請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52432
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林淑怡 | |
dc.contributor.author | Mei-Lin Kuo | en |
dc.contributor.author | 郭美琳 | zh_TW |
dc.date.accessioned | 2021-06-15T16:14:39Z | - |
dc.date.available | 2020-08-19 | |
dc.date.copyright | 2015-08-19 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-18 | |
dc.identifier.citation | 屈先澤. 2009a. 食藥同源話萵苣. 鄉間小路 35:10-11.
屈先澤. 2009b. 萵苣小百科. 鄉間小路 35:5. 林毓雯、郭鴻裕、劉滄棽. 2010. 外銷結球萵苣之合理化施肥. 農業試驗所技術服務 81:16-19. 林煥章. 2009. 結球萵苣產銷概況與輔導措施執行情形. 農政與農情 204:51-54. 翁愫慎. 2009. 安眠抗癌的輕食蔬菜-萵苣. 鄉間小路 35:6-7. 高德錚. 1996. 生菜萵苣知多少. 台中區農業專訊 15:25-27. 許涵鈞、謝明憲、林棟樑、王三太. 2009. 耐熱結球萵苣引種觀察比較試驗. 台南區農業改良場研究彙報 55:36-43. 許創盛. 2005. 水耕結球萵苣養液經濟管理探討. 國立中興大學土壤環境科學系碩士論文. 臺中 陳仁炫. 2000. 合理化施肥的要領和對策. 禽畜糞堆肥應用手冊 4-8. 路全利. 2009. 萵苣. 鄉間小路 35:4. Ae, N., J. Arihara, K. Okada, T. Yoshihara, and C. Johansen. 1990. Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science 248:477-480. Almagro, O., L.V. Gomez Ros, S. Belchi-Navarro, R. Bru, A. Ros Barcelo, and M.A. Pedreno. 2009. Class III peroxidases in plant defence reactions. J. Exp. Bot. 60:377-390. Ames, B.N. 1966. Assay of inorganic phosphate, total phosphate and phosphatases, p. 115-118. In: V. Gindburg and E.F. Neufeld (eds.). Methods in Enzymology. Vol. 8, Academic Press. Aung, K., S.-I. Lin, C.C. Wu, Y.T. Huang, C.I. Su, and T.-J. Chiou. 2006. pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 141:1000-1011. Baldwin, J.C., A.S. Karthikeyan, and K.G. Raghothama. 2001. LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. Plant Physiol. 125:728-37. Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-297. Burleigh, S.H. and M.J. Harrison. 1999. The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol. 119:241-248. Burleigh, S.M. and M.J. Harrison. 1998. Characterization of the Mt4 gene from Medicago truncatula. Gene 216:47-53. Buso, G.S.C. and F.A. Bliss. 1988. Variability among lettuce cultivars grown at two levels of available phosphorus. Plant Soil 111:67-73. Buwalda, F. and M. Warmenhoven. 1999. Growth-limiting phosphate nutrition suppresses nitrate accumulation in greenhouse lettuce. J. Exp. Bot. 50:813-821. Campbell, W.H. 1999. Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:277-303. Cataldo, D.A., M. Maroon, L.E. Schrader, and V.L. Youngs. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 6:71-80. Chiera, J., J. Thomas, and T. Rufty. 2002. Leaf initiation and development in soybean under phosphorus stress. J. Exp. Bot. 53:473-481. Chiou, T.-J., K. Aung, S.I. Lin, C.C. Wu, S.F. Chiang, and C.I. Su. 2006. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412-421. Clark, L.J., D.J.G. Gowing, R.M. Lark, P.B. Leeds-Harrison, A.J. Miller, D.M. Wells, W.R. Whalley, and A.P. Whitmore. 2005. Sensing the physical and nutritional status of the root environment in the field: a review of progress and opportunities. J. Agric. Sci. 143:347-358. Cordell, D., J.O. Drangert, and S. White. 2009. The story of phosphorus: global food security and food for thought. Glob. Environ. Chang. 19:292-305. Cruz-Ramírez, A., A. Oropeza-Aburto, F. Razo-Hernández, E. Ramírez-Chávez, and L. Herrera-Estrella. 2006. Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc. Natl. Acad. Sci. U.S.A. 103:6765-6770. Dinkelaker, B., C. Hengeler, and H. Marschner. 1995. Distribution and function of proteoid roots and other root clusters. Bot. Acta 108:183-200. Dong, B., Z. Rengel, and E. Delhaize. 1998. Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana. Planta 205:251-256. Duff, S.M.G., G.B.G. Moorhead, D.D. Lefebvre, and W.C. Plaxton. 1989. Phosphate starvation inducible `Bypasses' of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol. 90:1275-1278. FÖHse, D., N. Claassen, and A. Jungk. 1988. Phosphorus efficiency of plants: I. External and internal P requirement and P uptake efficiency of different plant species. Plant Soil 110:101-109. Franco-Zorrilla, J.M., A. Valli, M. Todesco, I. Mateos, M.I. Puga, I. Rubio-Somoza, A. Leyva, D. Weigel, J.A. Garcia, and J. Paz-Ares. 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39:1033-1037. Fredeen, A.L., I.M. Rao, and N. Terry. 1989. Influence of phosphorus nutrition on growth and carbon partitioning in glycine max. Plan Physiol. 89:225-230. Fukuda, M., S. Matsuo, K. Kikuchi, W. Mitsuhashi, T. Toyomasu, and I. Honda. 2009. The endogenous level of GA1 is upregulated by high temperature during stem elongation in lettuce through LsGA3ox1 expression. J. Plant Physiol. 166:2077-2084. Garnier, E. and G. Laurent. 1994. Leaf anatomy, specific mass and water content in congeneric annual and perennial grass species. New Phytol. 128:725-736. Guo, B., Y. Jin, C. Wussler, E.B. Blancaflor, C.M. Motes, and W.K. Versaw. 2008. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol. 177:889-898. Härtel, H., P. Dörmann, and C. Benning. 2000. DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 97:10649-10654. Hamburger, D., E. Rezzonico, J. MacDonald-Comber Petétot, C. Somerville, and Y. Poirier. 2002. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell 14:889-902. Hammond, J.P., M.J. Bennett, H.C. Bowen, M.R. Broadley, D.C. Eastwood, S.T. May, C. Rahn, R. Swarup, K.E. Woolaway, and P.J. White. 2003. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol. 132:578-596. Hammond, J.P. and P.J. White. 2008. Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J. Exp. Bot. 59:93-109. Hoffland, E., R. Van Den Boogaard, J. Nelemans, and G. Findenegg. 1992. Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytol. 122:675-680. Hopkins, W.G. and N.P.A. Huner. 2004. Introduction to Plant Physiology, 3rd Edtion. John Wiley and Sons, New York, USA. Jensen, R.G. and J.A. Bassham. 1966. Photosynthesis by isolated chloroplasts. Proc. Natl. Acad. Sci. U.S.A. 56:1095-1101. Kim, H.J., J.M. Fonseca, J.H. Choi, C. Kubota, and D.Y. Kwon. 2008. Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.). J. Agric. Food Chem. 56:3772-3776. Koukounaras, A., A.S. Siomos, and E. Sfakiotakis. 2007. Postharvest CO2 and ethylene production and quality of rocket (Eruca sativa Mill.) leaves as affected by leaf age and storage temperature. Postharvest Biol. and Tec. 46:167-173. López-Bucio, J., A. Cruz-Ramı́rez, and L. Herrera-Estrella. 2003. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6:280-287. Lee, J., C. Choi, Y. Jang, S. Jang, S. Lee, and Y. Um. 2013. Effects of air temperature and air flow rate control on the tipburn occurrence of leaf lettuce in a closed-type plant factory system. Hortic. Environ. Biotechnol. 54:303-310. Lichtenthaler, H.K., C. Buschmann, M. Döll, H.J. Fietz, T. Bach, U. Kozel, D. Meier, and U. Rahmsdorf. 1981. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynth. Res. 2:115-141. Lin, S.I., S.F. Chiang, W.Y. Lin, J.W. Chen, C.Y. Tseng, P.C. Wu, and T.J. Chiou. 2008. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol. 147:732-746. Lin, W.Y., S.I. Lin, and T.J. Chiou. 2009. Molecular regulators of phosphate homeostasis in plants. J. Exp. Bot. 60:1427-38. Lipton, D.S., R.W. Blanchar, and D.G. Blevins. 1987. Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol. 85:315-317. Liu, C., U. Muchhal, and K.G. Raghothama. 1997. Differential expression of TPS11, a phosphate starvation-induced gene in tomato. Plant Mol. Biol. 33:867-874. Lloyd, J.C. and O.V. Zakhleniuk. 2004. Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. J. Exp. Bot. 55:1221-1230. Lopez-Bucio, J., O.M. de la Vega, A. Guevara-Garcia, and L. Herrera-Estrella. 2000. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat. Biotechnol. 18:450-453. Martín, A.C., J.C. Del Pozo, J. Iglesias, V. Rubio, R. Solano, A. De La Peña, A. Leyva, and J. Paz-Ares. 2000. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J. 24:559-567. Maynard, D.N. and A.V. Barker. 1979. Regulation of nitrate accumulation in vegetables. Acta Hort. 93:153-162. Miller, S.S., J. Liu, D.L. Allan, C.J. Menzhuber, M. Fedorova, and C.P. Vance. 2001. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol. 127:594-606. Mitsukawa, N., S. Okumura, Y. Shirano, S. Sato, T. Kato, S. Harashima, and D. Shibata. 1997. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc. Natl. Acad. Sci. U.S.A. 94:7098-7102. Mudge, S.R., A.L. Rae, E. Diatloff, and F.W. Smith. 2002. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J. 31:341-353. Neset, T.S.S. and D. Cordell. 2012. Global phosphorus scarcity: identifying synergies for a sustainable future. J. Sci. Food and Agr. 92:2-6. Neumann, G., A. Massonneau, N. Langlade, B. Dinkelaker, C. Hengeler, V. Römheld, and E. Martinoia. 2000. Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.). Ann. Bot. 85:909-919. Nilsson, L., R. Muller, and T.H. Nielsen, 2007. Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Enviro. 30:1499-1512. Oh, M.M., E.E. Carey, and C.B. Rajashekar. 2009. Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol. Biochem. 47:578-583. Pant, B.D., A. Buhtz, J. Kehr, and W.R. Scheible. 2008. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 53:731-738. Poirier, Y. and M. Bucher. 2002. Phosphate transport and homeostasis in Arabidopsis. The Arabidopsis Book / American Society of Plant Biologists 1:e0024. Poirier, Y., S. Thoma, C. Somerville, and J. Schiefelbein. 1991. Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol. 97:1087-1093. Porra, R. 2005. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. p. 633-640. In: Govindjee, J.T. Beatty, H. Gest, and J. Allen (eds.). Discoveries in Photosynthesis. Vol. 20, Springer Netherlands. Raghothama, K.G. 1999. Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:665-693. Reddy, A. and A. Raghavendra. 2006. Photooxidative stress. p. 157-186. In: K.V. Madhava Rao, A.S. Raghavendra, and K. Janardhan Reddy (eds.). Physiology and Molecular Biology of Stress Tolerance in Plants. Springer Netherlands. Richardson, A.E. 1994. Soil microorganisms and phosphorus availability. Soil biota: management in sustainable farming systems. Rubio, V., F. Linhares, R. Solano, A.C. Martín, J. Iglesias, A. Leyva, and J. Paz-Ares. 2001. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 15:2122-2133. Seo, M.W., D.S. Yang, S.J. Kays, J.H. Kim, J.H. Woo, and K.W. Park. 2009. Effects of nutrient solution electrical conductivity and sulfur, magnesium, and phosphorus concentration on sesquiterpene lactones in hydroponically grown lettuce (Lactuca sativa L.). Sci. Hortic. 122:369-374. Shen, J., L. Yuan, J. Zhang, Li, H., Z. Bai, X. Chen, W. Zhang, and F. Zhang. 2011. Phosphorus dynamics: from soil to plant. Plant Physiol. 156:997-1005. Shih, C.Y. and C.H. Kao. 1996. Growth inhibition in suspension-cultured rice cells under phosphate deprivation is mediated through putrescine accumulation. Plant Physiol. 111:721-724. Shin, H., H.S. Shin, R. Chen, and M.J. Harrison. 2006. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J. 45:712-726. Slesak, I., M. Libik, B. Karpinska, S. Karpinski, and Z. Miszalski. 2007. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim. Pol. 54:39-50. Smil, V. 2000. Phosphorus in the environment: Natural flows and human interferences. Annu. Rev. Energ. Env. 25:53-88. Smirnoff, N. and G.L. Wheeler. 2000. Ascorbic acid in plants: biosynthesis and function. Crit. Rev. Biochem. Mol. Biol. 35:291-314. Smith, P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O'Mara, C. Rice, B. Scholes, O. Sirotenko, M. Howden, T. McAllister, G. Pan, V. Romanenkov, U. Schneider, S. Towprayoon, M. Wattenbach, and J. Smith. 2008. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363:789-813. Takahashi, A., K. Takeda, and T. Ohnishi. 1991. Licht-induced anthocyanin reduces the extent of damage to DNA in UV-irradiated Centaurea cyanus cells in culture. Plant Cell 32:541-547. Tarafdar, J.C. and N. Claassen. 1988. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol. Fert. Soils 5:308-312. Temple-Smith, M. and R. Menary. 1977. Growth and phosphate absorption in lettuce and cabbage plants in dilute solution culture. Funct. Plant Biol. 4:505-513. Theodorou, M.E., F.A. Cornel, S.M. Duff, and W.C. Plaxton. 1992. Phosphate starvation-inducible synthesis of the alpha-subunit of the pyrophosphate-dependent phosphofructokinase in black mustard suspension cells. J. Biol. Chem. 267:21901-21905. Theodorou, M.E. and W.C. Plaxton. 1996. Purification and characterization of pyrophosphate-dependent phosphofructokinase from phosphate-starved Brassica nigra suspension cells. Plant Physiol. 112:343-351. Tsai, Y.C. and C. Kao. 2004. The involvement of hydrogen peroxide in abscisic acid-induced activities of ascorbate peroxidase and glutathione reductase in rice roots. Plant Growth Regulat. 43:207-212. Vaccari, D.A. 2009. Phosphorus: a looming crisis. Sci. Am. 300:54-59. Vance, C.P., C. Uhde-Stone, and D.L. Allan. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157:423-447. Versaw, W.K. and M.J. Harrison. 2002. A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751-1766. Wagstaff, C., G.J.J. Clarkson, F. Zhang, S.D. Rothwell, S.C. Fry, G. Taylor, and M.S. Dixon. 2010. Modification of cell wall properties in lettuce improves shelf life. J. Exp. Bot. 61:1239-1248. Wasaki, J., R. Yonetani, T. Shinano, M. Kai, and M. Osaki. 2003. Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status. New Phytol. 158:239-248. White, P.J. and P.H. Brown. 2010. Plant nutrition for sustainable development and global health. Ann. Bot. 105:1073-1080. Wild, A., L.H.P. Jones, and J.H. Macduff. 1987. Uptake of mineral nutrients and crop growth: the use of flowing nutrient solutions. Adv. Agron. 41:171-219. Williamson, L.C., S.P.C.P. Ribrioux, A.H. Fitter, and H.M.O. Leyser. 2001. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol. 126:875-882. Wroblewski, T., A. Tomczak, and R. Michelmore. 2005. Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotech. J. 3:259-273. Xiao, K., M. Harrison, and Z.Y. Wang. 2005. Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta 222:27-36. Yu, B., C. Xu, and C. Benning. 2002. Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc. Natl. Acad. Sci. 99:5732-5737. Zakhleniuk, O.V., C.A. Raines, and J.C. Lloyd. 2001. pho3: a phosphorus-deficient mutant of Arabidopsis thaliana (L.) Heynh. Planta 212:529-534. Zottini, M., E. Barizza, A. Costa, E. Formentin, C. Ruberti, F. Carimi, and F. Lo Schiavo. 2008. Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep 27:845-853. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52432 | - |
dc.description.abstract | 磷為植物必需巨量營養元素之一,不僅是遺傳物質與細胞結構的重要組成,也是多項生理生化反應的重要因子。前人研究指出萵苣 (Lactuca sativa L.) 的磷使用效率因種類與栽培種而異,因此本研究探討半結球萵苣對不同磷處理的生理反應。此外,利用微陣列 (microarray) 與定量反轉錄PCR (quantitative reverse transcription PCR, qRT-PCR) 技術分析半結球萵苣磷處理下之基因表現。
半結球萵苣栽培於不同光強度下表現不同生長速度,其缺磷反應速度也不一樣。苗期在高或低光強度下缺磷3天即顯著降低地上部與地下部的無機磷濃度,地上部鮮重於高光強度下缺磷3天顯著下降,低光強度下則缺磷5天才顯著下降。生長期在高或低光強度下缺磷5天顯著降低地上部、地下部無機磷濃度與地上部鮮重,含水量在缺磷10天後顯著下降,過氧化氫在缺磷10天後顯著上升,葉綠素與類胡蘿蔔素在高光下缺磷5天顯著上升,低光下則10天才上升。採收期在高或低光強度下缺磷5天顯著降低地上部與地下部無機磷濃度,但即使缺磷10天對地上部鮮重、含水量、葉綠素、類胡蘿蔔素、過氧化氫與硝酸鹽等濃度皆無顯著影響。 本研究利用微陣列分析找到半結球萵苣於缺磷逆境下表現上升的基因Lsa031437.1,此基因功能可能參與植物體內氧化還原反應,其對缺磷處理的表現情形更進一步透過定量反轉錄PCR證實。之後將Lsa031437.1啟動子序列結合GUS報導基因之構築利用農桿菌滲入法短暫表現於萵苣葉片。GUS染色結果發現植株生長於磷肥充足與缺磷狀況其葉片GUS表現量相似。此結果說明Lsa031437.1 promoter:GUS構築結合農桿菌滲入法可能不適用於監測萵苣含磷狀態。 | zh_TW |
dc.description.abstract | Phosphorus (P), one of the essential macronutrients of plant, is not only an important component of genetic materials and cellular structure, but also a key factor involved in many physiological and biochemical reactions. Previous studies showed that phosphorus use efficiencies of lettuce (Lactuca sativa L.) varied depending on morphological types and cultivars. Therefore, this research investigated the physiological responses of semi-heading lettuce under various phosphorus treatments. In addition, gene expression analysis was conducted using microarray and quantitative reverse transcription PCR (qRT-PCR) techniques in semi-heading lettuce under various phosphorus treatments.
Semi-heading lettuce plants cultured under different light intensities displayed different growth rates, and the phosphorus starvation responses were also different. During seedling stage, shoot and root phosphate concentrations were significantly decreased after Pi starvation for 3 days under either high or low light intensities. The shoot fresh weight was significantly decreased after Pi starvation for 3 days under high light intensity condition, and was significantly decreased after Pi starvation for 5 days under low light intensity condition. During growing stage under either high or low light intensities, the shoot fresh weight, shoot and root Pi concentrations were significantly decreased after Pi starvation for 5 days, the water content was significantly decreased after Pi starvation for 10 days, and the hydrogen peroxide concentration was significantly increased after Pi starvation for 10 days. The chlorophyll and carotenoids concentrations were significantly increased after Pi starvation for 5 days under high light intensity condition, but increased after Pi starvation for 10 days under low light intensity condition. During harvesting stage under either high or low light intensities, shoot and root Pi concentrations were significantly decreased after Pi starvation for 5 days. However, during this stage, even after Pi starvation for 10 days, there were no significant difference between Pi treatments in shoot fresh weight, water content, chlorophyll concentration, carotenoids concentration, hydrogen peroxide concentration and nitrate concentration. In this research, the Pi starvation induced gene- Lsa031437.1 was identified in semi-heading lettuce via microarray analysis. The function of Lsa031437.1 may involves in the reaction of oxidation-reduction in plants. Expression patterns of Lsa031437.1 in responses to Pi starvation treatments were further confirmed by qRT-PCR techniques. Then, the Lsa031437.1 promoter fusion with β-glucuronidase (GUS) construct was transiently expressed in lettuce leaf via agroinfiltration. GUS staining results showed that the expression levels of GUS signal in leaves were similar when plants grown under Pi sufficient and starvation conditions. This result indicated that Lsa031437.1 promoter:GUS construct in combination with agroinfiltration technique may be not suitable for monitoring phosphorus status in lettuce. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:14:39Z (GMT). No. of bitstreams: 1 ntu-104-R01628134-1.pdf: 5411538 bytes, checksum: caae6f5bf475b12a3536306da6c1fefc (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 I
摘要 III Abstract IV 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 第二章 前人研究 3 一、萵苣 (lettuce) 3 (一) 萵苣之介紹與分類 3 (二) 萵苣之生產與栽培 3 二、磷 (phosphorus) 4 (一) 磷的重要性與可利用性 4 (二) 植物缺磷之生理反應 5 (三) 植物缺磷下之分子調控機制 8 三、萵苣與磷 12 第三章 試驗動機與目的 14 一、試驗動機 14 (一) 磷的使用 14 (二) 營養診斷與合理化施肥 15 二、試驗目的 17 第四章 半結球萵苣在不同光強度下之缺磷生理反應 18 一、前言 18 二、材料與方法 18 (一) 試驗材料與場所 18 (二) 試驗設計 19 (三) 調查項目與分析方法 19 三、結果 22 (一) 半結球萵苣在高光下缺磷之生理反應 22 (二) 半結球萵苣在低光下缺磷之生理反應 24 四、討論 26 (一) 半結球萵苣於不同光強度下對缺磷處理之反應 26 (二) 半結球萵苣於不同生長階段對缺磷處理之反應 28 第五章 半結球萵苣缺磷逆境下的基因表現與農桿菌滲入法 42 一、前言 42 二、材料方法 42 (一) 材料準備 42 (二) 基因晶片 (Gene chip) 之設計與分析 43 (三) 目標基因序列之獲取 44 (四) 基因表現之驗證 44 (五) 基因構築 46 (六) 農桿菌滲入法 48 (七) GUS定性分析 49 三、結果 49 (一) 基因微陣列分析結果 49 (二) 目標基因之探討 50 (三) 半結球萵苣缺磷誘導基因之表現驗證 51 (四) 載體構築與農桿菌滲入法之結果 52 四、討論 53 第六章 結論 62 第七章 參考文獻 63 | |
dc.language.iso | zh-TW | |
dc.title | 半結球萵苣缺磷情況下之生理反應與基因表現 | zh_TW |
dc.title | Physiological Response and Gene Expression of Semi-Heading Lettuce (Lactuca sativa L.) under Phosphorus Starvation | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 羅筱鳳,王自存 | |
dc.subject.keyword | 磷,萵苣,微陣列,農桿菌滲入法, | zh_TW |
dc.subject.keyword | phosphorus,lettuce,microarray,agroinfiltration, | en |
dc.relation.page | 69 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 5.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。