請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5240完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許輔 | |
| dc.contributor.author | Po-Yu Chi | en |
| dc.contributor.author | 紀柏羽 | zh_TW |
| dc.date.accessioned | 2021-05-15T17:54:10Z | - |
| dc.date.available | 2014-08-08 | |
| dc.date.available | 2021-05-15T17:54:10Z | - |
| dc.date.copyright | 2014-08-08 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-28 | |
| dc.identifier.citation | 王紅利. 2011. 茯苓的松蔸栽培技術. 中國林副特產. 4:52-55.
呂雅婷. 2011. 茯苓免疫調節蛋白之基因選殖及其對類異位性皮膚炎老鼠模式之效應. 國立臺灣大學園藝所碩士論文. 台北. 張敏、高曉紅、孫曉萌、徐嘉瞳、李香豔、史衍杰、范新田. 2008. 茯苓的藥理作用及研究進展. 北華大學學報 1:63-68. 張慧欣. 2005. 茯苓免疫調節蛋白的純化與生理活性之探討. 國立臺灣大學園藝所碩士論文. 台北. 張慧欣. 2009. 茯苓免疫調節蛋白活化小鼠腹腔巨噬細胞之訊息路徑及促進 T 細胞活化與第一型 T 輔助細胞免疫反應. 國立臺灣大學園藝所博士論文. 台北. 傅傑、王克勤、方紅、蘇瑋、鄧芬. 2002. 茯苓藥原及生產栽培現狀. 中藥研究與資訊 2:24-25. 黃千育. 2012. 鴻喜菇免疫調節蛋白 HMP 於活化小鼠樹突細胞及呼吸道過敏模式之研究. 國立臺灣大學園藝所碩士論文. 台北. 楊小文. 2013. 茯苓生產在栽培技術的有益探索. 農民致富之友. 9:143. 趙文婉,林璧鳳. 2004. 茯苓和靈芝的保健功效. 科學發展 383:62-67. Akihisa, T., E. Uchiyama, T. Kikuchi, H. Tokuda, T. Suzuki, and Y. Kimura. 2009. Anti-tumor-promoting effects of 25-methoxyporicoic acid A and other triterpene acids from Poria cocos. J. Nat. Prod. 72:1786-1792. Akihisa, T., Y. Nakamura, H. Tokuda, E. Uchiyama, T. Suzuki, Y. Kimura, K. Uchikura, and H. Nishi. 2007. Triterpene acids from Poria cocos and their anti-tumor-promoting effects. J. Nat. Prod. 70:948-953. Alegre, M.L., K.A. Frauwirth, and C.B. Thompson. 2001. T-cell regulation by CD28 and CTLA-4. Nat. Rev. Immunol. 1:220-8. Banchereau J. and R.M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392:245-252. Banchereau1, J., F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.J. Liu, B. Pulendran, and K. Palucka. 2000. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18:767-811. Bedi B. and J.R. Mead. 2012. Cryptosporidium parvum antigens induce mouse and human dendritic cells to generate TH1-enhancing cytokines. Parasite Immunol. 34(10):473-85. Birmingham, J.M., S. Patil, X.M. Li, and P.J. Busse. 2013. The effect of oral tolerance on the allergic airway response in younger and aged mice. J. Asthma 50(2):122-32. Chang, H.H. and F. Sheu. 2009. A novel fungal immunomodulatory protein (PCP) isolated from Poria cocos activates mouse peritoneal macrophage involved in toll-like receptor 4. J. Agric. Food Chem. 57(14):6129-6139. Chang, T.T., C.C. Huang, and C.H. Hsu. 2006. Clinical evaluation of the Chinese herbal medicine formula STA-1 in the treatment of allergic asthma. Phytother. Res. 20:342-347. Cheng, S., I. Eliaz, J. Lin, and D. Sliva. 2013. Triterpenes from Poria cocos suppress growth and invasiveness of pancreatic cancer cells through the downregulation of MMP-7. Int. J. Oncol. 42:1869-1874. Chihara, G.,J. Hamuro, Y. Maeda, Y. Arai, and F. Fukuoka. 1970. Antitumor polysaccharide derived chemically from natural glucan (pachyman). Nature 225: 943–944. Cook, P.C., L.H. Jones, S.J. Jenkins, T.A. Wynn, J.E. Allen, and A.S. MacDonald. 2012. Alternatively activated dendritic cells regulate CD4+ T-cell polarization in vitro and in vivo. PNAS 109(25):9977-9982. Fanger, N.A., K. Wardwell, L. Shen, T.F. Tedder, and P.M. Guyre. 1996. Type I (CD64) and type II (CD32) Fc gamma receptor-mediated phagocytosis by human blood dendritic cells. J. Immunol. 157(2):541-548. Fuchs, S.M., C. Heinemann, S. Schliemann-Willers, H. Hartl, J.W. Fluhr, and P. Elsner. 2006. Assessment of anti-inflammatory activity of Poria cocos in sodium lauryl sulphate-induced irritant contact dermatitis. Skin Res. Technol. 12:223-227. Gapter, L., Z. Wang, J. Glinski, and K.Y. Ng. 2005. Induction of apoptosis in prostate cancer cells by pachymic acid from Poria cocos. Biochem. Biophys. Res. Commun. 332(4):1153-1161. Grogan, J.L., and R.M. Locksley. 2002. T helper cell differentiation: on again, off again. Curr. Opin. Immunol. 14:366-372. Guermonprez, P., J. Valladeau, L. Zitvoge, C. Thery, and S. Amigorena. 2002. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20:621-667. Hattori, T.,K. Hayashi, T. Nagao, K. Furuta, M. Ito, and Y. Suzuki. 1992. Studies on antinephritic effects of plant components (3): Effect of pachyman, a main component of Poria cocos Wolf on original-type anti-GBM nephritis in rats and its mechanisms. Jpn. J. Pharmacol. 59(1):89-96. Holgate, S.T. and R. Polosa. 2008. Treatment strategies for allergy and asthma. Nat. Rev. Immunol. 8:218-30. Hopken, U.E., I. Lehmann, J. Droese, M. Lipp, T. Schler, and A. Rehm. 2005. The ratio between dendritic cells and T cells determines the outcome of their encounter:proliferation versus deletion. Eur. J. Immunol. 35:2851-2863. Huang, Q. and L. Zhang. 2011. Preparation, chain conformation and anti-tumor activities of water-soluble phosphated (1→3)-α-D-glucan from Poria cocos mycelia. Carbohydr. Polymers 83:1363-1369. Huang, Q., L. Zhang, P.C. Cheung, and X. Tan. 2006. Evaluation of sulfated a-glucans from Poria cocos mycelia as potential antitumor agent. Carbohydr. Polymers 64:337-344. Humbert, M., G. Menz, S. Ying, C.J. Corrigan,D.S. Robinson, S.R. Durham, and A.B. Kay. 1999. The immunopathology of extrinsic (atopic) and intrinsic (non-atopic) asthma: more similarities than differences. Immunol. Today 20(11):528-33. Jeong, J.W., H.H. Lee, M.H. Han, G.Y. Kim, S.H. Hong, C. Park, and Y.H. Choi. 2014. Ethanol extract of Poria cocos reduces the production of inflammatory mediators by suppressing the NF-κB signaling pathway in lipopolysaccharide-stimulated RAW 264.7 macrophages. BMC Complement Altern. Med. 14:101. Jin, Y., L. Zhang, M. Zhang, L. Chen, P.C. Cheung, V.E. Oi, and Y. Lin. 2003. Antitumor activities of heteropolysaccharides of Poria cocos mycelia from different strains and culture media. Carbohydr. Res. 338:1517-1521. Kouro, T. and K. Takatsu. 2009. IL-5 and eosinophil-mediated inflammation: from discovery to therapy. Int. Immunol. 21:1303-1309. LaCasse, C.J., N. Janikashvili, C.B. Larmonier, D. Alizadeh, N. Hanke, J. Kartchner, E. Situ, S. Centuori, M. Har-Noy, B. Bonnotte, E. Katsanis, and N. Larmonier. 2011. T helper-1 lymphocytes induce dendritic cell tumor killing activity by an interferon-γ-dependent mechanism. J. Immunol. 187(12): 6310–6317. Lamkhioued, B., S.G. Abdelilah, Q. Hamid, N. Mansour, G. Delespesse, and P.M. Renzi. 2003. The CCR3 receptor is involved in eosinophil differentiation and is up-regulated by TH2 cytokines in CD34+ progenitor cells. J. Immunol. 170:537-547. Larche, M., C.A. Akdis, and R. Valenta. 2006. Immunological mechanisms of allergen-specific immunotherapy. Nat. Rev. Immunol. 6: 761-771. Lee, K.S. and M.W. Lee. 1982. Studies on the antibacterial activity of Poria cocos. Korean J. Mycol. 10:27-31. Lee, S.M., Y.J. Lee, J.J. Yoon, D.G. Kanga, and H.S. Lee. 2012. Effect of Poria cocos on hypertonic stress-induced water channel expression and apoptosis in renal collecting duct cells. J. Ethnopharmacol. 141(1):368–376. Lee, S.G., W.D. Park, H.J. Jeong, E.J. Lee, J.B. Kim, and H.J. Kim. 2010. Antioxidant ativity and ati-hyperglycemic ativity of mdicinal hrbal etracts acording to etraction mthods. Korean J. Food Sci. Tech. 42(5)571-577. Lee, Y.T., S.S. Lee, H.L. Sun, K.H. Lu, M.S. Ku, J.N. Sheu, J.L. Ko, and K.H. Lue. 2013. Effect of the fungal immunomodulatory protein FIP-fve on airway inflammation and cytokine production in mouse asthma model. Cytokine 61(1):237-44. Li, T.H., C.C. Hou, C.L. Chang, and W.C. Yang. 2011. Anti-Hyperglycemic properties of crude extract and triterpenes from Poria cocos. Evid. Based Complement Alternat. Med. 2011:128402. Liew, F.Y. 2002. TH1 and TH2 cells: a historical perspective. Nat. Rev. Immunol. 2:55-60. Lu, Y.C., W.C. Yeh, and P.S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42:145-151. Lu, M.M., J.J. Cheng, C.Y. Lin, and C.C. Chang. 2010. Purification, structural elucidation, and anti-inflammatory effect of a water-soluble 1,6-branched 1,3-α-D-galactan from cultured mycelia of Poria cocos. Food Chem. 118:349-356. Lu, Y.T., Y.C. Kuan, H.H. Chang, and F. Sheu. 2014 Molecular cloning of a Poria cocos protein that activates TH1 immune response and allays TH2 cytokine and IgE production in a murine atopic dermatitis model. J. Agri. Food Chem. 62(13):2861-2871. Luster A.D. 2002. The role of chemokines in linking innate and adaptive immunity. Curr. Opin. Immunol. 14(1):129-35. Michielsen, A.J., J.N.O’ Sullivan, and E.J. Ryan. 2012. Tumor conditioned media from colorectal cancer patients inhibits dendritic cell maturation. Onco. Immunol. 1(5):751–753. Nakano, H., K.L. Lin, M. Yanagita, C. Charbonneau, D.N. Cook, T. Kakiuchi, and M.D. Gunn. 2009. Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute TH1 immune responses. Nat. Immunol. 10(4):394-402. Neurath, M.F., S. Finotto, and L.H. Glimcher. 2002. The role of TH1/TH2 polarization in mucosal immunity. Nat. Med. 8(6):567-73. Park, Y.H., I.H Son, B. Kim, Y.S. Lyu, H.I. Moon, and H.W. Kang. 2009. Poria cocos water extract (PCW) protects PC1 2 neuronal cells from beta-amyloid-induced cell death through antioxidant and antiapoptotic functions. Die Pharm. 64:760-764. Rais, M., J.S. Wild, B.K. Choudhury, R. Alam, S. Stafford, N. Dharajiya, and S. Sur. 2002. Interleukin-12 inhibits eosinophil differentiation from bone marrow stem cells in an interferon-γ-dependent manner in a mouse model of asthma. Clin. Exp. Allergy 32:627-632. Rios, Jose-Luis. 2011. Chemical constituents and pharmacological properties of Poria cocos. Planta. Med. 77:681–691. Romagnani S. 2004. Immunologic influences on allergy and the TH1/TH2 balance. J. Allergy Clin. Immunol. 113(3):395-400. Sato., M., T. Tai, Y. Nunoura, Y. Yajima, S. Kawashima, and K. Tanaka. 2002. Dehydrotrametenolic acid induces preadipocyte differentiation and sensitizes animal models of noninsulin-dependent diabetes mellitus to insulin. Biol. Pharm. Bull. 25(1):81-86. Singh-Jasuja, H., A. Thiolat, M. Ribon, M.C. Boissier, N. Bessis, H.G. Rammensee, and P. Decker. 2013. The mouse dendritic cell marker CD11c is down-regulated upon cell activation through Toll-like receptor triggering. Immunobiol. 218:28-39. Sun, Y. 2014. Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives. Int. J. Biol. Macromol. 68C:131-134. Tai, T., A. Akahori, and T. Shingu. 1993. Triterpenoids from Poria cocos. Phytochemistry 32:1239-1244. Tai, T., T. Shingu, T. Kikuchi, Y. Tezuka, A. Akahori. 1995a. Triterpenes from the surface layer of Poria cocos. Phytochemistry 39:1165-1169. Tai, T., Y. Akita, K. Konoshita, K. Koyama, K. Takahashi, and K. Watanabe. 1995b. Antiemetic principles of Poria cocos. Planta. Med. 61:527-530. Tang, J., J. Nie, D. Li, W. Zhu , S. Zhang, F. Ma, Q. Sun, J. Song, Y. Zheng, and P. Chen. 2014. Characterization and antioxidant activities of degraded polysaccharides from Poria cocos sclerotium. Carbohydr. Polymers 105:121-126. van Duin, D. , M. Ruslan, and C.S. Albert. 2006. Triggering TLR signaling in vaccination. Trends Immunol. 27(1):49-55. van Kooten, C. and Banchereau J. 2000. CD40-CD40 ligand. J. Leukoc. Biol. 67:2-17. Veres, T.Z., S. Voedisch, E. Spies, J. Valtonen, F. Prenzler, and Armin Braun. 2013. Aeroallergen challenge promotes dendritic cell proliferation in the airways. J. Immunol. 190:897-903. Vremec, D. and K. Shortman. 1997. Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes. J. Immunol. 159(2):565-573. Wang, S., Y. Wen, and C. Hu. 1995. Immunoactivities of the polysaccharides from Morus alba, Chlamydomonas mexicana and Poria cocos. Phytother. Res. 9:448-451. Wang, Y., M. Zhang, D. Ruan, A.S. Shashkov, M. Kilcoyne, A.V. Savage, and L. Zhang. 2004. Chemical components and molecular mass of six polysaccharides isolated from the sclerotium of Poria cocos. Carbohydr. Res. 339:327–334. Wang, Y., S. Liu, Z. Yang, Y. Zhu, Y. Wu, J. Huang, and J. Mao. 2010. Oxidation of β-glucan extracted from Poria cocos and its physiological activities. Carbohydr. Polymers 85:798-802. Wei, W.C., Y.H. Su, S.S. Chen, J.H. Sheu, and N.S. Yang. 2011. GM-CSF plays a key role in zymosan-stimulated human dendritic cells for activation of TH1 and TH17 cells. Cytokine 55(1):79-89. Witmer-Pack, M.D., W.J. Swiggard, A. Mirza, K. Inaba, and R.M. Steinman. 1995. Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145. II. Expression in situ in lymphoid and nonlymphoid tissues. Cell Immunol. 163(1):157-162. Xu., R., G.C. Fazio, and S.P. Matsuda. 2004. On the origins of triterpenoid skeletal diversity. 65(3):261-291. Zhang, L., A.S. Ravipati, S.R. Koyyalamudi, S.C. Jeong, N. Reddy, J. Bartlett, P.T. Smith, M. de la Cruz, M.C. Monteiro, A. Melguizo, E. Jimenez, and F. Vicente. 2013. Anti-fungal and anti-bacterial activities of ethanol extracts of selected traditional Chinese medicinal herbs. Asian Pac. J. Trop. Med. 6:673-681. Zhao, Y.Y., P. Lei , D.Q. Chen, Y.L. Feng, and X. Bai. 2013a. Renal metabolic profiling of early renal injury and renoprotective effects of Poria cocos epidermis using UPLC Q-TOF/HSMS/MS. J. Pharm. Biomed. Anal. 81-82:201-209. Zhao, Y.Y., Y.L. Feng., X. Bai, X.J. Tan, R.C. Lin, and Q. Mei. 2013b. Ultra performance liquid chromatography-based metabonomic study of therapeutic effect of the surface layer of Poria cocos on adenine-induced chronic Kidney disease provides new insight into anti-fibrosis mechanism. PLoS One 8(3): e59617. Zhou, L., Y. Zhang, L.A. Gapter, H. Ling, R. Agarwal, and K.Y. Ng. 2008. Cytotoxic and anti-oxidant activities of lanostane-type triterpenes isolated from Poria cocos. Chem. Pharm. Bull. 56(10):1459-1462. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5240 | - |
| dc.description.abstract | 茯苓蛋白 PCP (Poria cocos protein) 為由茯苓菌核萃取出的蛋白二聚體,分子量為 35.6 kDa,包含 14.3 kDa 單元及 21.3 kDa 含醣基單元。PCP 具有活化 RAW264.7 巨噬細胞及小鼠腹腔巨噬細胞的能力,在 anti-CD3/CD28 mAbs 存在的環境與 T 細胞共同培養可活化 T 細胞並分泌 TH1 細胞素 IFN-γ (interferon-gamma),且於異位性皮膚炎之貼膚試驗中可抑制 TH2 免疫反應。因為 PCP 無法直接活化 CD90.2+ T 細胞,故本研究推測 PCP 必須利用脾細胞中的抗原呈現細胞 (antigen-presenting cells, APCs),如樹突細胞 (dendritic cells, DCs) 使輔助型 T 細胞分化成 TH1 型,並設計試驗驗證之。首先,在探討 PCP 是否能活化 DCs 的研究中,PCP (100 μg/mL) 可增加小鼠 DCs 之 CD40、CD80 及 CD86 表現及 IL-6 及 IL-12p70 分泌量,證明 PCP 可活化 DCs。由 TLR (toll-like receptor) 2-/- 及 TLR4-/- 基因剔除鼠之 DCs 表面分子表現及 IL-6 細胞素分泌試驗結果推測 PCP 不完全透過 TLR2 或 TLR4 路徑活化 DCs。接著,在探討樹突細胞調節 TH 免疫反應之試驗中,預先與 PCP 及 OVA 抗原培養過的 DCs 可增加對 OVA 有特異性之 DO11.10 CD90.2+ T 細胞增生及分泌 IFN-γ,並減少 IL-4 分泌量,顯示 PCP 有助於 DCs 呈現 OVA 並使免疫反應導向 TH1。最後,於 OVA 誘導之小鼠氣喘試驗中,餵食 PCP (100 μg/day) 可增加支氣管肺泡灌洗液 (bronchoalveolar lavage fluid, BALF) IFN-γ 濃度及血清 OVA-specific IgG2a 含量,並降低 BALF 嗜酸性球 (eosinophils) 數、TH2 細胞素 (IL-4、IL-5、IL-13) 濃度、血清 OVA-specific IgE 含量及肺部組織的發炎細胞浸潤情形。由以上試驗結果證明 PCP 可透過活化樹突細胞使 TH1 型細胞分化,並抑制 TH2 型細胞分化,減少動物氣喘模式之小鼠 TH2 免疫反應。 | zh_TW |
| dc.description.abstract | Poria cocos protein (PCP), which is purified from dried sclerotium of Poria cocos, is a 35.6 kDa heterodimer protein including 14.3 and 21.3 kDa glycosyl subunits. In our previous results, PCP could active RAW264.7 cells and mouse peritoneal macrophages. This protein could also up-regulate murine T cells to secrete IFN-γ in the presence of anti-CD3/CD28 mAbs and inhibit TH2 immune-response in patch test for atopic dermatitis. However, PCP could not directly activate the differentiation of CD90.2+ T cells to TH1 cells, suggesting antigen-presenting cells as dendritic cells (DCs) could be responsible for the activation of PCP on TH1 cells.
In this study, we first found that PCP could up-regulate the expression of CD40, CD80, and CD86 and induce secretion of IL-6 and IL-12p70 on murine DCs. In the results of PCP incubated with DCs of TLR2-/- and TLR4-/- mice, we found that PCP might induce DCs activation through neither TLR2 nor TLR4 pathway. Second, PCP significantly increased the antigen-presentimg ability of murine DCs to promote cell proliferation and IFN-γ secretion of OVA-specific DO11.10 CD90.2+ T cells. Meanwhile, these DCs could inhibit the OVA-specific IL-4 secretion by DO11.10 CD90.2+ T cells. According to the results, we suggested that PCP can help DCs presenting antigen and skewing immune-response to TH1. Finally, in OVA-induced asthma mouse model, oral administration of PCP (100 μg/day) could increase the production of IFN-γ in bronchoalveolar lavage fluid (BALF) and OVA-specific IgG2a in serum. Oral administration of PCP could also down-regulate the amount of eosinophils and TH2 cytokines (IL-4, IL-5, and IL-13) in BALF, OVA-specific IgE in serum, and cell infiltration in mouse lung sections. In conclusion, PCP can activate DCs to promote differentiation of TH1 cells and suppress TH2 immune-response in mouse model of asthma. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T17:54:10Z (GMT). No. of bitstreams: 1 ntu-103-R01628204-1.pdf: 6827776 bytes, checksum: 8232dab7912bbd34a37d89b01153f0d3 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 總目錄
口試委員會審定書……………………………………………………………………..I 致謝…………………………………………………………………………………….II 中文摘要……………………………………………………………………………....III Abstract...…………………………………………………………………………...…IV 總目錄.…………………………………………………………………………...…...VI 圖目錄…………………………………………………………………………...……..X 縮寫對照表…………………………………………………………………………...XI 第一章 緒論………………………………………………………………………...1 1.1 茯苓之前人研究……………………………………………………………1 1.1.1 簡介…………………………………………………….……………1 1.1.2 茯苓之生長與栽種………………………………………….………1 1.1.3 茯苓之成分………………………………………………………….2 1.1.3.1 多醣類……………………………………………………...2 1.1.3.2 三萜類………………………………………….…………..3 1.1.4 茯苓之生物活性……………………………………….……………3 1.1.4.1 抗腫瘤活性………………………………………………...3 1.1.4.2 抗發炎……………………………………………………...4 1.1.4.3 抗氧化……………………………………………………...5 1.1.4.4 抗菌………………………………………………………...5 1.1.4.5 降血糖……………………………………………………...5 1.1.4.6 腎保護作用………………………………………………...6 1.2 茯苓蛋白之研究………………………………………………………………7 1.2.1 茯苓蛋白 PCP 之生化特性………………………….……………..7 1.2.2 茯苓蛋白 PCP 之生物活性…………………………….…………..7 1.2.2.1 PCP 於 APCs 之影響…………………………….………..7 1.2.2.2 PCP 於 T 細胞之影響…………………………….……….8 1.3 樹突細胞………………………………………………………………………9 1.3.1 樹突細胞簡介…………………………………………….………….9 1.3.2 樹突細胞之活化……………………………………………………10 1.3.3 樹突細胞之表面分子………………………………………………10 1.3.4 樹突細胞活化路徑…………………………………………………10 1.3.5 樹突細胞分泌之細胞素及功能……………………………………11 1.4 輔助型 T 細胞……………………………………………………………...11 1.4.1 輔助型 T 細胞之活化…………………………………………….11 1.4.2 TH1 型及TH2 型輔助 T 細胞簡介……………………..……….12 1.5 過敏性氣喘與 TH 免疫反應之相關性…………………………………….13 1.5.1 過敏反應介紹………………………………………………….......13 1.5.2 過敏反應之免疫發生步驟…………………………………………13 1.5.3 過敏性氣喘簡介…………………………………………………....14 1.5.4 如何透過調控 TH 免疫反應抑制過敏反應……………………...15 1.6 研究動機與目的…………………………………………………..................15 第二章 材料與方法……………………………………………………….………17 2.1 茯苓蛋白之萃取與分子量檢測……………………………………………..17 2.1.1 茯苓蛋白粗萃取…………………………………………………...17 2.1.2 DE-52 管柱層析…………………………………………………...18 2.1.3 蛋白去醣試驗……………………………………………………...20 2.1.4 SDS 電泳…………………………………………………………..20 2.1.5 PAS 醣蛋白染色…………………………………………………..22 2.2 茯苓蛋白與脾細胞、CD90.2+ T 細胞之培養與免疫活性試驗……………23 2.2.1 脾細胞之取得……………………………………………………...25 2.2.2 由脾細胞中分離 CD90.2+ T 細胞………………………………..25 2.2.3 茯苓蛋白與脾細胞、CD90.2+ T 細胞之培養……………………26 2.2.4 MTT 細胞活性試驗……………………………………………….26 2.2.5 ELISA 酵素免疫分析法測定 IFN-γ……………………………..26 2.3 茯苓蛋白與樹突細胞之培養與樹突細胞活化 T 細胞能力試驗…..…….27 2.3.1 骨髓衍生樹突細胞之取得方式…………………………………...29 2.3.2 茯苓蛋白與樹突細胞之培養……………………………………...30 2.3.3 樹突細胞與 DO11.10 CD90.2+ T 細胞之培養…………………..30 2.3.4 樹突細胞之表面分子檢測…………………………………….…..30 2.3.5 CFSE 細胞增生試驗………………………………………………31 2.3.6 IL-4、IL-6 及 IFN-γ 細胞素之ELISA 酵素免疫分析法測定...31 2.4 動物氣喘模式試驗…………………………………………………………..32 2.4.1 小鼠致敏步驟……………………………………….……………..33 2.4.2 小鼠餵食方式……………………………………………………...34 2.4.3 支氣管肺泡灌洗液 (BALF) 取得方式……………………….….34 2.4.4 劉氏細胞染色………………………………………………….…..35 2.4.5 IL-4、IL-5、IL-13 及 IFN-γ 細胞素之ELISA 測定…………..35 2.4.6 血液之取得及 OVA 特異性 IgE、OVA 特異性 IgG2a 之測定..35 2.4.7 肺部切片之取得及染色…………………………………………...36 2.5 統計方式…………………………………………………………………..…36 第三章 結果………………………………….……………………………………37 3.1 PCP 無法直接活化 T 細胞…………...…………………………….……37 3.1.1 PCP 之製備……………….……………………………………..…37 3.1.2 PCP 無法直接活化 CD90.2+ T 細胞……………….………...…37 3.2 PCP 可活化樹突細胞……………………………………………………...38 3.2.1 PCP 可促進 DC 表面分子之表現…………………………..…...39 3.2.2 PCP 提高樹突細胞分泌 IL-6 及 IL-12p70………………….….39 3.3 PCP-DC 抑制 DO11.10 T細胞之 TH2 免疫反應………………….…….40 3.3.1 T 細胞之 CFSE 細胞增生試驗結果……………………………..40 3.3.2 細胞上清液 IFN-γ 及 IL-4 濃度測定結果…………………….40 3.4 PCP 活化 DC 之路徑研究…………………………………………..…….41 3.4.1.1 PCP 刺激 TLR2-/- 小鼠樹突細胞…………………….……42 3.4.1.2 PCP 刺激 TLR4-/- 小鼠樹突細胞…………………….……42 3.5 餵食 PCP 於動物氣喘模式試驗………………………………………….43 3.5.1 BALF 嗜酸性球及 TH2 細胞素………………………………….43 3.5.2 BALF TH1 細胞素……………...……………………………….....44 3.5.3 血清 OVA-specific-IgE 及 OVA-specific-IgG2a………………...44 3.5.4 肺部切片 H&E 染色結果………………....………………...........45 第四章 討論……………………………………………….....................................46 4.1 PCP 活化樹突細胞之討論及其與 TLR4路徑之相關性.........................46 4.2 PCP 透過活化樹突細胞誘導 TH1 反應...................................................47 4.3 餵食 PCP 於小鼠氣喘動物模式之討論....................................................48 4.4 結論……………………………………………...........................................50 第五章 參考文獻………………………………………………………………….51 附圖……………………………………………………………………………………60 圖目錄 圖一、PCP 之 DE-52 層析、SDS-PAGE 及 PAS 醣染分析結果。………………..60 圖二、PCP 與脾細胞及 CD90.2+ T 細胞培養後之細胞活性。……………………61 圖三、PCP 刺激 BALB/c 脾細胞及 CD90.2+ T 細胞 IFN-γ 分泌之活性。……62 圖四、PCP 可增加 BALB/c BMDCs 表面分子 CD40、CD80 及 CD86 表現量。……………………………………………………………………………………..63 圖五、PCP 活化之 BMDCs 可提升 IL-6及 IL-12p70 分泌結果。………….......64 圖六、PCP 預培養之 BMDCs 可促 DO11.10 T 細胞增生。…………………….65 圖七、DO11.10 T 細胞與PCP 預培養之 BMDCs 培養後 IFN-γ 及 IL-4 分泌量。 ………………………………………….......................................……………….66 圖八、與 PCP 共培養之 TLR2-/- BMDCs 表面分子 CD40、CD80 及 CD86 表現。 …………………….……..….……………………………………………………67 圖九、與 PCP 共培養之 TLR4-/- BMDCs 表面分子 CD40、CD80 及 CD86 表現。 …………………….……………………………………………………………...68 圖十、與 PCP 共培養之 TLR2-/- 及 TLR4-/- 樹突細胞 IL-6 分泌量。…………...69 圖十一、動物氣喘模式之試驗步驟。…………………………………………............70 圖十二、餵食 PCP 可降低 BALB/c小鼠 BALF 之嗜酸性球數。…….................71 圖十三、口服 PCP 之氣喘小鼠 BALF TH2 細胞素 IL-4、IL-5 及 IL-13 分泌。………………………….....………………………………………….................................72 圖十四、口服 PCP 氣喘小鼠 BALF 之 TH1 細胞素 IFN-γ 分泌。…………..…73 圖十五、口服 PCP氣喘小鼠血清之 OVA 特異性 IgE 及 IgG2a 分泌。…………...74 圖十六、H&E 染色之小鼠肺部切片。……………………………………………….75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 免疫調節蛋白 | zh_TW |
| dc.subject | 樹突細胞 | zh_TW |
| dc.subject | 輔助型 T 細胞 | zh_TW |
| dc.subject | 茯苓 | zh_TW |
| dc.subject | 呼吸道過敏 | zh_TW |
| dc.subject | bone marrow-derived dendritic cell | en |
| dc.subject | Poria cocos | en |
| dc.subject | allergic airway inflammation | en |
| dc.subject | T helper cell | en |
| dc.subject | immunomodulatory protein | en |
| dc.title | 茯苓免疫調節蛋白活化樹突細胞及調節 TH1 免疫反應 | zh_TW |
| dc.title | Poria cocos Immunomodulatory Protein Induces TH1 Immune Response by Activated Dendritic Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周志輝,潘敏雄,繆希椿 | |
| dc.subject.keyword | 茯苓,免疫調節蛋白,樹突細胞,輔助型 T 細胞,呼吸道過敏, | zh_TW |
| dc.subject.keyword | Poria cocos,immunomodulatory protein,bone marrow-derived dendritic cell,T helper cell,allergic airway inflammation, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-07-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 6.67 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
