Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52408
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor廖文彬(Wen-Bin Liau)
dc.contributor.authorYuan Chiuen
dc.contributor.author邱淵zh_TW
dc.date.accessioned2021-06-15T16:14:01Z-
dc.date.available2020-08-25
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citation[1] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x” J.C.S. CHEM. COMM., pp. 578-580, 1977.
[2] A. G. MacDiarmid, A. J. Heeger, “Organic metals and semiconductors: The chemistry of polyacetylene, (CH)x, and its derivatives.” Synthetic Metals, pp. 101 – 118, 1980.
[3] J. L. Bredas, G. B. Street, “Polarons, Bipolarons, and Solitons in Conducting Polymers.” Accounts of Chemical Research, pp. 309-315, 1985.
[4] L. Beverina, G. A. Pagani, M. Sassi, “Multichromophoric electrochromic polymers: colour tuning of conjugated polymers through the side chain functionalization approach.” Chem. Commun., pp. 5413-2530, 2014.
[5] Gursel Sonmez, Clifton K. F. Shen, Yves Rubin, Fred Wudl, “A Red, Green, and Blue (RGB) Polymeric Electrochromic Device (PECD): The Dawning of the PECD Era.” Angewandte Chemie, pp. 1523-1528, 2004.
[6] D. Belanger, X. Ren, J. Davey, F. Uribe, S. Gottesfeld, “Characterization and Long‐Term Performance of Polyaniline‐Based Electrochemical Capacitors.” Journal of Electrochemical Society, pp. 2923-2929, 2000.
[7] M. AlSalhi, J. Alam, L. A. Dass, M. Raja, 'Recent Advances in Conjugated Polymers for Light Emitting Devices.' Int. J. Mol. Sci, pp. 2036-2054, 2011.
[8] G. J. Lee, D. Kim, J. I. Lee, H. K. Shim, Y. W. Kim, J. C. Jo, “Effect of Alkoxy Substitution on Photophysical Properties of Poly(p-phenylenevinylene)” Jpn. J. Appl. Phys., pp. 114–119, 1997.
[9] H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, 'Polymer solar cells with enhanced open-circuit voltage and efficiency.' Nature Photonics, pp. 649-653, 2009.
[10] F. Ebisawa, T. Kurokawa, S. Nara, 'Electrical properties of polyacetylene/ polysiloxane interface.' Journal of Applied Physics, pp. 3255-3259, 1983.
[11] A. G. MacDiarmid, “Synthetic metals: A novel role for organic polymers (Nobel lecture)” Angew. Chem. Int. Ed., pp. 2581–2590, 2001.
[12] J. W. P. Lin, L. P. Dudek, “Synthesis and properties of poly(2,5-thienylene)” J. Polym. Sci. Polym. Chem. Ed., pp. 2869–2873, 1980.
[13] R. L. Elsenbaumer, K. Y. Jen, R. Oboodi, “Processible and environmentally stable conducting polymers” Synth. Met., pp. 169–174, 1986.
[14] M. Sato and H. Morii, “Nuclear magnetic resonance studies on electrochemically prepared poly(3-dodecylthiophene)” Macromolecules, pp. 1196–1200, 1991.
[15] R. D. McCullough, R. D. Lowe, M. Jayaraman, D. L. Anderson, “Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly(3-alkylthiophenes)” J. Org. Chem., pp. 904–912, 1993.
[16] T.-A. Chen, X. Wu, R. D. Rieke, “Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties” J. Am. Chem. Soc., pp. 233–244, 1995.
[17] R. S. Loewe, P. C. Ewbank, J. Liu, L. Zhai, R. D. McCullough, “Regioregular, Head-to-Tail Coupled Poly(3-alkylthiophenes) Made Easy by the GRIM Method:  Investigation of the Reaction and the Origin of Regioselectivity” Macromolecules, pp. 4324–4333, 2001.
[18] Ihn, Kyo Jin, Jeff Moulton, Paul Smith. “Whiskers of poly (3‐alkylthiophene) s.” Journal of Polymer Science Part B: Polymer Physics, pp. 735-742, 1993.
[19] T. Thurn-Albrecht, R. Thomann, T. Heinzel, S. Hugger, “Semicrystalline morphology in thin films of poly(3-hexylthiophene)” Colloid Polym. Sci., pp. 932–938, 2004.
[20] K. Tremel, S. Ludwigs. “Morphology of P3HT in thin films in relation to optical and electrical properties.” P3HT Revisited–From Molecular Scale to Solar Cell Devices. Springer Berlin Heidelberg, pp. 39-82, 2014.
[21] L. H. Jimison, M. F. Toney, I. McCulloch, A. Salleo, 'Charge‐Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regioregular Poly (3‐hexylthiophene).' Advanced Materials, pp.1568-1572, 2009.
[22] R. Z. Li, A. Hu, T. Zhang, K. D. Oakes, “Direct writing on paper of foldable capacitive touch pads with silver nanowire inks.” ACS applied materials interfaces, pp. 21721-21729, 2014.
[23] Y. G. Sun, B. Mayers, T. Herricks, Y. N. Xia, “Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence.”, pp. 955-960, Nano Lett., 2003.
[24] H. Imai, H. Nakamura, T. Fukuyo, “Anisotropic Growth of Silver Crystals with Ethylenediamine Tetraacetate and Formation of Planar and Stacked Wires.”, Crystal Growth Design, pp. 1073-1077, 2005.
[25] J. Y. Piquemal, G. Viau, P. Beaunier, F. B. Verduraz, “One-step construction of silver nanowires in hexagonal mesoporous silica using the polyol process” Materials research bulletin, pp. 389-394, 2003.
[26] G. Wei, H. L. Zhou, Z. G. Liu, Y. H. Song, L. Wang, L. L. Sun, Z. Li, 'One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network' The Journal of Physical Chemistry B, pp. 8738-8743, 2005.
[27] 李哲瑋, “聚(3-己基噻吩)-銀金屬複合材料之製備與形成機制探討” 碩士論文, 國立台灣大學材料所, 2013
[28] A. Robertson, “Tetrahydrofuran Hydroperoxide” Nature (London), pp. 153, 1948
[29] D. B. G. Williams, M. Lawton, “Drying of organic solvents: quantitative evaluation of the efficiency of several desiccants” The Journal of organic chemistry, pp.8351-8354, 2010.
[30] Y. Ogata, K. Tomizawa, I. Toshiyuki, “Novel oxidation of tetrahydrofuran to γ-butyrolactone with peroxyphosphoric acid” J. Org. Chem., pp. 1320–1322, 1980.
[31] L. Metsger, S. Bittner, “Autocatalytic Oxidation of Ethers with Sodium Bromate” Tetrahedron, pp. 1905-1910, 2000
[32] D. Boskou, I. Elmadfa, “Frying of Food: Oxidation, Nutrient and Non-Nutrient Antioxidants, Biologically Active Compounds and High Temperatures,” CRC Press, pp.60 , 1999
[33] M. Z. Kassaee, M. Mohammadkhani, A. Akhavan, R. Mohammadi, “In situ formation of silver nanoparticles in PMMA via reduction of silver ions by butylated hydroxytoluene,” Structural Chemistry, pp. 11-15, 2010
[34] D. Dudenko, A. Kiersnowski, J. Shu, W. Pisula, D. Sebastiani, H. W. Spiess, M. R. Hansen, “A Strategy for Revealing the Packing in Semicrystalline π-Conjugated Polymers: Crystal Structure of Bulk Poly-3-hexyl-thiophene (P3HT)” Angew. Chem. Int. Ed., pp. 11068–11072, 2012.
[35] “ICDD” JCPDS 89-3722.
[36] D. B. Williams and C. B. Carter, “The Transmission Electron Microscope” in Transmission Electron Microscopy, Springer US, pp. 3–17,1996.
[37] V. Germain, J. Li, D. Ingert, Z. L. Wang, and M. P. Pileni, “Stacking Faults in Formation of Silver Nanodisks” J. Phys. Chem. B, pp. 8717–8720, 2003.
[38] Y. N. Xia, Y. J. Xiong, B. K. Lim, S. E. Skrabalak, “Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?” Angew. Chem. Int., pp. 60-103, 2009.
[39] V. Germain, J. Li, D. Ingert, Z. L. Wang, M. P. Pileni, “Stacking Faults in Formation of Silver Nanodisks.” J. Phys. Chem. B, pp. 8717-8720, 2003
[40] J. L. Elechiguerra, J. R. Gasgab, M. J. Yacaman, “The role of twinning in shape evolution of anisotropic noble metal nanostructures.” J. Mater. Chem., pp. 3906-3919, 2006
[41] Y. Xiong, A. R. Siekkinen, J. Wang, Y. Yin, M. J. Kim, Y. Xia, “Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide.” J. Mater. Chem., pp. 2600–2602, 2007
[42] Y. Xiong, I. Washio, J. Chen, H. Cai, Z.-Y. Li, Y. Xia, “Poly(vinyl pyrrolidone): A Dual Functional Reductant and Stabilizer for the Facile Synthesis of Noble Metal Nanoplates in Aqueous Solutions.” Langmuir, , pp. 8563-8570, 2006
[43] Y. Xiong, J. M. McLellan, J. Chen, Y. Yin, Z.-Y. Li, Y. Xia, “Kinetically Controlled Synthesis of Triangular and Hexagonal Nanoplates of Palladium and Their SPR/SERS Properties.” J. Am. Chem. Soc., pp. 17118-17127, 2005
[44] H. P. Chen, R. Hegde, J. Browningb, M. D. Dadmun, “The miscibility and depth profile of PCBM in P3HT: thermodynamic information to improve organic photovoltaics.” Phys. Chem. Chem. Phys., pp. 5635–5641, 2012
[45] A. Rodrigues, M. C. R. Castro, A. S. F. Farinha, M. Oliveira, J. P. C. Tomé, A. V. Machado, M. M. M. Raposo, L. Hilliou, G. Bernardo, “Thermal stability of P3HT and P3HT:PCBM blends in the molten state” Polym. Test., pp. 1192–1201, 2013
[46] “ICDD” JCPDS 48-2040.
[47] B. K. Lim, M. J. Jiang, J. Tao, P. H. C. Camargo, Y. M. Zhu, Y. N. Xia, “Shape-Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions.” Adv. Funct. Mater., pp. 189–200, 2009
[48] “EBSD principle.” EDAX
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52408-
dc.description.abstract本論文中,我們利用三種不同溶劑,分別為四氫呋喃(Tetrahydrofuran,THF)、甲醇以及1,4-二氧陸圜(1,4-Dioxane ),來探討不同溶劑對聚(3-己基噻吩) (P3HT)還原出銀金屬結構的不同。

利用三種溶劑與水產生共溶劑,溶劑會對P3HT產生膨潤作用,使P3HT得以浮出薄膜,形成帶狀結構,讓銀離子在表面還原成銀金屬。利用三種溶劑都可以簡易製備出寬度為100nm-2μm且長可達數百μm以上的帶狀結構,此帶狀銀的結構擁有高度的晶體位向排列一致性,主要晶面呈現為{111}面族以及<110>的晶面成長方向並且形成一維的帶狀結構。我們也可以利用甲醇讓P3HT無法浮出,而形成顆粒狀的結構。也發現了小分子二特丁四甲苯(Butylated hydroxytoluene,BHT)可以幫助銀金屬成核,並增加銀金屬的量,加入0.025wt%的BHT,在18小時後銀金屬的重量就可達沒加入BHT系統的1.59倍。最後也對柱狀結構的銀金屬做結構上的探討。
簡言之,在室溫下利用三種溶劑都可以製備出帶狀銀金屬,利用甲醇製備出帶狀銀金屬,也對環境有利。加入少量BHT就可以增加銀金屬的數量,對於製程上有極大的幫助。
zh_TW
dc.description.abstractIn this thesis, we used three different solvent, tetrahydrofuran, methanol and 1,4 –dioxane, respectively, To investigate the effect of different solvents on the poly (3-hexyl thiophene) (P3HT) reducing silver metal structure.
Use these three solvent combined with water to make co-solvent system. By the swelling effect of three different solvent on P3HT, P3HT could float up from thin film. Let silver ion reduce to silver metal on the surface and formed belt-like structure. By using these three solvents ,it is easy to prepare an elongated silver structure with the range of width form 100 nm to 2 μm. The length of the elongated silver structure can up to hundreds μm or more. This silver structure has high degree of consistent arrangement. It also shows the major crystal plane of {111} and the major growth direction of <100> and form one-dimensional belt-like structure. We can also let P3HT couldn’t float up by using methanol, and forming silver particle. By using small molecular BHT, we found that it could help the nucleation of silver, and increase the amount of silver. Adding only 0.025wt% BHT, the weight of silver metal could up to 1.59 times than the system that didn’t add BHT after 18 hours. At last, we also discussed the structure of pillar-like silver metal.
In brief, all these three solvent could prepare belt-like silver structure. It is much environment friendly by using methanol to prepare belt-like silver structure. Adding a little amount of BHT could gain lots of amount in silver metal. It is really helpful for preparation process.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:14:01Z (GMT). No. of bitstreams: 1
ntu-104-R02549029-1.pdf: 9122228 bytes, checksum: 68c5f8d8ef563990005d79312da56b8c (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
誌謝 i
中文摘要 ii
目錄 iv
圖目錄 vi
表目錄 xi
第一章 緒論 1
第二章 文獻回顧 2
2-1 導電高分子 2
2-1-1 概說 2
2-1-2 應用 4
2-2 導電高分子聚(3-己基噻吩) 4
2-2-1 聚(3-己基噻吩)性質及結構 4
2-2-2 聚(3-己基噻吩)薄膜性質 6
2-3 高分子與銀金屬之複合材料 7
2-3-1 奈米銀線之應用 7
2-3-2 銀金屬一維結構 8
2-3-3聚(3-己基噻吩)還原銀離子 8
第三章 實驗 10
3-1 實驗藥品 10
3-2 實驗儀器 13
3-3 P3HT薄膜製備 15
3-4 THF除水 17
3-5 P3HT薄膜與硝酸銀反應 17
3-5-1 P3HT薄膜在含有BHT與不含BHT的THF系統中與硝酸銀反應 17
3-5-2 P3HT薄膜在不同溶劑中與硝酸銀反應 18
3-5-3 OM in-situ觀察P3HT薄膜在不同共溶劑中與硝酸銀反應的過程 18
3-5-4 P3HT薄膜在甲醇-水共溶劑不同比例下與硝酸銀反應 18
3-5-5 P3HT薄膜在THF70vol%下與硝酸銀反應 19
3-5-6 銀金屬帶狀結構收集與鑑定 19
第四章 結果與討論 21
4-1 THF除水 21
4-2 BHT對P3HT-銀複合材料的影響 23
第五章 結論 68
參考文獻 69
dc.language.isozh-TW
dc.subject一維結構zh_TW
dc.subject奈米銀帶zh_TW
dc.subject共溶劑zh_TW
dc.subject銀zh_TW
dc.subject聚(3-己基?吩)zh_TW
dc.subject二特丁四甲苯zh_TW
dc.subjectBHTen
dc.subjectP3HTen
dc.subjectsilveren
dc.subjectco-solventen
dc.subjectnano-silverbelten
dc.subjectpoly(3-hexylthiophene)en
dc.title不同溶劑對聚(3-己基噻吩)-銀金屬複合材料製備與形成機制探討之影響zh_TW
dc.titleEffect of Different Solvent on Preparation and Growth Mechanism of Poly(3-hexylthiophene-2,5-diyl)-Silver Compositesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee童世煌,羅世強,曾勝茂
dc.subject.keyword聚(3-己基?吩),銀,共溶劑,奈米銀帶,一維結構,二特丁四甲苯,zh_TW
dc.subject.keywordpoly(3-hexylthiophene),P3HT,silver,co-solvent,nano-silverbelt,BHT,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
Appears in Collections:高分子科學與工程學研究所

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
8.91 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved