Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52417
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林長平(Chan-Pin Lin)
dc.contributor.authorChiao-Yin Yangen
dc.contributor.author楊喬茵zh_TW
dc.date.accessioned2021-06-15T16:14:15Z-
dc.date.available2020-07-01
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citationReferences
Alonso, J. M. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana Science 301:1849-1849.
Bai, X. D., Correa, V. R., Toruno, T. Y., Ammar, E. D., Kamoun, S. & Hogenhout, S. A. 2009. AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol. Plant Microbe Interact. 22:18-30.
Bartel, D. P. 2007. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 131:11-29.
Baucher, M., Moussawi, J., Vandeputte, O. M., Monteyne, D., Mol, A., Perez-Morga, D. & El Jaziri, M. 2013. A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco. Plant Biol. 15:892-898.
Bazzini, A. A., Lee, M. T. & Giraldez, A. J. 2012. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in Zebrafish. Science 336:233-237.
Chang, T. C. 2012. Idenification of conserved microRNAs and their targets in PnWB phytoplasma induced leafy flower of Cantharanthus roseus. National Taiwan University. Master thesis.
Chen, X. M. 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022-2025.
Chorostecki, U., Crosa, V. A., Lodeyro, A. F., Bologna, N. G., Martin, A. P., Carrillo, N., Schommer, C. & Palatnik, J. F. 2012. Identification of new microRNA-regulated genes by conserved targeting in plant species. Nucleic Acids Res. 40:8893-8904.
Coen, E. S. & Meyerowitz, E. M. 1991. The war of the whorls - Genetic interactions controlling flower development. Nature 353:31-37.
Debernardi, J. M., Rodriguez, R. E., Mecchia, M. A. & Palatnik, J. F. 2012. Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions. PLoS Genet. 8:e1002419.
Djuranovic, S., Nahvi, A. & Green, R. 2012. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336:237-240.
Doi, Y., Teranaka, M., Yora, K. & Asuyama, H. 1967. Mycoplasma- or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or paulownia witches’ broom. Ann. Phytopathol. Soc. Jpn, 33:259–266.
Fornara, F., Gregis, V., Pelucchi, N., Colombo, L. & Kater, M. 2008. The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants. J. Exp. Bot. 59:2181-2190.
Glazinska, P., Zienkiewicz, A., Wojciechowski, W. & Kopcewicz, J. 2009. The putative miR172 target gene InAPETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil. J Plant Physiol. 166:1801-1813.
Gregis, V., Sessa, A., Colombo, L. & Kater, M. M. 2008. AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J. 56:891-902.
Hartmann, U., Hohmann, S., Nettesheim, K., Wisman, E., Saedler, H. & Huijser, P. 2000. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J. 21:351-360.
Hewezi, T., Maier, T. R., Nettleton, D. & Baum, T. J. 2012. The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol. 159:321-335.
Hogenhout, S. A., Oshima, K., Ammar, E. D., Kakizawa, S., Kingdom, H. N. & Namba, S. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9:403-423.
Hoshi, A., Oshima, K., Kakizawa, S., Ishii, Y., Ozeki, J., Hashimoto, M., Komatsu, K., Kagiwada, S., Yamaji, Y. & Namba, S. 2009. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc. Natl. Acad. Sci. 106:6416-6421.
Hu, S. F., Huang, Y. H., Lin, C. P., Liu, L. Y. D., Hong, S. F., Yang, C. Y., Lo, H. F., Tseng, T. Y., Chen, W. Y. & Lin, S. S. 2015. Development of a mild viral expression system for gain-of-function study of phytoplasma effector in planta. PLoS One 10:e0130139.
Huang, Y. H. 2013. MiR396-mediated SVP gene expression in floral transition reprogramming and its involvement with phytoplasma effector SAP54. National Taiwan University. Master thesis.
Krizek, B. A. & Fletcher, J. C. 2005. Molecular mechanisms of flower development: an armchair guide. Nat. Rev. Genet. 6:688-698.
Lee, I. M., Davis, R. E. & Gundersen-Rindal, D. E. 2000. Phytoplasma: Phytopathogenic mollicutes. Annu. Rev. Microbiol. 54:221-255.
Lee, J. H., Yoo, S. J., Park, S. H., Hwang, I., Lee, J. S. & Ahn, J. H. 2007. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 21:397-402.
Li, D., Liu, C., Shen, L., Wu, Y., Chen, H., Robertson, M., Helliwell, C. A., Ito, T., Meyerowitz, E. & Yu, H. 2008. A repressor complex governs the integration of flowering signals in Arabidopsis. Dev. cell 15:110-120.
Li, S., Liu, L., Zhuang, X., Yu, Y., Liu, X., Cui, X., Ji, L., Pan, Z., Cao, X., Mo, B., Zhang, F., Raikhel, N., Jiang, L. & Chen, X. 2013. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153:562-574.
Liang, G., He, H., Li, Y., Wang, F. & Yu, D. 2014. Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiol. 164:249-258.
Liljegren, S. J., Gustafson-Brown, C., Pinyopich, A., Ditta, G. S. & Yanofsky, M. F. 1999. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11:1007-1018.
Lin, S. S., Wu, H. W., Elena, S. F., Chen, K. C., Niu, Q. W., Yeh, S. D., Chen, C. C. & Chua, N. H. 2009. Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. PLoS Pathog. 5:e1000312.
Lin, Y. Y. 2014. Investigation of phytoplasma effector PHYL1Pn that interferes plant miRNA-mediated regulation for leafy flowering using an integrated omics approach. National Taiwan University. Master thesis.
Lin, Y. Y., Fang, M. M., Lin, P. C., Chiu, M. T., Liu, L. Y., Lin, C. P. & Lin, S. S. 2013. Improving initial infectivity of the Turnip mosaic virus (TuMV) infectious clone by an mini binary vector via agro-infiltration. Bot. Stud. 54:22.
Liu, C., Zhou, J., Bracha-Drori, K., Yalovsky, S., Ito, T. & Yu, H. 2007. Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134:1901-1910.
Liu, L. Y., Tseng, H. I., Lin, C. P., Lin, Y. Y., Huang, Y. H., Huang, C. K., Chang, T. H. & Lin, S. S. 2014. High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches'-broom phytoplasma infection. Plant Cell Physiol. 55:942-957.
MacLean, A. M., Orlovskis, Z., Kowitwanich, K., Zdziarska, A. M., Angenent, G. C., Immink, R. G. & Hogenhout, S. A. 2014. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol. 12:e1001835.
MacLean, A. M., Sugio, A., Makarova, O. V., Findlay, K. C., Grieve, V. M., Toth, R., Nicolaisen, M. & Hogenhout, S. A. 2011. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol. 157:831-841.
Maejima, K., Iwai, R., Himeno, M., Komatsu, K., Kitazawa, Y., Fujita, N., Ishikawa, K., Fukuoka, M., Minato, N., Yamaji, Y., Oshima, K. & Namba, S. 2014. Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. Plant J. 78:541-554.
Minato, N., Himeno, M., Hoshi, A., Maejima, K., Komatsu, K., Takebayashi, Y., Kasahara, H., Yusa, A., Yamaji, Y., Oshima, K., Kamiya, Y. & Namba, S. 2014. The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Sci. Rep. 4:7399.
Rymarquis, L. A., Souret, F. F. & Green, P. J. 2011. Evidence that XRN4, an Arabidopsis homolog of exoribonuclease XRN1, preferentially impacts transcripts with certain sequences or in particular functional categories. Rna 17:501-511.
Shen, L., Kang, Y. G., Liu, L. & Yu, H. 2011. The J-domain protein J3 mediates the integration of flowering signals in Arabidopsis. Plant Cell 23:499-514.
Su, Y. T., Chen, J. C. & Lin, C. P. 2011. Phytoplasma-Induced Floral Abnormalities in Catharanthus roseus Are Associated with Phytoplasma Accumulation and Transcript Repression of Floral Organ Identity Genes. Mol. Plant Microbe Interact. 24:1502-1512.
Sugio, A., Kingdom, H. N., MacLean, A. M., Grieve, V. M. & Hogenhout, S. A. 2011. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl. Acad. Sci. 108:E1254-E1263.
Sugio, A., MacLean, A. M. & Hogenhout, S. A. 2014. The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization. New Phytol. 202:838-848.
Teotia, S. & Tang, G. 2015. To bloom or not to bloom: role of microRNAs in plant flowering. Mol. plant 8:359-377.
Theissen, G. 2001. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4:75-85.
Trevaskis, B., Tadege, M., Hemming, M. N., Peacock, W. J., Dennis, E. S. & Sheldon, C. 2007. Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol. 143:225-235.
Valencia-Sanchez, M. A., Liu, J. D., Hannon, G. J. & Parker, R. 2006. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20:515-524.
Wang, J. W., Czech, B. & Weigel, D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738-749.
Wu, R. M., Walton, E. F., Richardson, A. C., Wood, M., Hellens, R. P. & Varkonyi-Gasic, E. 2012. Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. J. Exp. Bot. 63:797-807.
Yang, I. L. 1985. Host responses of peanut witches' broom disease. J. Agric. Res. China 34:797-807.
Zhang, B. H., Pan, X. P., Cobb, G. P. & Anderson, T. A. 2006a. Plant microRNA: A small regulatory molecule with big impact. Dev. Biol. 289:3-16.
Zhang, X. R., Garreton, V. & Chua, N. H. 2005. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev. 19:1532-1543.
Zhang, X. R., Henriques, R., Lin, S. S., Niu, Q. W. & Chua, N. H. 2006b. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1:641-646.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52417-
dc.description.abstract花生簇葉病之菌質體 (peanut witches’ broom phytoplasma, PnWB) 感染日日春後花器形態會產生綠化及葉化病徵。在PnWB 菌質體中發現和Aster yellows witches’ broom 菌質體造成花器葉化相似之植物菌質體效應蛋白,依其功能將之命名為 PHYL1。當PHYL1 蛋白於阿拉伯芥大量表現時花器會有葉化現象,根據其他團隊研究顯示此現象的形成是因為PHYL1會降解開花相關的MADS-domain transcription factor (MTFs)。然而本實驗室發現在 PHYL1植物中,除葉化花外,尚有類似 SVP (AtSVP) 於阿拉伯芥大量表現時會產生的畸型花。目前對於PHYL1如何調控抑制開花之相關蛋白仍待進一步了解。本實驗室首次發現 SVP帶有 miR396的 target site,且不論於日日春或阿拉伯芥葉化花中miR396表現量皆較低。因此本實驗室假設PHYL1 蛋白會抑制miR396表現量,以及 miR396會調控 SVP基因的表現量,最終導致花器葉化。首先為了證明miR396會調控SVP,因此於菸草上暫時性的表現miR396和SVP,以確定SVP表現量會受miR396影響。此外,亦進一步以螢光報導分析 (reporter assay)確立miR396調控SVP 是藉由所發現的target site。同時,於阿拉伯芥atmiR396a 突變株進行分析時,發現其AtSVP 的表現量較對照組高,而過量表現 Cr_MIR396之轉殖株其 AtSVP表現量下降。由以上實驗皆可觀察到 miR396 確實會調控SVP 的表現。本實驗室探討 PHYL1 蛋白發現其具不穩定性以及進核之特性。另外,從 ChIP 試驗中我們發現 PHYL1蛋白會附著於 genomic DNA 上。未來希望探討PHYL1如何抑制miR396表現,最終串聯PHYL1、miR396以及SVP三者關係以了解植物菌質體造成花變葉之機制。zh_TW
dc.description.abstractPhytoplasma cause virescence and phyllody symptoms in infected-plants. PHYL1 effector of Peanut witches’ broom (PnWB) phytoplasma triggers leafy flower phenotype in transgenic Arabidopsis. Recent studies show that SAP54, a PHYL1 ortholog, triggers flowering related MADS-domain transcription factor (MTFs) proteasomal degrade. Here, we provide a new evidence to demonstrate that how PHYL1 mediate leafy flower in plants. Transgenic Arabidopsis expressing PHYL1 gene (PHYL1 plants) exhibits not only leafy flower phenotype, but also showed abnormal flower phenotype, which is identical with the phenotype in transgenic Arabidopsis overexpressing SVP gene (AtSVP plant). In addition, our previous data indicated that a microRNA 396 (miR396) target site was found on MADS-domain of SVP gene. Moreover, the expressions of miR396 were low in both leafy flowers of PnWB-infected plants and PHYL1 plants. According to these observations, we hypothesized that PHYL1 represses miR396 expression, resulting in abnormal expression of SVP. To evaluate this hypothesis, we performed transient expression analysis, reporter assay and genetic approach to confirm the relationship between miR396 and SVP gene. The results of various analyses indicated one direction is that miR396 triggers SVP down-regulation. Moreover, degradome profiles indicated that miR396-mediate SVP down-regulation via mRNA decay that might be caused by translation inhibition. Furthermore, we observed some properties of PHYL1, including protein instability, nucleus localization, and the ability to bind to genomic DNA. This study demonstrated a new possible mechanism for PHYL1 effector to trigger leafy flower, and also uncovers a miRNA-mediated mRNA decay in plants.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:14:15Z (GMT). No. of bitstreams: 1
ntu-104-R02633021-1.pdf: 10885516 bytes, checksum: b0d05ae190f85ece992464bc19c1cbaf (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
中文摘要 IV
Abstract V
Contents VII
Introduction 1
Materials and Methods 6
Plant material and growth conditions 6
Gene construction and transgenic plants production 7
Transient expression via agroinfiltration 8
Reporter assay 9
Confocal microscopy 10
RNA extraction and real-time RT-PCR 11
Small RNA northern blot 12
Western blot 13
Degradome analysis 13
ChIP assay 14
Results 18
PHYL1 plants exhibit both leafy flower and abnormal flower phenotype 18
MiR396-mediated SVP down-regulation through transient expression 19
Confirming miR396 targeting through reporter assay 20
AtSVP expression levels in atmiR396a mutant and miR396 overexpressed plants 21
Arabidopsis expressing SVP orthologs from various species exhibit different phenotypes 23
MiR396 triggers SVPs decay 24
The PHYL1 is an unstable protein 25
PHYL1 effector localized in the nucleus and binds genomic DNA 26
PnWB detection in peanut field 27
Discussion 29
The abnormal flower phenotype of PHYL1 plants are caused by abnormal SVP expression 29
MiR396 regulates SVP via mRNA decay 30
MiR396 has multiple effects in plant development 31
The characteristics of PHYL1 effector 32
Importance of PHYL1 for PnWB 33
Working model for PHYL1 repression of miR396-mediated SVP regulation 33
Conclusion 34
References 35
Figures 45
Supplementary tables 64
dc.language.isoen
dc.subject花生簇葉病菌質體zh_TW
dc.subjectPHYL1zh_TW
dc.subjectSVPzh_TW
dc.subjectmiRNA396zh_TW
dc.subject蛋白轉譯抑制zh_TW
dc.subjectSVPen
dc.subjectPHYL1en
dc.subjecttranslation repressionen
dc.subjectPnWB phytoplasmaen
dc.subjectmiRNA396en
dc.title植物菌質體 PHYL1 蛋白干擾 miR396 調控 SVP 基因
之表現並引發畸形花之形成
zh_TW
dc.titlePhytoplasma PHYL1 effector induces abnormal flower phenotypes by interfering miR396/SVP regulationen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor林詩舜(Shih-Shun Lin)
dc.contributor.oralexamcommittee劉瑞芬(Ruey-Fen Liou),詹富智(Fu-zhi Zhan),楊俊逸(Jun-Yi Yang)
dc.subject.keyword花生簇葉病菌質體,PHYL1,SVP,miRNA396,蛋白轉譯抑制,zh_TW
dc.subject.keywordPnWB phytoplasma,PHYL1,SVP,miRNA396,translation repression,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
10.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved