請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52400完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成 | |
| dc.contributor.author | Kuan-Yu Chen | en |
| dc.contributor.author | 陳冠伃 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:13:48Z | - |
| dc.date.available | 2018-09-01 | |
| dc.date.copyright | 2015-08-28 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | [1] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, 'Machine recognition of human activities: A survey,' IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, pp. 1473-1488, 2008.
[2] J. K. Aggarwal and M. S. Ryoo, 'Human activity analysis: A review,' ACM Computing Surveys (CSUR), vol. 43, p. 16, 2011. [3] C. Zhang and Y. Tian, 'Rgb-d camera-based daily living activity recognition,' Journal of Computer Vision and Image Processing, vol. 2, p. 12, 2012. [4] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie, 'Behavior recognition via sparse spatio-temporal features,' in 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005, pp. 65-72. [5] I. Laptev, 'On space-time interest points,' International Journal of Computer Vision, vol. 64, pp. 107-123, 2005. [6] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld, 'Learning realistic human actions from movies,' in IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8. [7] B. Ni, G. Wang, and P. Moulin, 'Rgbd-hudaact: A color-depth video database for human daily activity recognition,' in IEEE International Conference on Computer Vision Workshops, 2011. [8] R. Held, A. Gupta, B. Curless, and M. Agrawala, '3D puppetry: a kinect-based interface for 3D animation,' in UIST, 2012, pp. 423-434. [9] Microsoft Research, Microsoft® Kinect™ for Windows® Software Development Kit (SDK) Beta from Microsoft Research, Remond, WA USA. Available: http://www.microsoft.com/en-us/kinectforwindows/ [10] OpenNI. Available: http://structure.io/openni [11] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, et al., 'Real-time human pose recognition in parts from single depth images,' Communications of the ACM, vol. 56, pp. 116-124, 2013. [12] G. Ballin, M. Munaro, and E. Menegatti, 'Human action recognition from rgb-d frames based on real-time 3d optical flow estimation,' in Biologically Inspired Cognitive Architectures 2012, ed: Springer, 2013, pp. 65-74. [13] Z. Uddin and T.-S. Kim, Continuous hidden markov models for depth map-based human activity recognition: INTECH Open Access Publisher, 2011. [14] L. Han, X. Wu, W. Liang, G. Hou, and Y. Jia, 'Discriminative human action recognition in the learned hierarchical manifold space,' Image and Vision Computing, vol. 28, pp. 836-849, 2010. [15] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, 'Sequence of the most informative joints (smij): A new representation for human skeletal action recognition,' Journal of Visual Communication and Image Representation, vol. 25, pp. 24-38, 2014. [16] A. A. Chaaraoui, J. R. Padilla-López, and F. Flórez-Revuelta, 'Fusion of skeletal and silhouette-based features for human action recognition with rgb-d devices,' in IEEE International Conference on Computer Vision Workshops (ICCVW), 2013, pp. 91-97. [17] N. Dalal and B. Triggs, 'Histograms of oriented gradients for human detection,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, pp. 886-893. [18] C. Chen, R. Jafari, and N. Kehtarnavaz, 'Action Recognition from Depth Sequences Using Depth Motion Maps-based Local Binary Patterns,' IEEE Winter Conference on Applications of Computer Vision, 2015. [19] Y. Ke and R. Sukthankar, 'PCA-SIFT: A more distinctive representation for local image descriptors,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, pp. II-506-II-513 Vol. 2. [20] L. Xia, C.-C. Chen, and J. Aggarwal, 'View invariant human action recognition using histograms of 3d joints,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2012, pp. 20-27. [21] R. Chaudhry, F. Ofli, G. Kurillo, R. Bajcsy, and R. Vidal, 'Bio-inspired dynamic 3d discriminative skeletal features for human action recognition,' in IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2013, pp. 471-478. [22] J. Aggarwal and L. Xia, 'Human activity recognition from 3d data: A review,' Pattern Recognition Letters, vol. 48, pp. 70-80, 2014. [23] M. Ye, Q. Zhang, L. Wang, J. Zhu, R. Yang, and J. Gall, 'A survey on human motion analysis from depth data,' in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications, ed: Springer, 2013, pp. 149-187. [24] W. Li, Z. Zhang, and Z. Liu, 'Action recognition based on a bag of 3d points,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2010, pp. 9-14. [25] X. Yang and Y. Tian, 'Super normal vector for activity recognition using depth sequences,' in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 804-811. [26] A. W. Vieira, E. R. Nascimento, G. L. Oliveira, Z. Liu, and M. F. Campos, 'Stop: Space-time occupancy patterns for 3d action recognition from depth map sequences,' in Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, ed: Springer, 2012, pp. 252-259. [27] J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu, 'Robust 3d action recognition with random occupancy patterns,' in European Conference on Computer Vision, ed: Springer, 2012, pp. 872-885. [28] O. Oreifej and Z. Liu, 'Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences,' in IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 716-723. [29] A. F. Bobick and J. W. Davis, 'The recognition of human movement using temporal templates,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, pp. 257-267, 2001. [30] X. Yang, C. Zhang, and Y. Tian, 'Recognizing actions using depth motion maps-based histograms of oriented gradients,' in Proceedings of the 20th ACM international conference on Multimedia, 2012, pp. 1057-1060. [31] J. Wang, Z. Liu, Y. Wu, and J. Yuan, 'Learning actionlet ensemble for 3D human action recognition,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, pp. 914-927, 2014. [32] E. Ohn-Bar and M. M. Trivedi, 'Joint angles similarities and HOG2 for action recognition,' in IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2013, pp. 465-470. [33] S. Althloothi, M. H. Mahoor, X. Zhang, and R. M. Voyles, 'Human activity recognition using multi-features and multiple kernel learning,' Pattern Recognition, vol. 47, pp. 1800-1812, 2014. [34] J. Wang, Z. Liu, Y. Wu, and J. Yuan, 'Mining actionlet ensemble for action recognition with depth cameras,' in IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1290-1297. [35] B. Schiele and J. L. Crowley, 'Recognition without correspondence using multidimensional receptive field histograms,' International Journal of Computer Vision, vol. 36, pp. 31-50, 2000. [36] H. Jhuang, T. Serre, L. Wolf, and T. Poggio, 'A biologically inspired system for action recognition,' in IEEE International Conference on Computer Vision, 2007, pp. 1-8. [37] S. K. Gupta, Y. S. Kumar, and K. Ramakrishnan, 'Learning Feature Trajectories Using Gabor Filter Bank for Human Activity Segmentation and Recognition,' in Indian Conference on Computer Vision, Graphics & Image Processing, 2008, pp. 111-118. [38] X. Zhen, L. Shao, D. Tao, and X. Li, 'Embedding Motion and Structure Features for Action Recognition,' IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, pp. 1182-1190, 2013. [39] C. Liu and H. Wechsler, 'Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition,' IEEE Transactions on Image processing, vol. 11, pp. 467-476, 2002. [40] S. Wold, K. Esbensen, and P. Geladi, 'Principal component analysis,' Chemometrics and intelligent laboratory systems, vol. 2, pp. 37-52, 1987. [41] Principal component analysis - Wikipedia. Available: https://en.wikipedia.org/wiki/Principal_component_analysis [42] D. Weinland, R. Ronfard, and E. Boyer, 'Free viewpoint action recognition using motion history volumes,' Computer Vision and Image Understanding, vol. 104, pp. 249-257, 2006. [43] B. Scholkopft and K.-R. Mullert, 'Fisher discriminant analysis with kernels,' in IEEE Signal Processing Society Workshop Neural Networks for Signal Processing, 1999, pp. 23-25. [44] 'Linear discriminant analysis - Wikipedia.' [45] A. M. Martínez and A. C. Kak, 'Pca versus lda,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, pp. 228-233, 2001. [46] Y. Chen, Q. Wu, and X. He, 'Human action recognition based on radon transform,' in Multimedia Analysis, Processing and Communications, ed: Springer, 2011, pp. 369-389. [47] M. E. Hussein, M. Torki, M. A. Gowayyed, and M. El-Saban, 'Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations,' in Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, 2013, pp. 2466-2472. [48] G. Evangelidis, G. Singh, and R. Horaud, 'Skeletal quads: Human action recognition using joint quadruples,' in International Conference on Pattern Recognition (ICPR), 2014, pp. 4513-4518. [49] Y. Q. Tao Wei, Brian Lee, 'Kinect Skeleton Coordinate Calibration for Remote Physical Training,' in The Sixth International Conferences on Advances in Multimedia, Nice, France, 2014. [50] H. Pirsiavash and D. Ramanan, 'Detecting activities of daily living in first-person camera views,' in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2847-2854. [51] M. A. Gowayyed, M. Torki, M. E. Hussein, and M. El-Saban, 'Histogram of oriented displacements (hod): describing trajectories of human joints for action recognition,' in Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, 2013, pp. 1351-1357. [52] M. Müller and T. Röder, 'Motion templates for automatic classification and retrieval of motion capture data,' in ACM SIGGRAPH/Eurographics symposium on Computer animation, 2006, pp. 137-146. [53] L. Li and B. A. Prakash, 'Time series clustering: Complex is simpler!,' in Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 185-192. [54] C. Chen, K. Liu, and N. Kehtarnavaz, 'Real-time human action recognition based on depth motion maps,' Journal of Real-Time Image Processing, pp. 1-9, 2013. [55] R. P. Rao and D. H. Ballard, 'An active vision architecture based on iconic representations,' Artificial Intelligence, vol. 78, pp. 461-505, 1995. [56] B. A. Olshausen, 'Emergence of simple-cell receptive field properties by learning a sparse code for natural images,' Nature, vol. 381, pp. 607-609, 1996. [57] K. N. Tran, I. A. Kakadiaris, and S. K. Shah, 'Part-based motion descriptor image for human action recognition,' Pattern Recognition, vol. 45, pp. 2562-2572, 2012. [58] C.-C. Chang and C.-J. Lin, 'LIBSVM: A library for support vector machines,' ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2, p. 27, 2011. [59] D. Wu and L. Shao, 'Silhouette analysis-based action recognition via exploiting human poses,' IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, pp. 236-243, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52400 | - |
| dc.description.abstract | 近年來,動作辨識已成為在電腦視覺領域中相當熱門的研究主題,其中以”辨識日常活動”更能實際運用於我們真正的生活環境裡。為了使系統能夠以最自然的方式來解讀人類精細的動作,我們採取以視覺為基礎來設計系統。雖然至今已經有許多關於活動辨識上的研究,但若要提高系統的實用性,則解決資料變異性與環境雜訊的問題便日趨重要。因此,在本篇論文中,我們的目標為建立出一個使用深度攝影機的強健式日常活動辨識系統。
我們的方法主要專注於分析含有重要信息量的動作狀態,因為根據我們的觀察,大多數的日常活動只和一些特定的身體部位相關,尤其集中在上半身,例如頭和手之間的互動。基於這樣的概念,我們提出兩種新穎且具有直覺物理意義的特徵描述子,分別為位置移動量直方圖以及基於局部深度運動圖的賈伯小波表徵,這些特徵可以有效率地萃取具有鑑別力的姿勢與動態線索。藉由結合骨架與深度資訊,利用各自的優勢並強調其可靠的局部特徵來加以強化辨識能力。最後,我們運用主成分分析和線性判別分析方法來有效降低特徵的維度,然後將得到的特徵向量訓練出一支持向量機,以達到日常活動辨識之目的。經過實驗結果評估,本論文中所提出的方法不但能夠有效辨識日常動作,且相較於其他方法更表現出優越性。由於我們提出的活動辨識方法能處理真實環境下容易遇到的問題,這將有助於未來實際應用於照護系統或人機互動的介面上。 | zh_TW |
| dc.description.abstract | Human action recognition has become an active topic of computer vision research in recent years, and recognizing activities of daily living (ADLs) is practically helpful in our daily life. Vision-based system is chosen so that computer can understand complicated activities in a nature way. However, it still remains some challenges such as intra-class variations and environmental noise in this field. In order to solve such problems, we present a robust activity recognition system with a depth sensor.
We mainly focus on the motion analysis of informative body parts, since most activities are much associated with these particular parts, e.g., head and hands in upper body. Based on the idea, we propose two novel features with intuitive physical meaning, which are Histogram of Located Displacements (HOLD) and Local Depth Motion Maps (L-DMM) based Gabor representation. They can capture discriminative posture and motion cues from skeletal joints and depth data respectively. Combing the advantages of joint and depth features as well as emphasizing the reliable parts can enhance the robustness of classification ability. Finally, we apply Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) for effective dimension reduction, and then use Support Vector Machine (SVM) to acquire the classification results. The experimental results have shown effectiveness of our method and demonstrated superior performance over the state-of-the-art works. This approach can benefit to several applications such as health care system and human-computer interaction (HCI). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:13:48Z (GMT). No. of bitstreams: 1 ntu-104-R02944015-1.pdf: 3059654 bytes, checksum: 1bd9b119c921b2c6ecebb2684fe1b38f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Motivation 2 1.2 Challenges 6 1.3 Related Work 8 1.3.1 Skeleton-Based Approach 9 1.3.2 Depth-Based Approach 10 1.3.3 Fusion of Skeleton- and Depth-Based Approach 11 1.4 System Overview 12 1.5 Contributions 14 1.6 Thesis Organization 15 Chapter 2 Preliminaries 17 2.1 Gabor Wavelets 17 2.2 Linear Subspace Methods 19 2.2.1 Principal Component Analysis (PCA) 20 2.2.2 Linear Discriminant Analysis (LDA) 22 Chapter 3 Activity Recognition with the Informative Features 25 3.1 Joint Feature 26 3.1.1 Human-centric Grid 28 3.1.2 Histogram of Located Displacements (HOLD) 32 3.1.3 Temporal-Pyramid HOLD 37 3.2 Depth Feature 39 3.2.1 Preprocessing 40 3.2.2 Local Depth Motion Maps (L-DMM) 41 3.2.3 L-DMM based Gabor Features 45 3.3 Activity Recognition 47 3.3.1 Data Processing 48 3.3.2 SVM Classification 49 Chapter 4 Experiments 53 4.1 Experimental Setting 53 4.2 Datasets 54 4.2.1 MSRDailyActivity3D Dataset 55 4.2.2 UpperBodyActivity Dataset 58 4.3 Experimental Results 59 4.3.1 Temporal-Pyramid HOLD Evaluation 60 4.3.2 Daily Activity Recognition Performance 62 4.3.3 Linear Subspace Evaluation 70 4.3.4 Activity Spotting 72 4.3.5 Computational Cost Evaluation 73 Chapter 5 Conclusion and Future Work 75 REFERENCE 77 | |
| dc.language.iso | en | |
| dc.subject | 動作辨識 | zh_TW |
| dc.subject | 日常活動 | zh_TW |
| dc.subject | 深度影像 | zh_TW |
| dc.subject | 骨架關節點 | zh_TW |
| dc.subject | 富有信息量的特徵 | zh_TW |
| dc.subject | Informative feature | en |
| dc.subject | Activity recognition | en |
| dc.subject | Depth maps | en |
| dc.subject | Activity of daily living | en |
| dc.subject | Skeletal joints | en |
| dc.title | 利用骨架與深度資訊擷取有意義之特徵以辨識日常活動 | zh_TW |
| dc.title | Daily Activity Recognition Using the Informative Features from Skeletal and Depth Data | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李明穗,洪一平,黃正民,莊永裕 | |
| dc.subject.keyword | 動作辨識,日常活動,深度影像,骨架關節點,富有信息量的特徵, | zh_TW |
| dc.subject.keyword | Activity recognition,Activity of daily living,Depth maps,Skeletal joints,Informative feature, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
