請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52412
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊健志(Chien-Chih Yang) | |
dc.contributor.author | Ching-Hsing Liang | en |
dc.contributor.author | 梁景興 | zh_TW |
dc.date.accessioned | 2021-06-15T16:14:06Z | - |
dc.date.available | 2016-08-20 | |
dc.date.copyright | 2015-08-20 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-18 | |
dc.identifier.citation | Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., and Shinozaki, K. (1997). Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9, 1859-1868.
Akita, K., Hasezawa, S., and Higaki, T. (2013). Breaking of plant stomatal one-cell-spacing rule by sugar solution immersion. PLoS One 8, e72456. Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J., and Leon, P. (2000). Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14, 2085-2096. Arroyo, A., Bossi, F., Finkelstein, R.R., and Leon, P. (2003). Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis. Plant Physiol 133, 231-242. Baena-Gonzalez, E., and Sheen, J. (2008). Convergent energy and stress signaling. Trends Plant Sci 13, 474-482. Baena-Gonzalez, E., Rolland, F., Thevelein, J.M., and Sheen, J. (2007). A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938-942. Bensmihen, S., Rippa, S., Lambert, G., Jublot, D., Pautot, V., Granier, F., Giraudat, J., and Parcy, F. (2002). The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. Plant Cell 14, 1391-1403. Bent, A.F. (2000). Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124, 1540-1547. Bittner, F., Oreb, M., and Mendel, R.R. (2001). ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276, 40381-40384. Boyer, G.L., and Zeevaart, J.A. (1982). Isolation and quantitation of beta-D-glucopyranosyl abscisate from leaves of Xanthium and Spinach. Plant Physiol 70, 227-231. Bray, E.A., and Zeevaart, J.A. (1985). The compartmentation of abscisic acid and beta-D-glucopyranosyl abscisate in mesophyll cells. Plant Physiol 79, 719-722. Brocard, I.M., Lynch, T.J., and Finkelstein, R.R. (2002). Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol 129, 1533-1543. Busk, P.K., Jensen, A.B., and Pages, M. (1997). Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J 11, 1285-1295. Chen, C.C., Liang, C.S., Kao, A.L., and Yang, C.C. (2009a). HHP1 is involved in osmotic stress sensitivity in Arabidopsis. J Exp Bot 60, 1589-1604. Chen, C.C., Liang, C.S., Kao, A.L., and Yang, C.C. (2010). HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis. J Exp Bot 61, 3305-3320. Chen, S., Songkumarn, P., Liu, J., and Wang, G.L. (2009b). A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150, 1111-1121. Cheng, W.H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., Koshiba, T., and Sheen, J. (2002). A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14, 2723-2743. Chinnusamy, V., Zhu, J., and Zhu, J.K. (2007). Cold stress regulation of gene expression in plants. Trends Plant Sci 12, 444-451. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., and Zhu, J.K. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17, 1043-1054. Choi, H., Hong, J., Ha, J., Kang, J., and Kim, S.Y. (2000). ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275, 1723-1730. Denay, G., Creff, A., Moussu, S., Wagnon, P., Thevenin, J., Gerentes, M.F., Chambrier, P., Dubreucq, B., and Ingram, G. (2014). Endosperm breakdown in Arabidopsis requires heterodimers of the basic helix-loop-helix proteins ZHOUPI and INDUCER OF CBP EXPRESSION 1. Development 141, 1222-1227. Ding, Y., Li, H., Zhang, X., Xie, Q., Gong, Z., and Yang, S. (2015). OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32, 278-289. Doherty, C.J., Van Buskirk, H.A., Myers, S.J., and Thomashow, M.F. (2009). Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21, 972-984. Dong, C.H., Agarwal, M., Zhang, Y., Xie, Q., and Zhu, J.K. (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A 103, 8281-8286. Eveland, A.L., and Jackson, D.P. (2012). Sugars, signalling, and plant development. J Exp Bot 63, 3367-3377. Finkelstein, R.R., and Lynch, T.J. (2000). The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12, 599-609. Finkelstein, R.R., Wang, M.L., Lynch, T.J., Rao, S., and Goodman, H.M. (1998). The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10, 1043-1054. Fujii, H., Verslues, P.E., and Zhu, J.K. (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485-494. Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.Y., Cutler, S.R., Sheen, J., Rodriguez, P.L., and Zhu, J.K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660-664. Gibson, S.I. (2005). Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8, 93-102. Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F., and Goodman, H.M. (1992). Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4, 1251-1261. Gonzalez-Guzman, M., Apostolova, N., Belles, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., Micol, J.L., Serrano, R., and Rodriguez, P.L. (2002). The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14, 1833-1846. Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., and Zhang, J.Z. (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130, 639-648. Holdsworth, M.J., Bentsink, L., and Soppe, W.J. (2008). Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179, 33-54. Hsieh, M.H., and Goodman, H.M. (2005). A novel gene family in Arabidopsis encoding putative heptahelical transmembrane proteins homologous to human adiponectin receptors and progestin receptors. J Exp Bot 56, 3137-3147. Hu, Y., Jiang, L., Wang, F., and Yu, D. (2013). Jasmonate regulates the INDUCER OF CBF EXPRESSION-C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25, 2907-2924. Huang, Y., Li, C.Y., Biddle, K.D., and Gibson, S.I. (2008). Identification, cloning and characterization of sis7 and sis10 sugar-insensitive mutants of Arabidopsis. BMC Plant Biol 8, 104. Huijser, C., Kortstee, A., Pego, J., Weisbeek, P., Wisman, E., and Smeekens, S. (2000). The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. Plant J 23, 577-585. Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2001). Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27, 325-333. Kanaoka, M.M., Pillitteri, L.J., Fujii, H., Yoshida, Y., Bogenschutz, N.L., Takabayashi, J., Zhu, J.K., and Torii, K.U. (2008). SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation. Plant Cell 20, 1775-1785. Knight, M.R., and Knight, H. (2012). Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195, 737-751. Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y., and Nambara, E. (2004). The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism. EMBO J 23, 1647-1656. Laby, R.J., Kincaid, M.S., Kim, D., and Gibson, S.I. (2000). The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J 23, 587-596. Lang, V., Mantyla, E., Welin, B., Sundberg, B., and Palva, E.T. (1994). Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol 104, 1341-1349. Lee, B.H., Henderson, D.A., and Zhu, J.K. (2005). The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17, 3155-3175. Lee, H.G., and Seo, P.J. (2015). The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis. Plant J 82, 962-977. Leon, P., Gregorio, J., and Cordoba, E. (2012). ABI4 and its role in chloroplast retrograde communication. Front Plant Sci 3, 304. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406. Lopez-Molina, L., Mongrand, S., and Chua, N.H. (2001). A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci U S A 98, 4782-4787. Lopez-Molina, L., Mongrand, S., McLachlin, D.T., Chait, B.T., and Chua, N.H. (2002). ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32, 317-328. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., and Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068. Mahajan, S., and Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444, 139-158. Marri, L., Sparla, F., Pupillo, P., and Trost, P. (2005). Co-ordinated gene expression of photosynthetic glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, and CP12 in Arabidopsis thaliana. J Exp Bot 56, 73-80. Miura, K., Lee, J., Jin, J.B., Yoo, C.Y., Miura, T., and Hasegawa, P.M. (2009). Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci U S A 106, 5418-5423. Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D.J., and Hasegawa, P.M. (2007). SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19, 1403-1414. Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W.H., Liu, Y.X., Hwang, I., Jones, T., and Sheen, J. (2003). Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300, 332-336. Moore, R., and Smith, J.D. (1984). Growth, graviresponsiveness and abscisic-acid content of Zea mays seedlings treated with fluridone. Planta 162, 342-344. Nakamura, S., Lynch, T.J., and Finkelstein, R.R. (2001). Physical interactions between ABA response loci of Arabidopsis. Plant J 26, 627-635. Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., Maruyama, K., Yoshida, T., Ishiyama, K., Kobayashi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2009). Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50, 1345-1363. Niu, X., Helentjaris, T., and Bate, N.J. (2002). Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell 14, 2565-2575. Niyogi, K.K., Grossman, A.R., and Bjorkman, O. (1998). Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10, 1121-1134. Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F., Alfred, S.E., Bonetta, D., Finkelstein, R., Provart, N.J., Desveaux, D., Rodriguez, P.L., McCourt, P., Zhu, J.K., Schroeder, J.I., Volkman, B.F., and Cutler, S.R. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068-1071. Peltier, J.B., Ytterberg, A.J., Sun, Q., and van Wijk, K.J. (2004). New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 279, 49367-49383. Penfield, S., Li, Y., Gilday, A.D., Graham, S., and Graham, I.A. (2006). Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18, 1887-1899. Ramon, M., Rolland, F., and Sheen, J. (2008). Sugar sensing and signaling. Arabidopsis Book 6, e0117. Rolland, F., Moore, B., and Sheen, J. (2002). Sugar sensing and signaling in plants. Plant Cell 14 Suppl, S185-205. Rolland, F., Baena-Gonzalez, E., and Sheen, J. (2006). Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57, 675-709. Rook, F., Corke, F., Card, R., Munz, G., Smith, C., and Bevan, M.W. (2001). Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26, 421-433. Ruan, Y.L. (2014). Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65, 33-67. Saibo, N.J., Lourenco, T., and Oliveira, M.M. (2009). Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103, 609-623. Saito, S., Hirai, N., Matsumoto, C., Ohigashi, H., Ohta, D., Sakata, K., and Mizutani, M. (2004). Arabidopsis CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134, 1439-1449. Seo, M., Peeters, A.J., Koiwai, H., Oritani, T., Marion-Poll, A., Zeevaart, J.A., Koornneef, M., Kamiya, Y., and Koshiba, T. (2000). The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci U S A 97, 12908-12913. Sheen, J. (2014). Master regulators in plant glucose signaling networks. J Plant Biol 57, 67-79. Sheen, J., Zhou, L., and Jang, J.-C. (1999). Sugars as signaling molecules. Curr Opin Plant Biol 2, 410-418. Sheu, J.J., Yu, T.S., Tong, W.F., and Yu, S.M. (1996). Carbohydrate starvation stimulates differential expression of rice alpha-amylase genes that is modulated through complicated transcriptional and posttranscriptional processes. J Biol Chem 271, 26998-27004. Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J Exp Bot 58, 221-227. Shinwari, Z.K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun 250, 161-170. Soderman, E.M., Brocard, I.M., Lynch, T.J., and Finkelstein, R.R. (2000). Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks. Plant Physiol 124, 1752-1765. Stone, S.L., Williams, L.A., Farmer, L.M., Vierstra, R.D., and Callis, J. (2006). KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18, 3415-3428. Suzuki, M., Wu, S., Li, Q., and McCarty, D.R. (2014). Distinct functions of COAR and B3 domains of maize VP1 in induction of ectopic gene expression and plant developmental phenotypes in Arabidopsis. Plant Mol Biol 85, 179-191. Tanaka, Y., Nose, T., Jikumaru, Y., and Kamiya, Y. (2013). ABA inhibits entry into stomatal-lineage development in Arabidopsis leaves. Plant J 74, 448-457. Thomashow, M.F. (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50, 571-599. Thornalley, P.J. (1990). The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 269, 1-11. Thornalley, P.J. (1993). The glyoxalase system in health and disease. Mol Aspects Med 14, 287-371. Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16, 2481-2498. Tran, L.S., Nakashima, K., Sakuma, Y., Osakabe, Y., Qin, F., Simpson, S.D., Maruyama, K., Fujita, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49, 46-63. Verdier, J., and Thompson, R.D. (2008). Transcriptional regulation of storage protein synthesis during dicotyledon seed filling. Plant Cell Physiol 49, 1263-1271. Wanner, L.A., and Junttila, O. (1999). Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120, 391-400. Wind, J.J., Peviani, A., Snel, B., Hanson, J., and Smeekens, S.C. (2013). ABI4: versatile activator and repressor. Trends Plant Sci 18, 125-132. Xiao, W., Sheen, J., and Jang, J.C. (2000). The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol 44, 451-461. Xiong, L., Ishitani, M., Lee, H., and Zhu, J.K. (2001). The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13, 2063-2083. Xiong, Y., and Sheen, J. (2012). Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J Biol Chem 287, 2836-2842. Xiong, Y., McCormack, M., Li, L., Hall, Q., Xiang, C., and Sheen, J. (2013). Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496, 181-186. Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264. Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57, 781-803. Yoshida, T., Mogami, J., and Yamaguchi-Shinozaki, K. (2014). ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21, 133-139. Zang, T.M., Hollman, D.A., Crawford, P.A., Crowder, M.W., and Makaroff, C.A. (2001). Arabidopsis glyoxalase II contains a zinc/iron binuclear metal center that is essential for substrate binding and catalysis. J Biol Chem 276, 4788-4795. Zhan, X., Zhu, J.K., and Lang, Z. (2015). Increasing Freezing Tolerance: Kinase Regulation of ICE1. Dev Cell 32, 257-258. Zhang, X., Garreton, V., and Chua, N.H. (2005). The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19, 1532-1543. Zhou, L., Jang, J.C., Jones, T.L., and Sheen, J. (1998). Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci U S A 95, 10294-10299. Zhou, M.Q., Shen, C., Wu, L.H., Tang, K.X., and Lin, J. (2011). CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol 31, 186-192. 成浩. (2015). 糖溶液處理造成氣孔發育異常機制之研究. 臺灣大學碩士論文. 陳奕如. (2015). 阿拉伯芥ice1-2突變株之代謝物分析與研究. 臺灣大學碩士論文. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52412 | - |
dc.description.abstract | 由酵母菌雙雜合篩選到INDUCER OF CBF EXPRESSION 1 (ICE1) 會與HEPTAHELICAL PROTEIN 1 (HHP1) 的N端產生交互作用。ICE1調控冷逆境訊息傳導被認為是一種離層酸非依賴性 (ABA-independent) 的路徑。本論文發現ICE1可能也會參與離層酸依賴性 (ABA-dependent) 的訊息傳導路徑。當ICE1的T-DNA插入突變株ice1-2播種在缺乏糖的1/2 MS培養基上時,幼苗長成率會明顯下降;但培養基中添加56 mM葡萄糖之後,幼苗長成率就可以回復到與野生型相同的程度。除了糖依賴性的性狀之外,ice1-2的發芽率和幼苗長成率對高濃度葡萄糖的感受性也比野生型高。另外ice1-2也觀察到對離層酸有過敏感 (hyper-sensitive) 性狀,推測ice1-2對葡萄糖的過敏感性狀可能是經由離層酸訊息傳導路徑產生的。葡萄糖和離層酸處理會使幼苗時期的ice1-2中兩個與離層酸訊息傳導有關基因ABA-INSENSITIVE 3 (ABI3) 和ABA-INSENSITIVE 4 (ABI4) 的表現量有過度誘導的現象。除了會參與冷逆境反應、氣孔發育和胚乳降解之外,本論文發現ICE1是離層酸依賴性路徑的一個負調控子。 | zh_TW |
dc.description.abstract | INDUCER OF CBF EXPRESSION 1 (ICE1) was identified as an interaction partner of N-terminus of HEPTAHELICAL PROTEIN 1 (HHP1) by yeast two-hybrid. ICE1 mediates the cold stress signal via an abscisic acid (ABA)-independent pathway. A possible role of ICE1 in ABA-dependent pathways was identified in this study. Seedling growth was severely reduced in a T-DNA insertion mutant of ICE1, ice1-2, when grown on 1/2 MS medium lacking sugars, but was restored to wild-type (WT) levels by supplementation with 56 mM glucose. In addition to this sugar-dependent phenotype, germination and establishment of ice1-2 were more sensitive to high glucose concentrations than in the WT. Hypersensitivity to ABA was also observed in ice1-2, suggesting its sensitivity to glucose might be mediated through the ABA signaling pathway. Glucose and ABA induced much higher expression of two genes related to ABA signal transduction, ABA-INSENSITIVE 3 (ABI3) and ABA-INSENSITIVE 4 (ABI4), in ice1-2 than in the WT during establishment. In summary, in addition to its known roles in regulating cold responses, stomatal development, and endosperm breakdown, ICE1 is a negative regulator of ABA-dependent responses. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:14:06Z (GMT). No. of bitstreams: 1 ntu-104-F94B47203-1.pdf: 3224621 bytes, checksum: c4e8bdf64c42b1696810a332e0c1b8da (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 謝誌 1
目錄 3 摘要 7 Abstract 8 縮寫表 9 中英文對照表 11 第一章 前言 14 1.1. 糖訊息傳導 14 1.2. 滲透壓逆境的轉錄調控網路 15 1.3. 離層酸生合成 (biosynthesis) 17 1.4. 離層酸訊息傳導 18 1.5. Heptahelical Protein 1 (HHP1) 19 1.6. Inducer of CBF Expression 1 (ICE1) 20 1.7. 研究動機 21 第二章 材料與方法 22 2.1. 實驗材料 22 2.2. 實驗藥品 25 2.3. 儀器設備 27 2.4. 實驗方法 27 2.4.1. DNA限制酶切 27 2.4.2. 聚合酶鏈鎖反應 (polymerase chain reaction, PCR) 27 2.4.3. 洋菜糖膠體電泳 28 2.4.4. 甲醛洋菜糖膠體電泳 29 2.4.5. 分離與純化DNA片段 29 2.4.6. 純化PCR產物 30 2.4.7. 核酸定量 30 2.4.8. DNA接合反應 (Ligation) 30 2.4.9. T-A選殖 (T-A cloning) 30 2.4.10. 大腸桿菌熱衝擊法 (heat-shock) 轉形 31 2.4.11. 藍白篩選 31 2.4.12. 菌落PCR檢定法 31 2.4.13. 大腸桿菌質體DNA小量製備 32 2.4.14. 阿拉伯芥基因體DNA之抽取 32 2.4.15. 阿拉伯芥Total RNA之抽取 33 2.4.16. DNase處理 33 2.4.17. 反轉錄反應 (reverse transcription) 34 2.4.18. 定量式反轉錄聚合酶鏈鎖反應 (quantitative RT-PCR, qRT-PCR) 34 2.4.19. 定量式反轉錄聚合酶鏈鎖反應數據分析 35 2.4.20. 酵母菌雙雜合分析 35 2.4.21. 酵母菌勝任細胞製備 36 2.4.22. 酵母菌高效率轉形法 36 2.4.23. 計算酵母菌轉形效率 37 2.4.24. 挑選酵母菌雙雜合分析的正反應株 37 2.4.25. 純化酵母菌質體 37 2.4.26. 分析獵物 (prey) 質體中的cDNA序列 38 2.4.27. 建構HHP1的釣餌與獵物載體 38 2.4.28. 建構ICE1的釣餌與獵物載體 39 2.4.29. 阿拉伯芥種子表面消毒及低溫處理 39 2.4.30. 阿拉伯芥種子無菌培養 39 2.4.31. 阿拉伯芥種子土壤培養 39 2.4.32. 收集阿拉伯芥種子 40 2.4.33. 製備農桿菌勝任細胞與轉形 40 2.4.34. 農桿菌花序浸潤法 41 2.4.35. 篩選轉殖株的同型合子 (homozygote) 41 2.4.36. 鑑定T-DNA插入突變株 41 2.4.37. 篩選ICE1基因剔除突變株 43 2.4.38. 建構HHP1/ICE1雙重基因剔除突變株 43 2.4.39. 建構complementary ice1-2轉殖株 (c-ice1-2) 44 2.4.40. 分析種子與幼苗對葡萄糖、甘露醇、離層酸和fluridone的感受性 45 第三章 結果 46 3.1. 以酵母菌雙雜合分析篩選可能與HHP1有交互作用的蛋白質 46 3.2. 篩選ice1-2基因剔除突變株、建立hhp1-1/ice1-2雙重基因剔除突變株和建構ice1-2的互補轉殖株c-ice1-2 47 3.3. ice1-2的糖依賴性狀 (sugar-dependent) 47 3.4. ice1-2的葡萄糖過敏感性狀 48 3.5. 在不同濃度葡萄糖處理下ice1-2中基因表現量變化 49 3.6. ice1-2的離層酸過敏感性狀 51 3.7. 離層酸處理下ice1-2中基因表現量變化 51 第四章 討論 53 4.1. HHP1可能的交互作用蛋白質 53 4.2. 離層酸依賴性與離層酸非依賴性訊息傳導路徑 53 4.3. ICE1調控離層酸訊息傳導基因的表現 54 4.4. ice1-2中被表現的ICE1片段 55 4.5. 糖-離層酸-ICE1訊息傳導路徑 56 4.6. ICE1與HHP1的蛋白質交互作用 56 第五章 未來展望 58 第六章 參考文獻 59 圖與表 68 Fig. 1. Interaction candidates of pGBHHP1-N by yeast two-hybrid screening with cDNA library CD4-30. 68 Fig. 2. Interaction test of pGBHHP1-N and pGADICE1 and self-activation test of pGADICE1. 69 Fig. 3. Genotype and HHP1 and ICE1 expression analysis of the WT, the hhp1-1, the ice1-2 mutant, and the hhp1-1/ice1-2 mutant 70 Fig. 4. Genotype and ICE1 expression analysis of the WT, the ice1-2 mutant, and two c-ice1-2 mutants. 72 Fig. 5. Both ice1-2 and hhp1-1/ice1-2 display a sugar-dependent phenotype. 73 Fig. 6. ice1-2 displays a sugar-dependent phenotype. 75 Fig. 7. ice1-2 displays a sugar-hypersensitive phenotype. 78 Fig. 8. Higher induction of ABA signaling gene expression in ice1-2 in response to glucose. 80 Fig. 9. ice1-2 is also hypersensitive to ABA. 81 Fig. 10. Higher expression of ABA signaling genes in ice1-2 in response to ABA treatment. 82 Fig. 11. Expression of ABI3 and ABI4 in the WT, the ice1-2 mutant, and the two c-ice1-2 mutants in response to glucose and ABA. 83 Fig. 12 Putative partial ICE1 fragment expressed in ice1-2. 84 Fig. 13. A proposed model of the role of ICE1 in the cross-talk between ABA-dependent and ABA-independent pathways. 85 Table 1. Candidates of HHP1 interacting proteins obtained from CD4-30 library by yeast two-hybrid screening. 86 Table S1. Primer pairs used for the quantitative RT-PCR analysis. 87 Table S2. Primer pairs used for general PCR and cloning. 88 問答集 89 | |
dc.language.iso | zh-TW | |
dc.title | 阿拉伯芥ICE1在離層酸依賴性路徑之功能研究 | zh_TW |
dc.title | Functional Studies of Arabidopsis ICE1 in Abscisic Acid Dependent Pathways | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蘇仲卿,王愛玉,常怡雍,陳佩燁 | |
dc.subject.keyword | HHP1,ICE1,離層酸,阿拉伯芥, | zh_TW |
dc.subject.keyword | HEPTAHELICAL PROTEIN 1 (HHP1),INDUCER OF CBF EXPRESSION 1 (ICE1),abscisic acid (ABA),Arabidopsis, | en |
dc.relation.page | 98 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-18 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。