Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52376
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹承礎(Seng-Cho Chou)
dc.contributor.authorPei-Yu Koen
dc.contributor.author柯沛瑜zh_TW
dc.date.accessioned2021-06-15T16:13:10Z-
dc.date.available2030-08-07
dc.date.copyright2020-08-25
dc.date.issued2020
dc.date.submitted2020-08-07
dc.identifier.citation[1] Bruna, J., Zaremba, W., Szlam, A., LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.
[2] Cai, H., Zheng, V. W., Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge and Data Engineering, 30(9), 1616-1637.
[3] Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., Tang, J. (2019, July). Representation learning for attributed multiplex heterogeneous network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining (pp. 1358-1368).
[4] Chang, S., Han, W., Tang, J., Qi, G. J., Aggarwal, C. C., Huang, T. S. (2015, August). Heterogeneous network embedding via deep architectures. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 119-128). ACM.
[5] Cui, P., Wang, X., Pei, J., Zhu, W. (2018). A survey on network embedding. IEEE Transactions on Knowledge and Data Engineering, 31(5), 833-852.
[6] Dong, Y., Chawla, N. V., Swami, A. (2017, August). metapath2vec: Scalable representation learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 135-144). ACM.
[7] Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., Yin, D. (2019, May). Graph neural networks for social recommendation. In The World Wide Web Conference (pp. 417-426).
[8] Fu, T. Y., Lee, W. C., Lei, Z. (2017, November). Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (pp. 1797-1806). ACM.
[9] Grover, A., Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 855-864). ACM.
[10] Hamilton, W. L., Ying, R., Leskovec, J. (2017). Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.
[11] Hamilton, W., Ying, Z., Leskovec, J. (2017). Inductive representation learning on large graphs. In Advances in neural information processing systems (pp. 1024-1034).
[12] Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D. (2015). Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939.
[13] Huang, Z., Zheng, Y., Cheng, R., Sun, Y., Mamoulis, N., Li, X. (2016, August). Meta structure: Computing relevance in large heterogeneous information networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1595-1604). ACM.
[14] Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., Riedl, J. (1997). GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM, 40(3), 77-87.
[15] Koren, Y., Bell, R., Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, (8), 30-37.
[16] Levy, O., Goldberg, Y. (2014). Neural word embedding as implicit matrix factorization. In Advances in neural information processing systems (pp. 2177-2185).
[17] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119).
[18] Mnih, A., Salakhutdinov, R. R. (2008). Probabilistic matrix factorization. In Advances in neural information processing systems (pp. 1257-1264).
[19] Perozzi, B., Al-Rfou, R., Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 701-710). ACM.
[20] Shi, C., Hu, B., Zhao, W. X., Philip, S. Y. (2018). Heterogeneous information network embedding for recommendation. IEEE Transactions on Knowledge and Data Engineering, 31(2), 357-370.
[21] Shi, C., Kong, X., Huang, Y., Philip, S. Y., Wu, B. (2014). HeteSim: A general framework for relevance measure in heterogeneous networks. IEEE Transactions on Knowledge and Data Engineering, 26(10), 2479-2492.
[22] Shi, C., Zhang, Z., Luo, P., Yu, P. S., Yue, Y., Wu, B. (2015, October). Semantic path based personalized recommendation on weighted heterogeneous information networks. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (pp. 453-462). ACM.
[23] Shi, C., Zhou, C., Kong, X., Yu, P. S., Liu, G., Wang, B. (2012, August). HeteRecom: a semantic-based recommendation system in heterogeneous networks. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1552-1555). ACM.
[24] Sun, Y., Han, J. (2012). Mining heterogeneous information networks: principles and methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery, 3(2), 1-159.
[25] Sun, Y., Han, J. (2013). Mining heterogeneous information networks: a structural analysis approach. ACM SIGKDD Explorations Newsletter, 14(2), 20-28.
[26] Sun, Y., Han, J., Yan, X., Yu, P. S., Wu, T. (2011). PathSim: Meta path-based top-k similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment, 4(11), 992-1003.
[27] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q. (2015, May). Line: Large-scale information network embedding. In Proceedings of the 24th international conference on world wide web (pp. 1067-1077). International World Wide Web Conferences Steering Committee.
[28] Van den Oord, A., Dieleman, S., Schrauwen, B. (2013). Deep content-based music recommendation. In Advances in neural information processing systems (pp. 2643-2651).
[29] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
[30] Wang, D., Cui, P., Zhu, W. (2016, August). Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1225-1234). ACM.
[31] Wang, J., Huang, P., Zhao, H., Zhang, Z., Zhao, B., Lee, D. L. (2018, July). Billion-scale commodity embedding for e-commerce recommendation in alibaba. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining (pp. 839-848). ACM.
[32] Xu, L., Wei, X., Cao, J., Yu, P. S. (2017, February). Embedding of embedding (eoe): Joint embedding for coupled heterogeneous networks. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (pp. 741-749). ACM.
[33] Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., Leskovec, J. (2018, July). Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining (pp. 974-983).
[34] Yu, X., Ren, X., Sun, Y., Gu, Q., Sturt, B., Khandelwal, U., Norick, B., Han, J. (2014, February). Personalized entity recommendation: A heterogeneous information network approach. In Proceedings of the 7th ACM international conference on Web search and data mining (pp. 283-292). ACM.
[35] Yu, X., Ren, X., Sun, Y., Sturt, B., Khandelwal, U., Gu, Q., Norick, B., Han, J. (2013, October). Recommendation in heterogeneous information networks with implicit user feedback. In Proceedings of the 7th ACM conference on Recommender systems (pp. 347-350). ACM.
[36] Zhao, H., Yao, Q., Li, J., Song, Y., Lee, D. L. (2017, August). Meta-graph based recommendation fusion over heterogeneous information networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 635-644). ACM.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52376-
dc.description.abstract在保險業中,當保單的業務員無法繼續服務該保單,該保單就會變成「孤兒保單」,而保險公司就必須替這些孤兒保單指派新的業務員。在臺灣,人壽保險業務員的流動率大,讓顧客保單容易變成孤兒保單,讓保險公司也需常進行業務員的調撥,然而目前指派的業務員並沒有明確的依據與規定,而當新業務員不適合顧客時,就可能造成保險公司顧客流失。因此本篇研究將提出一個顧客與業務員間的推薦系統,來協助保險公司找到適合顧客的好業務員。
本研究透過業務員與顧客的購買關係網路,透過網路表示法(Network Embedding),將顧客與業務員之節點投影於低為度的向量空間中,並基於此向量空間建立推薦系統,推薦顧客未來會與之購買的業務員,並以Hit Ratio@K來評估模型的表現。其中,本研究使用兩種不同的網路表示法學習節點向量,分別為沒有用節點特徵的node2vec與納入節點特徵的GraphSAGE,並比較兩種網路表示方法的表現差異。
實驗結果顯示,未納入節點特徵的node2vec會有較佳的推薦表現。本研究提出的推薦系統,對有經過調撥顧客未來購買保單業務員的Hit ratio@10可以達到0.63。而對於顧客跟非調撥業務員購買的情況,被視為不當調撥的情況,也有不錯的推薦表現,代表本研究的推薦模型可以對那些不當調撥的顧客,在調撥當時就找到顧客未來會與之購買保單的業務員。
zh_TW
dc.description.abstractIn the insurance industry, when an insurance policy agent cannot continue to serve the policy, the policy will become “orphan policy”, and the insurance company must reallocate agents to these orphan policies. In Taiwan, the turnover rate of new insurance agents is high, which makes customer insurance policies easier to become orphan policies, and insurance companies also need to frequently reallocate agents. However, the current agents reallocated have no clear basis and regulations. When a reassigned agent is not suitable for customers, it may cause insurance companies to lose their customers. Therefore, this study will propose a recommendation system between customers and agents to help companies find good agents suitable for customers.
In this study, we establish a purchase relationship network between agents and customers. Through network embedding, the nodes of customers and salespersons in the purchased network are projected into a low-dimension vector space, and a recommendation system is established based on this vector space. And we use Hit Ratio@K to evaluate the performance of the model. This study uses two network embedding algorithm to learn node vectors, namely node2vec and GraphSAGE, and compares the performance differences between the two methods. Experimental results show that node2vec will have better recommendation performance. The recommendation system proposed in this study can reach 0.63 for the Hit ratio@10. As for the situation with the customer who buy the policies with non-reallocation of sales, is considered improper reallocation of the case, also has a good performance.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:13:10Z (GMT). No. of bitstreams: 1
U0001-0608202021332900.pdf: 2863207 bytes, checksum: 5a5848b51daeeaad85ffc30b898124ed (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書...........i
誌謝...........ii
中文摘要...........iii
ABSTRACT...........iv
目錄...........v
圖目錄...........vii
表目錄...........viii
第一章 緒論...........1
1.1 研究背景與動機...........1
1.2 研究目的...........2
第二章 文獻探討...........3
2.1 網路表示法學習(Network Embedding)...........3
2.1.1 基於隨機遊走演算法...........4
2.1.2 基於圖神經網路...........4
2.2 基於網路表示法的推薦應用...........5
第三章 研究方法...........7
3.1 異質資訊網路建立...........7
3.2 資料集...........8
3.3 研究步驟...........13
3.3.1 資料預處理...........13
3.4 網路表示法學習...........17
3.4.1 Node2vec...........17
3.4.2 GraphSAGE...........19
3.5 推薦系統...........21
3.6 模型表現評估...........21
第四章 研究結果...........22
4.1 訓練/測試資料集切分...........22
4.2 實驗設定...........23
4.3 購買關係預測表現...........25
4.4 調撥顧客模型表現...........25
第五章 結論...........29
5.1 研究結果...........29
參考文獻...........30
dc.language.isozh-TW
dc.subject推薦系統zh_TW
dc.subject人壽保險zh_TW
dc.subject業務員zh_TW
dc.subject孤兒保單zh_TW
dc.subject網路表示法zh_TW
dc.subjectlife insuranceen
dc.subjectagentsen
dc.subjectorphan policyen
dc.subjectnetwork embeddingen
dc.subjectrecommendation systemen
dc.title基於異質資訊網路表示法學習之孤兒保單業務員推薦zh_TW
dc.titleOrphan Policy’s Agent Recommendation Based on Heterogeneous Information Network Embedding
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor陳建錦(Chien Chin Chen)
dc.contributor.oralexamcommittee周子元(Dawn Chou)
dc.subject.keyword人壽保險,業務員,孤兒保單,網路表示法,推薦系統,zh_TW
dc.subject.keywordlife insurance,agents,orphan policy,network embedding,recommendation system,en
dc.relation.page34
dc.identifier.doi10.6342/NTU202002582
dc.rights.note有償授權
dc.date.accepted2020-08-07
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
U0001-0608202021332900.pdf
  未授權公開取用
2.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved