Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52429
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張所鋐(Shuo-Hung Chang)
dc.contributor.authorChih-Chung Chenen
dc.contributor.author陳致中zh_TW
dc.date.accessioned2021-06-15T16:14:34Z-
dc.date.available2020-08-25
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citation[1] BP, Statistical Review of World Energy. Workbook (xlsx), London, 2012.
[2] Energy in Sweden, Facts and figures. 2010.
[3] IEA Key energy statistics, Population page 48 forward. 2010.
[4] IEC/OECD, 2008 Energy Balance for World. accessdate 2011-06-08.
[5] Iijima, S., Helical Microtubules of Graphitic Carbon. Nature, 1991. 354(6348): p. 56-58.
[6] Kroto, H.W., J.R. Heath, S.C. Obrien, R.F. Curl, and R.E. Smalley, C-60 - Buckminsterfullerene. Nature, 1985. 318(6042): p. 162-163.
[7] Iijima, S. and T. Ichihashi, Single-Shell Carbon Nanotubes of 1-Nm Diameter. Nature, 1993. 363(6430): p. 603-605.
[8] D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, Vol. 363, pp. 605-607, 1993.
[9] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature, Vol. 391, Issue 6662, pp. 59-62, 1998.
[10] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Electronic structure of chiral graphene tubules. Applied Physics Letters, Vol 60, Issue 18, pp.2204, 1992.
[11] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science, Vol. 275, Issue 5297, pp. 187-191, 1997.
[12] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Optical properties of single-wall carbon nanotubes. Synthetic Metals, Vol. 103, Issue 1-3, pp. 2555-2558, 1999.
[13] R. Saito, G. Dresslhaus, and M. Dresswlhau, Physical properties of carbon nanotube. Imperial College Press, 1998.
[14] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Physics of carbon nanotubes. Carbon, Vol. 33, No. 7, pp. 883-891, 1995.
[15] S. Farhat, M. L. de La Chapelle, A. Loiseau, C. D. Scott, S. Lefrant, C. Journet, and P. Bernier, Diameter control of single-walled carbon nanotubes using argon-helium mixture gases. Journal of Chemical Physics, Vol. 115, Issue 14, pp. 6752-6759, 2001.
[16] Thess, A., R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, C.H. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, and R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science, 1996. 273(5274): p. 483-487.
[17] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, vol. 306, pp. 1362-1364, Nov 19 2004.
[18] D. N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, and S. Iijima, Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys Rev Lett, vol. 95, pp. 1-4, Jul 29 2005.
[19] M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, Carbon nanotube growth by PECVD: a review. Plasma Sources Science & Technology, vol. 12, pp. 205-216, May 2003.
[20] T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition. Chemical Physics Letters, vol. 381, pp. 422-426, Nov 14 2003.
[21] Y. M. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. W. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, and H. J. Dai, Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Letters, Vol. 4, Issue 2, pp. 317-321, 2004.
[22] S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Applied Physics Letters, vol. 83, pp. 4661-4663, Dec 1 2003.
[23] Fennimore, A.M., T.D. Yuzvinsky, W.Q. Han, M.S. Fuhrer, J. Cumings, and A. Zettl, Rotational actuators based on carbon nanotubes. Nature, 2003. 424(6947): p. 408-410.
[24] Veedu, V.P., A.Y. Cao, X.S. Li, K.G. Ma, C. Soldano, S. Kar, P.M. Ajayan, and M.N. Ghasemi-Nejhad, Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nature Materials, 2006. 5(6): p. 457-462.
[25] Song, I.K., Y.S. Cho, G.S. Choi, J.B. Park, and D.J. Kim, The growth mode change in carbon nanotube synthesis in plasma-enhanced chemical vapor deposition. Diamond and Related Materials, 2004. 13(4-8): p. 1210-1213.
[26] Bower, C., O. Zhou, W. Zhu, D.J. Werder, and S.H. Jin, Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Applied Physics Letters, 2000. 77(17): p. 2767-2769.
[27] Gohier, A., C.P. Ewels, T.M. Minea, and M.A. Djouadi, Carbon nanotube growth mechanism switches from tip- to base-growth with decreasing catalyst particle size. Carbon, 2008. 46(10): p. 1331-1338.
[28] Rao, C.N.R., R. Sen, B.C. Satishkumar, and A. Govindaraj, Large aligned-nanotube bundles from ferrocene pyrolysis. Chemical Communications, 1998(15): p. 1525-1526.
[29] Choi, G.S., Y.S. Cho, S.Y. Hong, J.B. Park, K.H. Son, and D.J. Kim, Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition. Journal of Applied Physics, 2002. 91(6): p. 3847-3854.
[30] Wei, Y.Y., G. Eres, V.I. Merkulov, and D.H. Lowndes, Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Applied Physics Letters, 2001. 78(10): p. 1394-1396.
[31] Chhowalla, M., K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, and W.I. Milne, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2001. 90(10): p. 5308-5317.
[32] Teo, K.B.K., S.B. Lee, M. Chhowalla, V. Semet, V.T. Binh, O. Groening, M. Castignolles, A. Loiseau, G. Pirio, P. Legagneux, D. Pribat, D.G. Hasko, H. Ahmed, G.A.J. Amaratunga, and W.I. Milne, Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres - how uniform do they grow? Nanotechnology, 2003. 14(2): p. 204-211.
[33] Qiu, A., D.F. Bahr, A.A. Zbib, A. Bellou, S.D. Mesarovic, D. McClain, W. Hudson, J. Jiao, D. Kiener, and M.J. Cordill, Local and non-local behavior and coordinated buckling of CNT turfs. Carbon, 2011. 49(4): p. 1430-1438.
[34] Saito, Y., T. Yoshikawa, M. Okuda, N. Fujimoto, S. Yamamuro, K. Wakoh, K. Sumiyama, K. Suzuki, A. Kasuya, and Y. Nishina, Iron Particles Nesting in Carbon Cages Grown by Arc-Discharge. Chemical Physics Letters, 1993. 212(3-4): p. 379-383.
[35] Satishkumar, B.C., A. Govindaraj, and C.N.R. Rao, Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene-hydrocarbon mixtures: role of the metal nanoparticles produced in situ. Chemical Physics Letters, 1999. 307(3-4): p. 158-162.
[36] Muhl, T., D. Elefant, A. Graff, R. Kozhuharova, A. Leonhardt, I. Monch, M. Ritschel, P. Simon, S. Groudeva-Zotova, and C.M. Schneider, Magnetic properties of aligned Fe-filled carbon nanotubes. Journal of Applied Physics, 2003. 93(10): p. 7894-7896.
[37] Leonhardt, A., M. Ritschel, D. Elefant, N. Mattern, K. Biedermann, S. Hampel, C. Muller, T. Gemming, and B. Buchner, Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene. Journal of Applied Physics, 2005. 98(7).
[38] Muller, C., S. Hampel, D. Elefant, K. Biedermann, A. Leonhardt, M. Ritschel, and B. Buchner, Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties. Carbon, 2006. 44(9): p. 1746-1753.
[39] Kozhuharova-Koseva, R., M. Hofmann, A. Leonhardt, I. Monch, T. Muhl, M. Ritschel, and B. Buchner, Relation between growth parameters and morphology of vertically aligned Fe-filled carbon nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2007. 15(2): p. 135-143.
[40] Liu, Q.F., Z.G. Chen, B. Liu, W.C. Ren, F. Li, H.T. Cong, and H.M. Cheng, Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures. Carbon, 2008. 46(14): p. 1892-1902.
[41] Muller, C., D. Elefant, A. Leonhardt, and B. Buchner, Incremental analysis of the magnetization behavior in iron-filled carbon nanotube arrays. Journal of Applied Physics, 2008. 103(3).
[42] Shi, C.X. and H.T. Cong, Tuning the coercivity of Fe-filled carbon-nanotube arrays by changing the shape anisotropy of the encapsulated Fe nanoparticles. Journal of Applied Physics, 2008. 104(3).
[43] Cheng, J., X.P. Zou, G. Zhu, M.F. Wang, Y. Su, G.Q. Yang, and X.M. Lu, Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties. Solid State Communications, 2009. 149(39-40): p. 1619-1622.
[44] Gui, X.C., K.L. Wang, W.X. Wang, J.Q. Wei, X.F. Zhang, R.T. Lv, Y. Jia, Q.K. Shu, F.Y. Kang, and D.H. Wu, The decisive roles of chlorine-contained precursor and hydrogen for the filling Fe nanowires into carbon nanotubes. Materials Chemistry and Physics, 2009. 113(2-3): p. 634-637.
[45] Muller, C., A. Leonhardt, M.C. Kutz, B. Buchner, and H. Reuther, Growth Aspects of Iron-Filled Carbon Nanotubes Obtained by Catalytic Chemical Vapor Deposition of Ferrocene. Journal of Physical Chemistry C, 2009. 113(7): p. 2736-2740.
[46] Zhang, X.F., A.Y. Cao, B.Q. Wei, Y.H. Li, J.Q. Wei, C.L. Xu, and D.H. Wu, Rapid growth of well-aligned carbon nanotube arrays. Chemical Physics Letters, 2002. 362(3-4): p. 285-290.
[47] Geng, F.X. and H.T. Cong, Fe-filled carbon nanotube array with high coercivity. Physica B-Condensed Matter, 2006. 382(1-2): p. 300-304.
[48] Hampel, S., A. Leonhardt, D. Selbmann, K. Biedermann, D. Elefant, C. Muller, T. Gemming, and B. Buchner, Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon, 2006. 44(11): p. 2316-2322.
[49] Wang, W.X., K.L. Wang, R.T. Lv, J.Q. Wei, X.F. Zhang, F.Y. Kang, J.G. Chang, Q.K. Shu, Y.Q. Wang, and D.H. Wu, Synthesis of Fe-filled thin-walled carbon nanotubes with high filling ratio by using dichlorobenzene as precursor. Carbon, 2007. 45(5): p. 1127-1129.
[50] Kunadian, I., R. Andrews, D.L. Qian, and M.P. Menguc, Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method. Carbon, 2009. 47(2): p. 384-395.
[51] Lee, Y.T., Kim, N.S., Park, J., Han, J.B., Choi, Y.S., Ryu, H., Lee, H.J., Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000℃. Chemical Physics Letters, 372, 853–859, 2003.
[52] Su, C.C. and Chang, S.H., Comparison of the efficiency of various substrates in growing vertically aligned carbon nanotube carpets. Carbon, 2011. 49(15): p. 5271-5282.
[53] Deck, C.P. and K. Vecchio, Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes. Carbon, 2005. 43(12): p. 2608-2617.
[54] Yunus, C. and Afshin, G., Heat and Mass Transfer: Fundamentals and Applications 4th. 2011. p. 519.
[55] Francis, S., and Kwangtzu, Y., Laminar free convection about vertical and horizontal plates at small and moderate grashof numbers. J. Heat Mass Transfer, 1968. Vol. 11, pp. 473-490.
[56] Goldstein, R. J., Sparrow, E. M. and Jones, D. C., Natural convection mass transfer adjacent to horizontal plates. Inz. J. Heat Mass Transfer, 1973. Vol. 16, pp. 1025-1035.
[57] Pretota, S., Zeghmatia, B. and Le Palec G., Theoretical and experimental study of natural convection on a horizontal plate. Applied Thermal Engineering 20 (2000) 873-891.
[58] Massimo, C., Natural convection heat transfer above heated horizontal surfaces. 5th WSEAS Int. Conf. on Heat and Mass transfer. 2008.
[59] Shakerin, S., Bohn, M. and Loehrke, R. I., Natural convection in an enclosure with discrete roughness elements on a vertical heated wall. Inz. J. Heat Mass Transfer, 1988.Vol. 31, No. 7. pp. 1423-1430.
[60] Bhavnani, H. and Bergles, E., Effect of surface geometry and orientation on laminar natural convection heat transfer from a vertical flat plate with transverse roughness elements. Inz. J. Heat Mass Transfer, 1990. Vol.33. No.5. pp.965-981.
[61] Pretota, S., Zeghmatib, B. and Caminatc, Ph., Influence of surface roughness on natural convection above a horizontal plate. Advances in Engineering Software 31 (2000) 793-801
[62] Fishenden, M. and Saunden, O. A., An Introduction to Heat Transfer. Oxford Univ. Press, London, 1950.
[63] Rotem, Z., and Claassen, L., Natural convection above unconfined horizontal surfaces. J. Fluid Mech., Vol. 38 (1), 1969, pp. 173-192.
[64] Goldstein, R. J., and Lau, K. S., Laminar natural convection from a horizontal plate and the influence of plate-edge extensions. J. Fluid Mech., Vol. 129, 1983, pp. 55-75.
[65] Kitamura, K. and Kimura, F., Heat transfer and fluid flow of natural convection adjacent to upward-facing horizontal plates. Int. J. Heat Mass Transfer, Vol. 38, 1995, pp. 3149-3159.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52429-
dc.description.abstract自奈米碳管問世以來,一直是備受矚目的研究對象,其優秀的性質更使奈米碳管在許多領域中被認為具有廣泛應用的潛力,奈米碳管因為有著高熱導率的特性,使得許多研究嘗試將奈米碳管作為散熱或熱交換的媒介,而這些研究也獲得了極大的成功,但同時奈米碳管也因為有著相當特殊的幾何特性,讓它在儲能、隔熱上也有發展的潛力。
本研究以實驗法探討奈米碳管叢在材料表面上的隔熱效果,藉由量測奈米碳管叢表面散熱情形,量化奈米碳管叢對自然對流氣流的影響,探討奈米碳管的隔熱能力與特性,並研究其特殊性質之成因,同時也藉由改變碳管的種類與幾何性質,實驗找出具有最佳隔熱效果的奈米碳管叢參數。
本研究發現奈米碳管叢在材料表面時,可以減少將近60%之自然對流,使對流熱交換率減低到只有原先的43%,研究也發現奈米碳管叢之隔熱能力會隨其高度上升而增加,高度高於12μm的單層奈米碳管叢具有最佳的隔熱效果,其中無填鐵奈米碳管叢的隔熱能力大於填鐵奈米碳管叢,而多層奈米碳管叢則因為其特性而不具有隔熱效果,奈米碳管叢的隔熱能力會隨著物體與環境溫度差增加而上升,當溫差大於70°C時,奈米碳管叢具有最佳隔熱效果。
zh_TW
dc.description.abstractCarbon nanotube is a remarkable research topic since it has been discovered. It is believed that carbon nanotube has the potential to be applied in many different fields due to its great property. Carbon nanotube has high thermal conductivity, making it an ideal heat transfer medium for various applications. Furthermore, the special geometry of carbon nanotube also makes it has the potential to become a heat insulation device.
In this study, the capability of heat insulation of carbon nanotube is discovered by experimental method. By studying the heat transfer coefficient above the surface of carbon nanotube, the affect between carbon nanotube and natural convection will be exposed. The capability of heat insulation of different kinds of carbon nanotube is compared in the study.
Carbon nanotube can suppress 60% of natural convection of the surface. The heat transfer coefficient is reduced to 43% of the original value. The capability of heat insulation will increase with the height of carbon nanotube. The single layer carbon nanotube with the height which is more than 12μm has the best capability of heat insulation. The capability of heat insulation of non iron-filled carbon nanotube is better than iron-filled carbon nanotube. Multiple layers carbon nanotube do not have the capability of heat insulation. This study also shows that the capability of heat insulation of carbon nanotube will also increase with the temperature difference between the surface and the environment. When the temperature difference between the surface and the environment is more than 70°C, carbon nanotube will have the best capability of heat insulation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:14:34Z (GMT). No. of bitstreams: 1
ntu-104-R02522611-1.pdf: 5736716 bytes, checksum: 0d4786bbd4e416d2bcf0f5990fd42d19 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1 奈米碳管 4
2.1.1 奈米碳管基本性質 4
2.1.2 奈米碳管製備方法 8
2.1.3 奈米碳管成長機制 13
2.1.4 填鐵奈米碳管叢 17
2.2 自然對流 20
2.2.1 自然對流原理 20
2.2.2 水平平面上之自然對流 22
2.2.3 表面粗糙度對於自然對流的影響 23
第三章 實驗架構與原理 26
3.1 實驗設計與架構 26
3.1.1 實驗流程 27
3.1.2 試片設計 29
3.2 奈米碳管叢製備 32
3.2.1 無填鐵奈米碳管叢製備 32
3.2.2 填鐵奈米碳管叢製備 36
3.2.3 製備結果分析與檢測 38
3.3 實驗數據分析 41
3.3.1 實驗數據計算 41
3.3.2 誤差來源 43
第四章 實驗結果與討論 45
4.1 奈米碳管叢製備 45
4.1.1 無填鐵奈米碳管叢製備結果 45
4.1.2 填鐵奈米碳管叢製備結果 50
4.2 無碳管試片實驗 56
4.3 單層填鐵奈米碳管叢實驗 59
4.3.1 實驗結果 59
4.3.2 奈米碳管叢高度對隔熱效果的影響 64
4.4 多層填鐵奈米碳管叢實驗 69
4.4.1 實驗結果 69
4.4.2 奈米碳管叢層數對隔熱效果的影響 73
4.5 無填鐵奈米碳管叢實驗 75
4.5.1 實驗結果 75
4.5.2 有無填鐵對隔熱效果的影響 79
第五章 結論與未來展望 83
5.1 結論 83
5.2 未來展望 85
參考文獻 86
dc.language.isozh-TW
dc.title可抑制表面自然對流之奈米碳管叢表面隔熱元件zh_TW
dc.titleHeat Insulation and Air Flow Suppression Using Carbon Nanotube Forest Deviceen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃昆平(Kun-Ping Huang),蘇志中(Chih-Chung Su)
dc.subject.keyword奈米碳管叢,填鐵奈米碳管叢,自然對流,微米級表面結構,隔熱,zh_TW
dc.subject.keywordCarbon nanotube,Iron-filled carbon nanotube,Natural convection,Microscale surface structure,Heat insulation,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
5.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved