請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52415
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭錦樺(Ching-Hua Kuo) | |
dc.contributor.author | Guan-Yuan Chen | en |
dc.contributor.author | 陳冠元 | zh_TW |
dc.date.accessioned | 2021-06-15T16:14:12Z | - |
dc.date.available | 2017-09-24 | |
dc.date.copyright | 2015-09-24 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-18 | |
dc.identifier.citation | 1. Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L. Metabolite profiling for plant functional genomics. Nature biotechnology. 2000;18(11):1157-61.
2. Fiehn O. Metabolomics - the link between genotypes and phenotypes. Plant Mol Biol. 2002;48(1-2):155-71. 3. Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica; the fate of foreign compounds in biological systems. 1999;29(11):1181-9. 4. Thevenot EA, Roux A, Xu Y, Ezan E, Junot C. Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. J Proteome Res. 2015. 5. Jove M, Mate I, Naudi A, Mota-Martorell N, Portero-Otin M, De la Fuente M, et al. Human Aging Is a Metabolome-related Matter of Gender. The journals of gerontology Series A, Biological sciences and medical sciences. 2015. 6. Lindon JC, Keun HC, Ebbels TM, Pearce JM, Holmes E, Nicholson JK. The Consortium for Metabonomic Toxicology (COMET): aims, activities and achievements. Pharmacogenomics. 2005;6(7):691-9. 7. Nyblom H, Berggren U, Balldin J, Olsson R. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol and alcoholism. 2004;39(4):336-9. 8. Duarte IF, Rocha CM, Gil AM. Metabolic profiling of biofluids: potential in lung cancer screening and diagnosis. Expert review of molecular diagnostics. 2013;13(7):737-48. 9. Nissen PM, Nebel C, Oksbjerg N, Bertram HC. Metabolomics reveals relationship between plasma inositols and birth weight: possible markers for fetal programming of type 2 diabetes. Journal of biomedicine & biotechnology. 2011;2011. 10. Dutta T, Chai HS, Ward LE, Ghosh A, Persson XM, Ford GC, et al. Concordance of changes in metabolic pathways based on plasma metabolomics and skeletal muscle transcriptomics in type 1 diabetes. Diabetes. 2012;61(5):1004-16. 11. Trushina E, Dutta T, Persson XM, Mielke MM, Petersen RC. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer's disease using metabolomics. PLoS One. 2013;8(5):e63644. 12. Cuevas-Cordoba B, Santiago-Garcia J. Saliva: a fluid of study for OMICS. Omics : a journal of integrative biology. 2014;18(2):87-97. 13. Kind T, Tolstikov V, Fiehn O, Weiss RH. A comprehensive urinary metabolomic approach for identifying kidney cancerr. Analytical biochemistry. 2007;363(2):185-95. 14. Wang M, Lamers RJ, Korthout HA, van Nesselrooij JH, Witkamp RF, van der Heijden R, et al. Metabolomics in the context of systems biology: bridging traditional Chinese medicine and molecular pharmacology. Phytotherapy research : PTR. 2005;19(3):173-82. 15. Nebert DW, Zhang G, Vesell ES. From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug metabolism reviews. 2008;40(2):187-224. 16. Clayton TA, Lindon JC, Cloarec O, Antti H, Charuel C, Hanton G, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature. 2006;440(7087):1073-7. 17. Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(34):14728-33. 18. Kaddurah-Daouk R, Kristal BS, Weinshilboum RM. Metabolomics: a global biochemical approach to drug response and disease. Annual review of pharmacology and toxicology. 2008;48:653-83. 19. Barri T, Dragsted LO. UPLC-ESI-QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: effect of experimental artefacts and anticoagulant. Anal Chim Acta. 2013;768:118-28. 20. Yin P, Peter A, Franken H, Zhao X, Neukamm SS, Rosenbaum L, et al. Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. Clinical chemistry. 2013;59(5):833-45. 21. Slupsky CM, Rankin KN, Wagner J, Fu H, Chang D, Weljie AM, et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Analytical chemistry. 2007;79(18):6995-7004. 22. Bruce SJ, Tavazzi I, Parisod V, Rezzi S, Kochhar S, Guy PA. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Analytical chemistry. 2009;81(9):3285-96. 23. Folch J, Ascoli I, Lees M, Meath JA, Le BN. Preparation of lipide extracts from brain tissue. J Biol Chem. 1951;191(2):833-41. 24. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology. 1959;37(8):911-7. 25. Brown FF, Campbell ID, Kuchel PW, Rabenstein DC. Human erythrocyte metabolism studies by 1H spin echo NMR. FEBS letters. 1977;82(1):12-6. 26. Kind T, Wohlgemuth G, Lee do Y, Lu Y, Palazoglu M, Shahbaz S, et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical chemistry. 2009;81(24):10038-48. 27. Tautenhahn R, Bottcher C, Neumann S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics. 2008;9:504. 28. Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:395. 29. Ho TJ, Kuo CH, Wang SY, Chen GY, Tseng YJ. True ion pick (TIPick): a denoising and peak picking algorithm to extract ion signals from liquid chromatography/mass spectrometry data. Journal of mass spectrometry : JMS. 2013;48(2):234-42. 30. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic acids research. 2014;42(Database issue):D199-205. 31. Kuo TC, Tian TF, Tseng YJ. 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. BMC systems biology. 2013;7:64. 32. Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic acids research. 2015;43(W1):W251-W7. 33. Wang SY, Kuo CH, Tseng YJ. Batch Normalizer: a fast total abundance regression calibration method to simultaneously adjust batch and injection order effects in liquid chromatography/time-of-flight mass spectrometry-based metabolomics data and comparison with current calibration methods. Analytical chemistry. 2013;85(2):1037-46. 34. Zhang G, He P, Tan H, Budhu A, Gaedcke J, Ghadimi BM, et al. Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013;19(18):4983-93. 35. Chen M, Xu B, Ji W, Qiao S, Hu N, Hu Y, et al. Bisphenol A alters n-6 fatty acid composition and decreases antioxidant enzyme levels in rat testes: a LC-QTOF-based metabolomics study. PLoS One. 2012;7(9):e44754. 36. Mihalik SJ, Michaliszyn SF, de las Heras J, Bacha F, Lee S, Chace DH, et al. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: evidence for enhanced mitochondrial oxidation. Diabetes care. 2012;35(3):605-11. 37. Lin S, Liu N, Yang Z, Song W, Wang P, Chen H, et al. GC/MS-based metabolomics reveals fatty acid biosynthesis and cholesterol metabolism in cell lines infected with influenza A virus. Talanta. 2010;83(1):262-8. 38. Bujak R, Daghir E, Rybka J, Koslinski P, Markuszewski MJ. Metabolomics in urogenital cancer. Bioanalysis. 2011;3(8):913-23. 39. Zhang AH, Sun H, Wu XH, Wang XJ. Urine metabolomics. Clin Chim Acta. 2012;414:65-9. 40. Liu R, Li Q, Ma R, Lin XH, Xu HR, Bi KS. Determination of polyamine metabolome in plasma and urine by ultrahigh performance liquid chromatography-tandem mass spectrometry method: Application to identify potential markers for human hepatic cancer. Anal Chim Acta. 2013;791:36-45. 41. Ganti S, Weiss RH. Urine metabolomics for kidney cancer detection and biomarker discovery. Urologic oncology. 2011;29(5):551-7. 42. Kim K, Aronov P, Zakharkin SO, Anderson D, Perroud B, Thompson IM, et al. Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Molecular & cellular proteomics : MCP. 2009;8(3):558-70. 43. Alberice JV, Amaral AFS, Armitage EG, Lorente JA, Algaba F, Carrilho E, et al. Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry metabolomics approach. J Chromatogr A. 2013;1318:163-70. 44. Friedrich N, Budde K, Wolf T, Jungnickel A, Grotevendt A, Dressler M, et al. Short-term changes of the urine metabolome after bariatric surgery. Omics : a journal of integrative biology. 2012;16(11):612-20. 45. Llorach-Asuncion R, Jauregui O, Urpi-Sarda M, Andres-Lacueva C. Methodological aspects for metabolome visualization and characterization: a metabolomic evaluation of the 24 h evolution of human urine after cocoa powder consumption. J Pharm Biomed Anal. 2010;51(2):373-81. 46. Jones DR, Sullivan SZ, Radominska-Pandya A, Moran JH, Miller GP. LC-MS/MS Assessment of Phase I Hydroxylation and Phase II Conjugation to the Warfarin Metabolome in Human Urine. Drug metabolism reviews. 2009;41:25-6. 47. Ryan D, Robards K, Prenzler PD, Kendall M. Recent and potential developments in the analysis of urine: a review. Anal Chim Acta. 2011;684(1-2):8-20. 48. Moss R, Thomas SR. Hormonal regulation of salt and water excretion: a mathematical model of whole-kidney function and pressure-natriuresis. American journal of physiology Renal physiology. 2013. 49. Tsuchiya Y, Takahashi Y, Jindo T, Furuhama K, Suzuki KT. Comprehensive evaluation of canine renal papillary necrosis induced by nefiracetam, a neurotransmission enhancer. European journal of pharmacology. 2003;475(1-3):119-28. 50. Wagner BD, Accurso FJ, Laguna TA. The applicability of urinary creatinine as a method of specimen normalization in the cystic fibrosis population. J Cyst Fibros. 2010;9(3):212-6. 51. Cone EJ, Caplan YH, Moser F, Robert T, Shelby MK, Black DL. Normalization of Urinary Drug Concentrations with Specific Gravity and Creatinine. Journal of analytical toxicology. 2009;33(1):1-7. 52. Anker RM. The determination of creatine and creatinine in urine; a correction factor for the determination of twenty-four-hour urinary excretion values. The Journal of laboratory and clinical medicine. 1954;43(5):798-801. 53. Heavner DL, Morgan WT, Sears SB, Richardson JD, Byrd GD, Ogden MW. Effect of creatinine and specific gravity normalization techniques on xenobiotic biomarkers in smokers' spot and 24-h urines. J Pharm Biomed Anal. 2006;40(4):928-42. 54. Gyamlani GG, Bergstralh EJ, Slezak JM, Larson TS. Urinary albumin to osmolality ratio predicts 24-hour urine albumin excretion in diabetes mellitus. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2003;42(4):685-92. 55. Guan MM, Xie LY, Diao CF, Wang N, Hu WY, Zheng YQ, et al. Systemic Perturbations of Key Metabolites in Diabetic Rats During the Evolution of Diabetes Studied by Urine Metabonomics. PLoS One. 2013;8(4). 56. Sen A, Wang YY, Chiu K, Whiley L, Cowan D, Chang RCC, et al. Metabolic Phenotype of the Healthy Rodent Model Using In-Vial Extraction of Dried Serum, Urine, and Cerebrospinal Fluid Spots. Analytical chemistry. 2013;85(15):7257-63. 57. Wu Y, Li L. Determination of total concentration of chemically labeled metabolites as a means of metabolome sample normalization and sample loading optimization in mass spectrometry-based metabolomics. Analytical chemistry. 2012;84(24):10723-31. 58. Chen YH, Shen GQ, Zhang RP, He JM, Zhang Y, Xu J, et al. Combination of Injection Volume Calibration by Creatinine and MS Signals' Normalization to Overcome Urine Variability in LC-MS-Based Metabolomics Studies. Analytical chemistry. 2013;85(16):7659-65. 59. Warrack BM, Hnatyshyn S, Ott KH, Reily MD, Sanders M, Zhang H, et al. Normalization strategies for metabonomic analysis of urine samples. Journal of chromatography B, Analytical technologies in the biomedical and life sciences. 2009;877(5-6):547-52. 60. Miller RC, Brindle E, Holman DJ, Shofer J, Klein NA, Soules MR, et al. Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations. Clinical chemistry. 2004;50(5):924-32. 61. Waikar SS, Sabbisetti VS, Bonventre JV. Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int. 2010;78(5):486-94. 62. Chadha V, Garg U, Alon US. Measurement of urinary concentration: a critical appraisal of methodologies. Pediatr Nephrol. 2001;16(4):374-82. 63. Mattarucchi E, Guillou C. Comment on 'Optimized Preprocessing of Ultra-Performance Liquid Chromatography/Mass Spectrometry Urinary Metabolic Profiles for Improved Information Recovery'. Analytical chemistry. 2011;83(24):9719-20. 64. Husdan H, Rapoport A. Estimation of creatinine by the Jaffe reaction. A comparison of three methods. Clinical chemistry. 1968;14(3):222-38. 65. Norskov NP, Hedemann MS, Laerke HN, Knudsen KEB. Multicompartmental Nontargeted LC-MS Metabolomics: Explorative Study on the Metabolic Responses of Rye Fiber versus Refined Wheat Fiber Intake in Plasma and Urine of Hypercholesterolemic Pigs. J Proteome Res. 2013;12(6):2818-32. 66. Team RDC. R: A Language and Environment for Statistical Computing: R Foundation for Statistical Computing; 2008. 67. Chambers E, Wagrowski-Diehl DM, Lu Z, Mazzeo JR. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. Journal of chromatography B, Analytical technologies in the biomedical and life sciences. 2007;852(1-2):22-34. 68. King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T. Mechanistic investigation of ionization suppression in electrospray ionization. Journal of the American Society for Mass Spectrometry. 2000;11(11):942-50. 69. Annesley TM. Ion suppression in mass spectrometry. Clinical chemistry. 2003;49(7):1041-4. 70. Piwowar AM, Lockyer NP, Vickerman JC. Salt effects on ion formation in desorption mass spectrometry: an investigation into the role of alkali chlorides on peak suppression in time-of-flight-secondary ion mass spectrometry. Analytical chemistry. 2009;81(3):1040-8. 71. Ilori TO, Blount MA, Martin CF, Sands JM, Klein JD. Urine concentration in the diabetic mouse requires both urea and water transporters. American journal of physiology Renal physiology. 2013;304(1):F103-11. 72. Day RE, Kitchen P, Owen D, Bland C, Marshall L, Conner AC, et al. Human aquaporins: Regulators of transcellular water flow. Biochimica et biophysica acta. 2013. 73. Luft FC. Vasopressin, urine concentration, and hypertension: a new perspective on an old story. Clinical journal of the American Society of Nephrology : CJASN. 2007;2(2):196-7. 74. Imbs JL, Schmidt M, Schwartz J. Intrarenal control of urine concentration by angiotensin II. Clinical science and molecular medicine Supplement. 1978;4:229s-31s. 75. Humes HD, Simmons CF, Jr., Brenner BM. Interaction between antidiuretic and parathyroid hormones on urine concentration. The American journal of physiology. 1980;239(3):F244-9. 76. Carney S, Morgan T, Ray C, Thompson L. Effect of calcitonin on urine concentration in the rat. The American journal of physiology. 1983;244(4):F432-5. 77. Niederalt C, Wendl T, Kuepfer L, Claassen K, Loosen R, Willmann S, et al. Development of a physiologically based computational kidney model to describe the renal excretion of hydrophilic agents in rats. Frontiers in physiology. 2012;3:494. 78. Perucca J, Bouby N, Valeix P, Bankir L. Sex difference in urine concentration across differing ages, sodium intake, and level of kidney disease. American journal of physiology Regulatory, integrative and comparative physiology. 2007;292(2):R700-5. 79. Nishimura H, Fan Z. Sodium and water transport and urine concentration in avian kidney. Symposia of the Society for Experimental Biology. 2002(54):129-51. 80. Zhang J, An Y, Gao J, Han J, Pan X, Pan Y, et al. Aquaporin-1 translocation and degradation mediates the water transportation mechanism of acetazolamide. PLoS One. 2012;7(9):e45976. 81. Yao C, Anderson MO, Zhang J, Yang B, Phuan PW, Verkman AS. Triazolothienopyrimidine inhibitors of urea transporter UT-B reduce urine concentration. Journal of the American Society of Nephrology : JASN. 2012;23(7):1210-20. 82. House EW, Pfeiffer EW, Braun HA. Influence of Diet on Urine Concentration in Aplodontia Rufa and the Rabbit. Nature. 1963;199:181-2. 83. Carrola J, Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Carreira IM, et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res. 2011;10(1):221-30. 84. Nam H, Chung BC, Kim Y, Lee K, Lee D. Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification. Bioinformatics. 2009;25(23):3151-7. 85. Srivastava S, Roy R, Singh S, Kumar P, Dalela D, Sankhwar SN, et al. Taurine - a possible fingerprint biomarker in non-muscle invasive bladder cancer: A pilot study by 1H NMR spectroscopy. Cancer biomarkers : section A of Disease markers. 2010;6(1):11-20. 86. Kim KB, Yang JY, Kwack SJ, Park KL, Kim HS, Ryu do H, et al. Toxicometabolomics of urinary biomarkers for human gastric cancer in a mouse model. Journal of toxicology and environmental health Part A. 2010;73(21-22):1420-30. 87. Cheng Y, Xie G, Chen T, Qiu Y, Zou X, Zheng M, et al. Distinct urinary metabolic profile of human colorectal cancer. J Proteome Res. 2012;11(2):1354-63. 88. Christopher SA, Diegelman P, Porter CW, Kruger WD. Methylthioadenosine phosphorylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor in a breast cancer cell line. Cancer research. 2002;62(22):6639-44. 89. Hu ZZ, Huang H, Wu CH, Jung M, Dritschilo A, Riegel AT, et al. Omics-based molecular target and biomarker identification. Methods Mol Biol. 2011;719:547-71. 90. Gao H, Dahlman-Wright K. From DNA binding to metabolic control: integration of -omics data reveals drug targets for prostate cancer. The EMBO journal. 2011;30(13):2516-7. 91. Fan G, Wrzeszczynski KO, Fu C, Su G, Pappin DJ, Lucito R, et al. A quantitative proteomics-based signature of platinum sensitivity in ovarian cancer cell lines. Biochem J. 2015;465(3):433-42. 92. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer research. 2005;65(16):7065-70. 93. Tian T, Hao J, Xu A, Luo C, Liu C, Huang L, et al. Determination of metastasis-associated proteins in non-small cell lung cancer by comparative proteomic analysis. Cancer science. 2007;98(8):1265-74. 94. Beckmann T, Thute T, Heinrich C, Buntemeyer H, Noll T. Proteomic and metabolomic characterization of CHO DP-12 cell lines with different high passage histories. BMC Proc. 2011;5 Suppl 8:P92. 95. Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical biochemistry. 1977;83(2):346-56. 96. Munro HN. The determination of nucleic acids. Methods Biochem Anal. 1966;14:113-76. 97. Kumar KK, Goodwin CR, Uhouse MA, Bornhorst J, Schwerdtle T, Aschner M, et al. Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status. Metallomics. 2015;7(2):363-70. 98. McFadden JW, Aja S, Li Q, Bandaru VVR, Kim EK, Haughey NJ, et al. Increasing Fatty Acid Oxidation Remodels the Hypothalamic Neurometabolome to Mitigate Stress and Inflammation. PLoS One. 2014;9(12):e115642. 99. Folmes CDL, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, et al. Somatic Oxidative Bioenergetics Transitions into Pluripotency-Dependent Glycolysis to Facilitate Nuclear Reprogramming. Cell Metab. 2011;14(2):264-71. 100. Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 2012;22(1):168-77. 101. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, et al. Metabolite Profiling Identifies a Key Role for Glycine in Rapid Cancer Cell Proliferation. Science. 2012;336(6084):1040-4. 102. Halama A, Moller G, Adamski J. Metabolic signatures in apoptotic human cancer cell lines. OMICS: A Journal of Integrative Biology. 2011;15(5):325-35. 103. Frezza C, Zheng L, Tennant DA, Papkovsky DB, Hedley BA, Kalna G, et al. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. PLoS One. 2011;6(9):e24411. 104. Selvarasu S, Ho YS, Chong WP, Wong NS, Yusufi FN, Lee YY, et al. Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture. Biotechnology and Bioengineering Symposium. 2012;109(6):1415-29. 105. Tiziani S, Lodi A, Khanim FL, Viant MR, Bunce CM, Gunther UL. Metabolomic profiling of drug responses in acute myeloid leukaemia cell lines. PLoS One. 2009;4(1):e4251. 106. Pirman DA, Efuet E, Ding XP, Pan Y, Tan L, Fischer SM, et al. Changes in cancer cell metabolism revealed by direct sample analysis with MALDI mass spectrometry. PLoS One. 2013;8(4):e61379. 107. Rijk JC, Peijnenburg AA, Blokland MH, Lommen A, Hoogenboom RL, Bovee TF. Screening for modulatory effects on steroidogenesis using the human H295R adrenocortical cell line: a metabolomics approach. Chemical research in toxicology. 2012;25(8):1720-31. 108. Dietmair S, Timmins NE, Gray PP, Nielsen LK, Kromer JO. Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Analytical biochemistry. 2010;404(2):155-64. 109. Lorenz MA, Burant CF, Kennedy RT. Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics. Analytical chemistry. 2011;83(9):3406-14. 110. Chong WP, Reddy SG, Yusufi FN, Lee DY, Wong NS, Heng CK, et al. Metabolomics-driven approach for the improvement of Chinese hamster ovary cell growth: overexpression of malate dehydrogenase II. Journal of biotechnology. 2010;147(2):116-21. 111. Hartmann M, Zimmermann D, Nolte J. Changes of the metabolism of the colon cancer cell line SW-480 under serum-free and serum-reduced growth conditions. In vitro cellular & developmental biology Animal. 2008;44(10):458-63. 112. Sheikh KD, Khanna S, Byers SW, Fornace A, Jr., Cheema AK. Small molecule metabolite extraction strategy for improving LC/MS detection of cancer cell metabolome. Journal of biomolecular techniques : JBT. 2011;22(1):1-4. 113. Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer cell. 2011;19(3):416-28. 114. Spegel P, Malmgren S, Sharoyko VV, Newsholme P, Koeck T, Mulder H. Metabolomic analyses reveal profound differences in glycolytic and tricarboxylic acid cycle metabolism in glucose-responsive and -unresponsive clonal beta-cell lines. Biochemical Journal. 2011;435(1):277-84. 115. Tran MQ, Nygren Y, Lundin C, Naredi P, Bjorn E. Evaluation of cell lysis methods for platinum metallomic studies of human malignant cells. Analytical biochemistry. 2010;396(1):76-82. 116. Silva LP, Lorenzi PL, Purwaha P, Yong V, Hawke DH, Weinstein JN. Measurement of DNA Concentration as a Normalization Strategy for Metabolomic Data from Adherent Cell Lines. Analytical chemistry. 2013;85(20):9536-42. 117. Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Analytical chemistry. 2006;78(13):4281-90. 118. Aberg KM, Torgrip RJ, Kolmert J, Schuppe-Koistinen I, Lindberg J. Feature detection and alignment of hyphenated chromatographic-mass spectrometric data. Extraction of pure ion chromatograms using Kalman tracking. J Chromatogr A. 2008;1192(1):139-46. 119. Craig A, Cloarec O, Holmes E, Nicholson JK, Lindon JC. Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Analytical chemistry. 2006;78(7):2262-7. 120. Katajamaa M, Oresic M. Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics. 2005;6:179. 121. Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Analytical chemistry. 2003;75(13):3019-30. 122. Chen GY, Liao HW, Tseng YJ, Tsai IL, Kuo CH. A matrix-induced ion suppression method to normalize concentration in urinary metabolomics studies using flow injection analysis electrospray ionization mass spectrometry. Anal Chim Acta. 2015;864:21-9. 123. Yang PC, Luh KT, Wu R, Wu CW. Characterization of the Mucin Differentiation in Human Lung Adenocarcinoma Cell-Lines. Am J Resp Cell Mol. 1992;7(2):161-71. 124. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJC, Wu R, et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Resp Cell Mol. 1997;17(3):353-60. 125. Shih JY, Yang PC. The EMT regulator slug and lung carcinogenesis. Carcinogenesis. 2011;32(9):1299-304. 126. Chang YH, Lee SH, Chang HC, Tseng YL, Lai WW, Liao CC, et al. Comparative Secretome Analyses Using a Hollow Fiber Culture System with Label-Free Quantitative Proteomics Indicates the Influence of PARK7 on Cell Proliferation and Migration/Invasion in Lung Adenocarcinoma. J Proteome Res. 2012;11(11):5167-85. 127. D'Alessandro A, Zolla L. Metabolomics and cancer drug discovery: let the cells do the talking. Drug discovery today. 2012;17(1-2):3-9. 128. Peterson J, Bihain BE, Bengtsson-Olivecrona G, Deckelbaum RJ, Carpentier YA, Olivecrona T. Fatty acid control of lipoprotein lipase: a link between energy metabolism and lipid transport. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(3):909-13. 129. Darios F, Davletov B. Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature. 2006;440(7085):813-7. 130. Graber R, Sumida C, Nunez EA. Fatty acids and cell signal transduction. J Lipid Mediat Cell Signal. 1994;9(2):91-116. 131. Calder PC. Polyunsaturated fatty acids, inflammation, and immunity. Lipids. 2001;36(9):1007-24. 132. Leonelli M, Graciano MF, Britto LR. TRP channels, omega-3 fatty acids, and oxidative stress in neurodegeneration: from the cell membrane to intracellular cross-links. Braz J Med Biol Res. 2011;44(11):1088-96. 133. Chua ME, Sio MC, Sorongon MC, Dy JS. Relationship of dietary intake of omega-3 and omega-6 Fatty acids with risk of prostate cancer development: a meta-analysis of prospective studies and review of literature. Prostate cancer. 2012;2012:826254. 134. MacLennan M, Ma DW. Role of dietary fatty acids in mammary gland development and breast cancer. Breast Cancer Res. 2010;12(5):211. 135. Lagerstedt SA, Hinrichs DR, Batt SM, Magera MJ, Rinaldo P, McConnell JP. Quantitative determination of plasma c8-c26 total fatty acids for the biochemical diagnosis of nutritional and metabolic disorders. Mol Genet Metab. 2001;73(1):38-45. 136. Lamari F, Mochel F, Sedel F, Saudubray JM. Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: toward a new category of inherited metabolic diseases. J Inherit Metab Dis. 2013;36(3):411-25. 137. Calder PC. n-3 Fatty acids and cardiovascular disease: evidence explained and mechanisms explored. Clin Sci. 2004;107(1):1-11. 138. Zhang G, He P, Tan H, Budhu A, Gaedcke J, Ghadimi BM, et al. Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clin Cancer Res. 2013;19(18):4983-93. 139. Persson XM, Blachnio-Zabielska AU, Jensen MD. Rapid measurement of plasma free fatty acid concentration and isotopic enrichment using LC/MS. J Lipid Res. 2010;51(9):2761-5. 140. Yang WC, Adamec J, Regnier FE. Enhancement of the LC/MS analysis of fatty acids through derivatization and stable isotope coding. Analytical chemistry. 2007;79(14):5150-7. 141. Akoto L, Pel R, Irth H, Brinkman UAT, Vreuls RJJ. Automated GC-MS analysis of raw biological samples - Application to fatty acid profiling of aquatic micro-organisms. J Anal Appl Pyrol. 2005;73(1):69-75. 142. Zelles L, Bai QY. Fractionation of Fatty-Acids Derived from Soil Lipids by Solid-Phase Extraction and Their Quantitative-Analysis by Gc-Ms. Soil Biol Biochem. 1993;25(4):495-507. 143. Zheng X, Qiu Y, Zhong W, Baxter S, Su M, Li Q, et al. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics. 2013;9(4):818-27. 144. Nichols PD, Guckert JB, White DC. Determination of Monounsaturated Fatty-Acid Double-Bond Position and Geometry for Microbial Monocultures and Complex Consortia by Capillary Gc-Ms of Their Dimethyl Disulfide Adducts. J Microbiol Methods. 1986;5(1):49-55. 145. Christie WW. Gas chromatography mass spectrometry methods for structural analysis of fatty acids. Lipids. 1998;33(4):343-53. 146. Anastassiades M, Mastovska K, Lehotay SJ. Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. J Chromatogr A. 2003;1015(1-2):163-84. 147. Hajslova J, Zrostlikova J. Matrix effects in (ultra)trace analysis of pesticide residues in food and biotic matrices. Journal of chromatography A. 2003;1000(1-2):181-97. 148. Agrawal D, Chen T, Irby R, Quackenbush J, Chambers AF, Szabo M, et al. Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst. 2002;94(7):513-21. 149. Jolly RA, Goldstein KM, Wei T, Gao H, Chen P, Huang S, et al. Pooling samples within microarray studies: a comparative analysis of rat liver transcription response to prototypical toxicants. Physiol Genomics. 2005;22(3):346-55. 150. Gaj P, Maryan N, Hennig EE, Ledwon JK, Paziewska A, Majewska A, et al. Pooled sample-based GWAS: a cost-effective alternative for identifying colorectal and prostate cancer risk variants in the Polish population. PLoS One. 2012;7(4):e35307. 151. Zhang J, Goodlett DR, Peskind ER, Quinn JF, Zhou Y, Wang Q, et al. Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiol Aging. 2005;26(2):207-27. 152. Zhang H, Patrone L, Kozlosky J, Tomlinson L, Cosma G, Horvath J. Pooled sample strategy in conjunction with high-resolution liquid chromatography-mass spectrometry-based background subtraction to identify toxicological markers in dogs treated with ibipinabant. Analytical chemistry. 2010;82(9):3834-9. 153. Gevaert K, Impens F, Ghesquiere B, Van Damme P, Lambrechts A, Vandekerckhove J. Stable isotopic labeling in proteomics. Proteomics. 2008;8(23-24):4873-85. 154. Angel PM, Orlando R. Quantitative carbamylation as a stable isotopic labeling method for comparative proteomics. Rapid Commun Mass Spectrom. 2007;21(10):1623-34. 155. Huang X, Regnier FE. Differential metabolomics using stable isotope labeling and two-dimensional gas chromatography with time-of-flight mass spectrometry. Analytical chemistry. 2008;80(1):107-14. 156. Feldberg L, Venger I, Malitsky S, Rogachev I, Aharoni A. Dual labeling of metabolites for metabolome analysis (DLEMMA): A new approach for the identification and relative quantification of metabolites by means of du | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52415 | - |
dc.description.abstract | 近年來代謝體研究已被廣泛地運用在尋找疾病或是外在環境刺激下的生物指標分子,並且已經成功地用於不同領域上如疾病研究、藥物療效評估、營養介入等。然而,代謝體研究的過程中往往會受到目前仍無法解決,來自於樣品本身以及分析儀器造成的誤差而導致於得到有偏差的分析結果和不正確的資料詮釋。有鑑於此,本研究透過開發樣品濃度校正與鑑別性標誌分析方法分別來達到降低源自樣品本身以及分析儀器造成的誤差來改善代謝體資料的完整性與正確性。
我們首先開發利用基質效應導致的離子抑制現象(matrix-induced ion suppression, MIIS)搭配流動注射與電噴灑離子源質譜儀 (flow injection-electrospray ionization mass spectrometry, FIA-ESI-MS)濃度校正法。我們將等量離子抑制指示劑(ion suppression indicator, ISI)加入樣品基質當中,再觀察不同稀釋倍數的樣品中其ISI訊號與稀釋倍數的關係,並建立檢量線來推算未知濃度之樣品。我們將MIIS 方法做進一步的方法確校,包括線性、精密度與準確度,並將開發的方法應用在研究乳癌病人尿液代謝物的變化與癌細胞生理學。MIIS方法提供便利與準確性能夠提升尿液與細胞的代謝體研究之正確性。 為了實現更有效率的代謝體分析,我們亦建立了利用鑑別性標誌法(differential labeling)針對脂肪酸之分析方法,此一策略能在同一樣品內提供較多資訊而能減少樣品注射針數,有效縮短分析時程並且減少儀器變動對分析結果之影響。我們分別將D0與D3-甲醇與脂肪酸標準品與萃取物在高溫酸性條件下衍生形成D0與D3-脂肪酸甲酯並進一步用氣相層析質譜儀分析之。此一方法可運用在病例對照研究(case-control)上,提供快速的掃瞄兩組間脂肪酸的變化量。為了能夠讓鑑別性標誌法能應用在多組間比較脂肪酸表現量,我們透過使用不同同位素的乙醇(D0, D3 和D5)來衍生出不同同位素的脂肪酸乙酯 (isotopes of fatty acid ethyl ester, iFAEE)。鑑別性標誌法能夠快速且準確地找出有潛力的脂肪酸生物指標並且為一個符合經濟效益的方法。我們透過此一方法來研究抗黴菌藥物voriconazole所引發的肝毒是否與特定脂肪酸的變化有相關。 我們開發出來的MIIS與鑑別性標誌法能夠大幅的減少生物樣品間與實驗儀器過程中所產生的變異,同時亦能縮短分析的時間提升效率。我們期待開發出來的方法可以提升目前各種代謝體研究的品質。 | zh_TW |
dc.description.abstract | Metabolomics, the latest omics science, has been used to explore biomarkers of external stimuli and applied on a variety of fields. The variations in metabolomics, which might come from either biological samples or instrumental operations, usually lead to biased results and incorrect interpretations are not yet solved.
In this dissertation, we will discuss some approaches to improve metabolomics data quality and lower these types of variation for more extensive applications by using sample normalization method and differential labeling approach to minimize biological variation and instrumental variations, respectively. We first reported a matrix-induced ion suppression (MIIS)-based method to normalize concentrations using flow injection analysis coupled with electrospray ionization mass spectrometry (FIA-ESI-MS) and applied it to investigate urinary metabolomics and cellular metabolomics. An ion suppression indicator (ISI) was spiked into the sample matrix, and the intensity of the extracted ion chromatogram (EIC) for ISI in a sample matrix was subtracted by EIC for a blank solution and used to calculate the extent to which the signal was reduced by the matrix. A serial dilution of pooled urine samples or reference cell extracts was used to correlate the concentration and level of ion suppression for ISI. A regression equation was used to estimate the relative concentration of unknown samples. The MIIS method was validated for linearity, precision and accuracy. This study demonstrated that the MIIS method is simple, accurate and can contribute to data integrity in urinary and cellular metabolomics studies and reduce biological variations in metabolomics. Differential labeling techniques could provide more informative results and reduce the number of sample injection that decrease the probability of MS source contamination and decline the instrumental variations. We took the analysis of fatty acids as a demonstration case for differential labeling. The analytical platform of fatty acid analysis mainly relies on complicated chemical derivatization with GC-MS. We developed an effective and accurate comparative fatty acid analysis method using differential labeling of D0- and D3- fatty acid methyl ester (FAMEs) to speed up the metabolic profiling of fatty acids in case-control studies. Consequently, for time-course experiments, we also developed a differential labeling on D0-, D3-, D5- isotopes of fatty acid ethyl ester (iFAEEs). In this part, the differential labeling of fatty acid profiling technique was determined to be fast and accurate and allowed the discovery of potential fatty acid biomarkers in a more economical and efficient manner. The approach was applied to the study of drug-induced hepatotoxicity, which revealed a potential toxicity mechanism and the possibility of using fatty acids as surrogate toxicity markers for drug induced liver injury. Conclusively, sample normalization by the MIIS method could greatly decline the biological variations caused metabolomic analytical bias. Differential labeling introduces sharing of the same matrix which could reduce variations contributed by instrument analysis and greatly reduce analytical time. We anticipate that the developed methods could improve data integrity for various metabolomics studies. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:14:12Z (GMT). No. of bitstreams: 1 ntu-104-D99423002-1.pdf: 4681164 bytes, checksum: 0e7c0e119cd9622a2ab70ea0259b209f (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Context
誌謝 iii Abstract iv 中文摘要 vii Context ix Table context xii Figure context xiii Chapter 1 1 Introduction 1 1.1 Metabolomics 2 1.2 Research goal of this dissertation 12 1.3 Figures 15 Chapter 2 18 Development of sample normalization methods by using matrix-induced ion suppression 18 Ch2.1 19 A matrix-induced ion suppression method to normalize concentration in urinary metabolomics studies using flow injection analysis electrospray ionization mass spectrometry 19 2.1.1 Background 20 2.1.2 Material and methods 22 2.1.3 Result and discussion 27 2.1.4 Conclusion 36 2.1.5 Tables 37 2.1.6 Figures 39 Ch2.2 50 Using the matrix-induced ion suppression method for concentration normalization in cellular metabolomics studies 50 2.2.1 Background 51 2.2.2 Material and methods 54 2.2.3 Results 58 2.2.4 Discussion 64 2.2.5 Conclusion 66 2.2.6 Figures 68 Chapter 3 74 Ch3.1 75 Development of a comparative fatty acid analysis method by using stable isotope labeling and GC-MS 75 3.1.1 Background 76 3.1.2 Materials and methods 78 3.1.3 Results 82 3.1.4 Discussion 88 3.1.5 Conclusion 90 3.1.6 Figures 91 Ch3.2 99 Studying voriconazole-induced hepatotoxicity by using differential stable isotope labeling of fatty acids 99 3.2.1 Background 100 3.2.2 Material and methods 102 3.2.3 Result 106 3.2.4 Discussion 112 3.2.5 Conclusion 113 3.2.6 Tables 114 3.2.7 Figures 120 Chapter 4. 126 Summary and Perspective 126 4. Summary and Perspective 127 Chapter 5. References 129 Curriculum Vitae 144 | |
dc.language.iso | en | |
dc.title | 開發樣品濃度校正與鑑別性標誌分析方法於代謝體研究 | zh_TW |
dc.title | Development of the matrix-induced ion suppression method on sample normalization and the differential labeling method for metabolomic studies | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 曾宇鳳(Yu-Feng Tseng),華國泰(Kuo-Tai Hua),賴建成(Chien-Chen Lai),陳逸然(Yet-Ran chen) | |
dc.subject.keyword | 代謝體學,質譜儀,樣品常規化,同位素標誌法, | zh_TW |
dc.subject.keyword | MS-based metabolomics,sample normalization,MIIS,differential labeling,comparative analysis, | en |
dc.relation.page | 146 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-18 | |
dc.contributor.author-college | 藥學專業學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 4.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。