Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52411
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周瑞仁(Jui-Jen Chou)
dc.contributor.authorCheng-Hung Chien
dc.contributor.author紀政宏zh_TW
dc.date.accessioned2021-06-15T16:14:05Z-
dc.date.available2020-08-26
dc.date.copyright2015-08-26
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citationÅström, K. J., R. E. Klein and A. Lennartsson. 2005. 'Bicycle dynamics and control.' IEEE Control Systems Magazine 25(4): 26-47.Sharp, R. S. 1971. 'The stability and control of motorcycles.' Mechanical Engineering Science 13(5): 316-329.
Chen, M. S., C. H. Chen and F. Y. Yang. 2007. 'An LTR-observer-based dynamic sliding mode control for chattering reduction.' Automatica 43(6): 1111-1116.
Defoort, M. and T. Murakami. 2009. 'Sliding-mode control scheme for an intelligent bicycle.' IEEE Transactions on Industrial Electronics 56(9): 3357-3368.
Getz, N. H. and J. E. Marsden. 1995. 'Control for an autonomous bicycle.' IEEE International Conference on Robotics and Automation, Nagoya, Japan. pp. 1397-1402.
Hwang, C. L., H. M. Wu and C. L. Shih. 2003. “Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle.” IEEE Transations on Control Systems Technology 17(3): 658–670.
Limebeer, D. J. N. and R. S. Sharp. 2006. 'Bicycles, motorcycles, and models: single-track vehicle modeling and control.' IEEE Control Systems Magazine 26(5): 34-61.
Lam, P. Y. 2011. 'Gyroscopic stabilization of a kid-size bicycle.' IEEE International Conference on Cybernetics and Intelligent Systems, Qingdao, China. pp. 247-252.
Murayama, A. and M. Yamakita. 2007. 'Development of autonomous bike robot with balancer.' IEEE International Conference on Instrumentation, Control, Information Technology and System Integration, Takamatsu, Japan. pp. 1048-1052.
Tanaka, Y. and T. Murakami. 2004. 'Self sustaining bicycle robot with steering controller.' IEEE International Conference on Advanced Motion Control, Kawasaki, Japan. pp. 193-197.
Thanh, B. T. and M. Parnichkun. 2008. 'Balancing control of bicyrobo by particle swarm optimization-based structure-specified mixed H2/H∞ control.' International Journal of Advanced Robotic Systems 5(4): 395-402.
方玫文. 2012. 應用零力矩點追蹤法於自動導引自行車之平衡控制. 碩士論文. 台灣大學生物產業機電工程學系.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52411-
dc.description.abstract本論文旨在建立一自動導引自行車平台,應用陀螺儀平衡器 (Gyroscopic balancer) 與自適應模糊滑動模式控制策略 (Adaptive fuzzy sliding mode control, AFSMC) 於平衡控制,並比較使用AFSMC時與使用模糊滑動模式控制策略 (Fuzzy sliding mode control, FSMC) 時之差異。
首先應用FSMC控制策略與陀螺儀平衡器於自動導引自行車平台。陀螺儀平衡器具有下列幾項優點,如響應時間相對於其他平衡器較快、相對於其他平衡器能產生較大的力矩及具有較低的質量比(平衡器重量/自動導引自行車系統重量)。而FSMC控制策略相較於PID對非線性系統有較好的控制效果,跟SMC相比也能降低切跳現象與減少高頻響應,更能降低非線性系統在線性化時的影響。為了驗證上述所說的各項特質,本研究設計且進行了許多模擬及實驗。實驗結果說明本平台能克服崎嶇的地面,並有效的抵抗衝擊行的干擾,而實驗結果與模擬結果的一致性也驗證了先前所推導的動力學模型。
然而陀螺儀平衡器因為機構的限制,在遭受一連續性干擾時,飛輪勢必得往固定一方向旋轉以產生足夠的力矩去抵抗干擾,故當飛輪達到旋轉上下限時,平台即會失去自主平衡的能力。因此本論文旨在發展AFSMC控制器取代FSMC控制器,在遭受連續干擾的時候,控制器能調整本身的輸出命令,去避免飛輪牴觸到旋轉角上下限,進而有效的提升自行車平台抵抗連續性干擾的能力。從模擬的結果看來,AFSMC控制策略在任何情況下平衡能力與抵抗干擾能力皆不輸FSMC,更重要的是AFSMC控制策略抵抗連續性干擾的能力遠優於FSMC控制策略,說明了使用AFMSC控制策略能有效地的提升平台的穩定度。
zh_TW
dc.description.abstractA riderless bicycle has been developed with a gyroscopic balancer controller by a Fuzzy Sliding Mode Controller (FSMC) and an Adaptive Fuzzy Sliding Mode Controller (AFSMC). The FSMC controller has first been implemented because it has better performance at controlling nonlinear systems than the one with PID. The FSMC can also reduce the chattering phenomenon caused by SMC and the effect of linearizing a nonlinear system. Compared with other balancers, the gyroscopic balancer has a couple of advantages, such as faster system response, lower mass ratio of balancer to bicycle and relatively larger moment. To demonstrate the attributes stated above, we designed and conducted experiments, including the balancing of unmoving bicycle, unmoving bicycle with external impacts, as well as the bicycle moving forward and turning. The experimental results shows that the bicycle can overcome jolts, uneven terrain and external disturbances. Furthermore, since the results of experiments are consistent with the ones of the simulation, it validates the derived bicycle dynamics model with the gyroscopic balancer and proves its robustness. However, the system’s ability to resist continuous disturbance is not strong enough because of the limitation on the tilt angle of the gyroscopic balancer. Hence, we modified the control strategy by using AFSMC despite the fact that the combination of FSMC and gyroscopic balancer performed well than others. From the simulations in chapter IV, it shows that the AFSMC has better performance at resisting continuous disturbances than FSMC does. Furthermore, the abilities to balance the unmoving bicycle or moving bicycle in any case are no less than FSMC. Thus, the AFSMC is employed to replace the FSMC. The designs of adaptive law and estimation law of AFSMC are based on the Lyapunov function to ensure the stability of the system.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:14:05Z (GMT). No. of bitstreams: 1
ntu-104-R02631040-1.pdf: 3435640 bytes, checksum: e4d8424a390427c6da0a3194b363d686 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
圖目錄 vi
表目錄 viii
第1章 緒論 Introduction 1
第2章 文獻探討 Literature Review 3
2.1 自行車動力學模型 (Dynamics model of bicycle) 3
2.2 自動導引自行車系統 (Riderless bicycle system) 5
2.3 控制策略 (Control strategy) 9
第3章 材料與方法 Materials and Methods 11
3.1 自行車系統 (Bicycle system) 11
3.1.1 自行車平台 (Bicycle platform) 11
3.1.2 陀螺儀平衡器模組原理與設計 (Designs of gyroscopic balancer) 14
3.1.3 控制系統(Control system) 18
3.2 動力學模型 (Dynamics model) 23
3.3 控制策略 (Control strategy) 28
3.3.1 滑動模式控制策略 (Sliding mode control) 29
3.3.2 模糊滑動模式控制策略 (Fuzzy sliding mode control) 33
3.3.3 自適應模糊滑動模式控制策略 (Adaptive fuzzy sliding mode control) 40
第4章 結果與討論 Results and Discussion 46
4.1 模擬 (Simulations) 46
4.1.1 模糊滑動模式控制器 (Fuzzy sliding mode controller) 46
4.1.2 自適應模糊滑動模式控制器 (Adaptive fuzzy sliding mode controller) 52
4.2 實驗 (Experiments) 55
4.2.1 自行車原地靜止而能平衡 (Balancing the unmoving bicycle) 55
4.2.2 自行車無前進速度且受干擾而能平衡 (Balancing the umoving bicycle with external disturbances ) 58
4.2.3 自行車直行前進而能平衡 (Balancing the bicycle while moving forward) 60
4.2.4 自行車前進時任意轉動龍頭而能平衡 (Balancing the bicycle while moving and swinging the handlebar arbitrary) 63
4.2.5 自行車固定迴轉半徑繞圈轉彎而能平衡 (Balancing the bicycle while turning with the angle of handle bar is fixed at a certain degree) 64
第5章 結論 Conclusion 66
References 67
dc.language.isozh-TW
dc.subject平衡控制zh_TW
dc.subject自適應模糊滑動模式控制zh_TW
dc.subject陀螺儀平衡器zh_TW
dc.subject自動導引自行車zh_TW
dc.subject模糊滑動模式控制zh_TW
dc.subjectRiderless bicycleen
dc.subjectGyroscopic balanceren
dc.subjectFSMCen
dc.subjectAFSMCen
dc.subjectBalancing controlen
dc.title應用自適應模糊滑動模式控制策略與陀螺儀平衡器於自動導引自行車之平衡控制zh_TW
dc.titleBalancing a Riderless Bicycle with Adaptive Fuzzy Sliding Mode Control and Gyroscopic Balanceren
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee艾群,程安邦,黃緒哲
dc.subject.keyword自動導引自行車,陀螺儀平衡器,平衡控制,模糊滑動模式控制,自適應模糊滑動模式控制,zh_TW
dc.subject.keywordRiderless bicycle,Gyroscopic balancer,FSMC,AFSMC,Balancing control,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved