. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil. Trans. R. Soc. Lond. B. 273:593-610.
Jones, H.G. 2004. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 55: 2427-2436.
Jones, J.B.J. 1998. Plant Nutrition Manual. CRC Press, New York, USA.
Kao, W.Y., and I.N. Forseth. 1992. Responses of gas exchange and phototropic leaf orientation in soybean to soil water availability, leaf water potential, air temperature, and photosynthetic photon flux. Environ. Exp. Bot. 32:153-161.
Kitaoa, M., T.T. Leia, T. Koikea, H. Tobitaa and Y. Maruyama. 2003. Higher electron transport rate observed at low intercellular CO2 concentration in long-term drought-acclimated leaves of Japanese mountain birch (Betula ermanii). Physiol. Plant 118: 406-413.
Koniarski, M. and B. Matysiak. 2013. Growth and development of potted Rhododendron cultivars ‘Catawbiense Boursault’ and ‘Old Port’ in response to regulated deficit irrigation. J. Hort. Res. 21:29-37.
Lampine, B.D., K.A. Shackel, S.M. Southwick, W.H. Olson and T.M. Dejong. 2004. Leaf and canopy level photosynthetic responses of French prune (Prunus domestica L. ‘French’) to stem water potential based deficit irrigation. J. Hortic. Sci. Biotechnol. 79:638-644.
Li, R.H., P.P. Guo, M. Baumz, S. Grand, and S. Ceccarelli. 2006. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agri. Sci. China 5:751-757.
Madriaga, F.J. and J.E. Knott. 1951. Temperature summations in relation to lettuce growth. Proc. Amer. Soc. Hort. Sci. 58:147-152.
McMaster G. S. and W.W. Wilhelm. 1997. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87:291-300.
Nezami, A., H.R. Khazaei, Z. B. Rezazadeh, and A. Hosseini. 2008. Effects of drought stress and defoliation on sunflower (Helianthus annuus) in controlled conditions. Desert 12:99-104.
Noack, L.E., I.J. Warrington, J.A. Plummer, and A.S. Andersen. 1996. Effect of low-temperature treatments on flowering in three cultivars of Hebe Comm. ex Juss. Scientia Hort. 66:103-115.
Nordli, E.F., M. Str?m, and S. Torre. 2011. Temperature and photoperiod control of morphology and flowering time in two greenhouse grown Hydrangea macrophylla cultivars. Scientia Hort. 127:372-377.
Nuttonson, M.W. 1955. Wheat-climatic relations and the use of phenology in ascertaining the thermal and photo-thermal requirements of wheat. Amer. Inst of Crop Ecol. Washington, D.C.
Patane`, C. and S.L. Cosentino. 2010. Effects of soil water deficit on yield and quality of processing tomato under a mediterranean climate. Agric. Water Manage 97:131-138.
Peñuelas, J., S. Munné-Bosch, J. Llusià, and I. Filella. 2004. Leaf reflectance and photo- and antioxidant protection in field-grown summer-stressed Phillyrea angustifolia. Optical signals of oxidative stress? New Phytologist 162:115-124.
Perry, K.B., S.M. Blankenship, and C.R. Unrath. 1987. Predicting harvest date of “Delicious” and “Golden delicious” apples using best unit accumulations. Agri. And Fore. Metero. 39:81-88.
Perry, K.B., T.C. Wehner, and G.L. Johnson. 1986. Comparison of 14 methods to determine heat unit requirements for cucumber harvest. HortScience 21:419-423.
Premachandra, G.S., and T. Shimada. 1987. The measurement of cell membrane stability using polyethylene glycol as a drought tolerance. Jap. J. Cop. Sci. 56:92-98.
Rahimi, A., S.M. Hosseini, M. Pooryoosef, and I. Fateh. 2010. Variation of leaf water potential, relative water content and SPAD under gradual drought stress and stress recovery in two medicinal species of Plantago ovata and P. psyllium. Plant Ecophysiology 2:53-60.
Raviva, M. and T.J. Blom. 2001. The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Scientia Hort. 88:257-276.
Reiley, H.E. 2004. Success with rhododendrons and azaleas, revised edition. Timber Press, Portland, USA.
Rengel, Z. and R.D. Graham. 1995. Wheat genotypes differ in Zn efficiency when grown in chelate-buffered nutrient solution. Plant Soil 176:307-316
Ruiz, D., J.A. Campoy, and, J. Egea. 2007. Chilling and heat requirements of apricot cultivars for flowering. Environ. Expt. Bot. 61:254-263.
Ruiz-Sa´nchez, M.C., R. Domingo, A. Torrecillas, and A. Pe´rez-Pastor. 2000. Water stress preconditioning to improve drought resistance in young apricot plants. Plant Sci. 156:245-251.
Sa´nchez-Blanco, M.J., S. A´lvarez, A. Navarro, and S. Ban˜o´n. 2009. Changes in leaf water relations, gas exchange, growth and flowering quality inpotted geranium
Sanchez-Blanco, M.J., S. Alvarez, A. Navarro, and S. Banon. 2009. Changes in leaf water relations, gas exchange, growth and flowering quality in potted geranium plants irrigated with different water regimes. J. Plant. Physiol. 166:467-476.
Sánchez-Blanco, M.J., S. Álvarez, A. Navarro, and S. Bañón. 2009. Changes in leaf water relations, gas exchange, growth and flowering quality in potted geranium plants irrigated with different water regimes. J. Plant Physiol. 166:467-476.
Sarker, B.C., M. Hara, and M. Uemura. 2005. Proline synthesis, physiological responses and biomass yield of eggplants during and after repetitive soil moisture stress. Scientia Hort. 103:387-402.
Scheiber, S.M., E.F. Gilman, M. Paz, and K.A. Moore. 2007. Irrigation affects landscape establishment of burford holly, pittosporum, and sweet viburnum. HortScience 42:344-348.
Scoffoni, C., C. Vuong, S. Diep, H. Cochard, and L. Sack. 2014. Plant Physiol. 164:1772-1788.
Shao, H.B., L.Y. Chu, C.A. Jaleel, and C.X. Zhao. 2008. Water-deficit stress-induced anatomical changes in higher plants. C.R. Biologies 331:215-225.
Sharp, R.G., M.A. Else, R.W. Cameronc, and W.J. Davies. 2009. Water deficits promote flowering in Rhododendron via regulation of pre and post initiation development. Scientia Hort.120:511-517.
Shi, Y. and D.H. Byrne. 1995. Tolerance of Prunus rootstocks to potassium carbonate-induced chlorosis. J. Amer. Soc. Hort. Sci. 120:283-285.
Shin, H.k., J.H. Lieth, and S.H. Kim. 2001. Effects of temperature on leaf area and flower size in rose. Acta Hort. 547: 185-191.
Shober, A.L., G.C. Denny, and T.K. Broschat. 2010. Management of fertilizers and water for ornamental plants in urban landscapes: current practices and impacts on water resources in florida. Hortechnology 20:94-106.
Shober, A.L., K.A. Moore, C. Wiese, S.M. Scheiber, E.F. Gilman, M. Paz, M.M. Brennan, and S. Vyapari. 2009. Posttransplant irrigation frequency affects growth of container-grown sweet viburnum in three hardiness zones. HortScience 44:1683-1687.
Silva, M.A., J.L. Jifon, J.A.G. Da Silva and V. Sharma. 2007. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz. J. Plant Physiol. 19:193-201.
Singh, S.K. and K.R. Reddy. 2011. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata L. Walp.) under drought. J. Photochem. Photobiol. B:Biol. 105:40-50.
Sparks, T.H., E.P. Jeffree, and C.E. Jeffree. 2000. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Intl. J. Biol. Biometeorol. 44:82-87.
Stegman, E.C. 1982. Corn grain yield as influenced by timing of evapotranspiration deficits. Irrig. Sci. 3:75-87.
Taiz, L. and E. Zeiger. 2010. Plant physiology, 5th ed. Sinauer Associates, Sunderland, MA.
Takebe, M., T. Yoneama, K. Inada. and T. Murakami. 1990. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant soil. 122:295-297.
Tambussi, E.A., J. Bort and J.L. Araus. 2007. Water use efficiency in C3 cereals under mediterranean conditions: A review of physiological aspects. Ann. Appl. Biol. 150:307-321.
Tanner, C.B. 1979. Transpiration efficiency of potato. Agron. J. 73: 59-64.
Turner, F.T., and M.F. Jund. 1991. Chlorophyll meter to predict nitrogen topdress requirement for semidwarf rice. Agron. J. 83:926-928.
Wang, X., T. Sato, B. Xing, and S. Tao. 2004. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 350:28-37.
Zhang, X., F. Zhang, and D. Mao. 1998. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.). zinc uptake by Fe-deficient rice. Plant Soil 202:33-39.
Zotarelli, L.J., M. Scholberg, M.D. Dukes, R. Mun˜oz-Carpena, and J. Icerman. 2009. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manage. 96:23-34.
 
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52437-
dc.description.abstract杜鵑花(Rhododendron spp.)種類眾多且花期長,於景觀上常運用於盆栽、綠籬花屏及群植花叢等,且為許多國家和城市之國花與市花。杜鵑花為臺灣大學之校花,校園栽植以平戶杜鵑(Hirado azalea)為主,其重要的品種有豔紫杜鵑(R. pulchurm Sweet)、粉白杜鵑(R. mucronatum G. Don cv. Akemono)及白琉球杜鵑(R. mucronatum G. Don)等。每年3月天氣回暖時,臺灣大學之椰林大道兩旁的杜鵑花盛開,因而有「杜鵑花城」美譽。近年來氣候較往年相對異常,影響校內杜鵑花的生長及開花,而溫度、光線、水分及肥培管理,皆為重要的影響因子。本研究目的探討平戶杜鵑維護管理之水分、肥料管理及溫度對生長與開花之影響,以期改善植栽生育品質並預測花期。
在水分管理方面,藉由介質水分含量測定儀(water content, electrical conductivity and temperature sensor, WET)定出杜鵑花栽培之適宜介質含水量(volumetric water content, VWC)。校園群簇花叢土壤田間容水量VWC約為60%,當VWC小於18%時,植株出現萎凋的現象,推測VWC小於田間容水量的三分之一前需灌溉。此外,以五寸盆平戶杜鵑為材料,於臺大園藝分場溫室進行介質含水量試驗,以泥炭土:真珠石=3:1(v/v)為介質,藉由WET測定VWC,其田間容水量約為70%,並調查植株外觀形態及葉片水勢,得知平戶杜鵑達暫時凋萎點時,其介質VWC約為20%、葉片水勢為-1.38 MPa,起灌點約23% VWC,此時葉片水勢為-1.03 MPa、第一片完全展開葉與枝條角度為75˚。而豔紫杜鵑在17% VWC下,淨光合作用、蒸散作用速率及葉片水勢均顯著低於在23%、30%及45% VWC處理下之植株。於17% VWC復水處理栽培六週後,其第一片新完全展開葉之葉片厚度最薄(0.39 mm),且葉綠素計讀値(chlorophyll meter reading, CMR)最高,已影響豔紫杜鵑之生理。故推薦平戶杜鵑栽培介質含水量不宜低於23%VWC,否則長期可能造成其生長不佳與品質下降。
肥料管理方面,氮是影響植物生長的主要元素,豔紫杜鵑之葉綠素計讀值與葉片氮濃度有高度相關,可利用葉綠素計讀值推估葉片的氮濃度,然而葉綠素計讀値(chlorophyll meter reading, CMR) 3/1比色法較無法對豔紫杜鵑進行明確地氮素診斷。杜鵑花喜偏酸性土壤,調查顯示校園部分土壤之酸鹼度偏高,鋅與鐵元素的有效性降低。而缺鋅或缺鐵會導致平戶杜鵑新葉出現黃化之現象,可由黃化位置和葉面積判定。缺鋅和缺鐵的新葉皆會黃化,而缺鋅主要出現在脈間,有小葉之現象;缺鐵者,葉面積與正常葉片一樣。若平戶杜鵑出現缺鐵症狀,建議連續澆灌螯合鐵(Fe(III)-Ethylenediaminetetraacetic acid, Fe-EDTA) 或硫酸亞鐵(Ferrous Sulfate, FeSO4) 4 mg∙L-1兩週,即可改善缺鐵黃化恢復綠色。若考量成本,可葉施2 mg∙L-1 或4 mg∙L-1 之Fe-EDTA或FeSO4四週,能改善新葉缺鐵黃化之現象,但無法完全改善已出現缺乏症狀之葉片。
預測花期方面,藉由2013年至2015年調查臺大校園平戶杜鵑之數據和氣象資料,估算花苞寬為5.8 mm至開花率50%之度積溫。比較推估與實際之盛花期,利用變異係數(Coefficients of variations; CV)之最小值作為基本溫度標準計算者,3年的累積誤差天數為6天;利用標準偏差(Standard deviation; STDEV)作計算者累積誤差天數為7天。故以CV值之基本溫度12 oC估算,當度積溫為318.7 oC時,可達盛花。
綜合上述研究,水分管理部分,藉由WET測定介質VWC,土壤水分達田間容水量的三分之一、並配合觀察第一片完全展開葉與枝條角度為75°時建議進行灌溉。肥料管理方面,可由葉片黃化位置和葉面積判定平戶杜鵑為缺鋅或是缺鐵,而施用Fe-EDTA或FeSO4可改善缺鐵造成的新葉黃化的現象。豔紫杜鵑之葉綠素計讀值與葉片氮濃度有高度相關,可利用葉綠素計讀值推估葉片的氮濃度。花期預測方面,以CV值之基本溫度12 oC估算,當花苞寬為5.8 mm到開花率50%的度積溫為318.7 oC時,可達盛花。
zh_TW
dc.description.abstractAzalea (Rhododendron spp.) is a showy-flowering woody plant family that consists of various horticultural cultivars. They are not only widely used as potted plants, fence and landscape bushes, but also are the symbols of some countries and cities.
Four species of Hirado azalea, including the R. pulchurm Sweet, R. mucronatum G. Don cv. Akemono and R. mucronatum G. Don, that grown on campus of National Taiwan University as the official university flower. The blooming season of azaleas in March decorate the campus with splendid, colorful showy flowers. Recently, the climate change as well as temperature, light, water availability and soil fertility variations have altered the growth habits and flowering of azaleas on campus. This study investigated the effects of soil water availability and fertility on the growth conditions, and the effect of temperature on the flowering period of azaleas, to gain the optimum growth conditions hoping that may enhance the blooming quality and predict the flowering period of azalea on the university campus.
First, water content electrical conductivity and temperature sensor (WET) was used to determine the volumetric water content (VWC) of the growth medium for R. kiusianum. The result showed that the VWC of the campus soil field capacity was approximately 60%. Plants exhibited wilted leaves as VWC declined below 18%. Thus, plants were suggested to be irrigated when VWC declines lower than one third of the field capacity. Additionally, a VWC experiment was conducted in the greenhouse affiliated to the National Taiwan University Horticultural Farm using 5-inch potted azaleas as the plant materials. The field capacity of the growing medium peat:perlite=1:1 was found to be 70%. When the potted plants reached the temporal wilting point at VWC = 20%, the leaf water potential = -1.38 MPa. The irrigation point was approximately at VWC=23%, with the corresponding leaf water potential of -1.03 MPa and 75 degree angle between the first expanded leaf and the shoot. On the other hand, when the VWC of R. pulchurm reached 17%, the net photosynthetic rate and the transpiration rate were significantly lower comparing to the plants under the conditions of VWC=23%, 30% and 45%. In addition, after the six-week cultivation in which the plants were fully irrigated only when VWC declined to 17%, the first new fully-expanded leaf was the thinnest (0.39 mm), accompanied by the highest chlorophyll meter reading (CMR) value, which had affected the physiological conditions of R. pulchurum. Thus, the VWC of R. kiusianum shall not be lower than 23%, otherwise negative effects may appear on the further growth of R. kiusianum
At the aspect of soil fertility condition, azaleas prefers acidic soil. Our results, however, showed that parts of the campus soil had high pH, which inhibited the availability of zinc and iron that caused the leaf chlorosis of azaleas. Chlorosis position and leaf area change may be used to determine which element is insufficient, i.e. insufficient zinc lead the inter-veinal chlorosis, accompanied with the leaf area decreasing; insufficient iron did not affect leaf area but would lead the whole new leaf chlorosis. To solve the chlorosis caused by insufficient iron, the plants were suggested to be continuously irrigated with 4 mg/L of Fe-EDTA or FeSO4 for two weeks. Foliage spray 2-4 mg/L of Fe solutions were recommended when the budget is limited, but such a movement might not completely enhance the situation for the leaves that already had chlorosis. In addition, nitrogen is the one of the major elements that affects the plant growth. The leaf nitrogen concentration may be determined by CMR. However, CMR3/1 colorimetry was not able to effectively determine the nitrogen concentration for R. kiusianum.
Based on a 3-year meteorological data from 2013 to 2015, the estimation of the heat unit accumulation from 5.8 mm-sized flower bud to 50% full blooming can be used to predict the flowering period for R. kiusianum. When the minimum value (12 oC) obtained from the Coefficients of variations (CV) was used as the base temperature of the heat unit accumulation, the predicted and the actual blooming period had 6-day differences within 3 years. In contrast, when the base temperature of heat unit accumulation was obtained from Standard Deviation (STDEV), the predicted and the actual blooming period had 7-day differences within 3 years. Therefore, the heat unit accumulation estimated with CV was more precise, which showed that the azaleas on campus reaches full blooming when the heat unit was 318.7 day∙oC.
In conclusion, the azaleas on the National Taiwan University campus are recommended to be irrigated once the soil water content reaches one third of field capacity, or when the angle between the first fully-expanded new leaf and the shoot reaches 75 degree. The determination of leaf chlorosis position allows one to know whether zinc or iron is insufficient. Applying Fe-EDTA or FeSO4 may enhance the leaf chlorosis caused by insufficient iron. Plus, The CMR of R. kiusianum is highly correlated to leaf nitrogen concentration. Finally, the R. kiusianum on campus were found full blooming when the heat unit accumulation was 318.7 day∙oC.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:14:46Z (GMT). No. of bitstreams: 1
ntu-104-R02628105-1.pdf: 3632455 bytes, checksum: 6c1c4c7f2ab22b04b557a78ced4ce760 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 i
Abstract iii
目錄 vi
表目錄 viii
圖目錄 ix
第一章 前言 1
第二章 前人研究 3
一、杜鵑花生長習性 3
二、土壤含水量對植物生長及生理之影響 3
三、營養元素對植物生長及生理之影響 6
四、溫度對花木植物開花之影響 7
第三章 臺灣大學校園內平戶杜鵑之生長開花現況調查 11
摘要(Abstract) 11
一、前言(Introduction) 12
二、材料與方法(Materials and Methods) 13
三、結果(Results) 17
四、討論(Discussion) 18
五、結論(Conclusion) 21
第四章 介質含水量對平戶杜鵑生理與生長之影響 35
摘要(Abstract) 35
一、前言(Introduction) 36
二、材料與方法(Materials and Methods) 37
三、結果(Results) 42
四、討論(Discussion) 44
五、結論(Conclusion) 48
第五章 平戶杜鵑氮素、鐵與鋅管理指標之建立 59
摘要(Abstract) 59
一、前言(Introduction) 60
二、材料與方法(Materials and Methods) 61
三、結果(Results) 67
四、討論(Discussion) 69
五、結論(Conclusion) 71
第六章 結論 94
參考文獻(Reference) 96
附錄(Appendix) 106
dc.language.isozh-TW
dc.subject平戶杜鵑zh_TW
dc.subject維護管理zh_TW
dc.subject花期預測zh_TW
dc.subjectpredicting the flowering perioden
dc.subjectHirado azaleaen
dc.subjectMaintenanceen
dc.title公園綠地平戶杜鵑維護管理技術之改進zh_TW
dc.titleMaintenance Improvement of Hirado Azaleas in Public Parken
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳右人,沈榮壽,林寶秀
dc.subject.keyword平戶杜鵑,維護管理,花期預測,zh_TW
dc.subject.keywordHirado azalea,Maintenance,predicting the flowering period,en
dc.relation.page108
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved