請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52375完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張建成(Chien-Cheng Chang) | |
| dc.contributor.author | Yan-Bo Lin | en |
| dc.contributor.author | 林彥博 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:13:09Z | - |
| dc.date.available | 2018-08-28 | |
| dc.date.copyright | 2015-08-28 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-18 | |
| dc.identifier.citation | [1]S. H. KOLLURU, “PRELIMINARY INVESTIGATIONS OF A STOCHASTIC METHOD TO SOLVE ELECTROSTATIC AND ELECTRODYNAMIC PROBLEMS,” M.S. thesis, Dept., ECE., University of Massachusetts Amherst., Amherst, Massachusetts, 2008.
[2]Y. L. LE Coz and R. B. IVERSON, “A STOCHASTIC ALGORITHM FOR HIGH SPEED CAPACITANCE EXTRACTION IN INTEGRATED CIRCUITS,” Solid-State Electronics, Vol. 35, No. 7, pp. 1005-1012, Aug. 1992. [3]J. N. Jere, “An improved floating-random-walk algorithm for solving the multi-dielectric Dirichlet problem,” IEEE Trans. Microwave Theory and Techniques, vol. 41, no. 2, pp. 325 - 329, Feb. 1993. [4]C. Zhang, “Efficient Space Management Techniques for Large-Scale Interconnect Capacitance Extraction With Floating Random Walks,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 10, pp. 1633 - 1637, Oct. 2013. [5]B.V.Budaev, and D.B.Bogy. Application of random walk methods to wave propagation. Q. J. Mech. Appl. Math. 55, 2 (2002), 209-226. [6]B.V.Budaev, and D.B.Bogy. A probabilistic approach to wave propagation and scatter-ing. Radio Science 40 (2005). [7]Doyle, P.G., and Snell, J.L. Random Walks and Electrical Networks. Mathematical Association of America, 1984. [8]E.B.Dynkin, and A.A.Yushkevich. Markov Processes : Theorems and Problems. Plenum press, New York, 1969. [9]J.B.Keller. Geometrical theory of di®raction. J. Opt. Soc. Amer. 52, 2 (Feb 1962),116-130. [10]J. D. Meindl, “Opportunities for gigascale integration,” Solid State Technology, p. 85, Dec. 1987. [11]M. R. Scheinfein, J. C. Liao, 0. A. Palusinski, and J. L. Prince,“Electrical performance of high-speed interconnect systems,” IEEE Trans. Comp.. Hyhrids. Manu$ Technology, vol. CHMT-IO, p. 303,1987. [12]R. B. Wu, and L. L. Wu, “Exploiting structure periodicity and symmetry in capacitance calculations for three-dimensional multi-conductor systems,” IEEE Trans. Microwave Theory Tech., vol. 36, p. 1311, 1988. [13]M. D. R. Beasley, J. H. Pickels, G. d’Amico, L. Beretta, M. Fanelli, G. Giusepetti, A. di. Monaco, G. Gallet, J. P. Gregoire, and M. Morin, “Comparative study of three methods for computing electric fields,” Proc. Inst. Elec. Eng., vol. 126, p. 126, 1979. [14]R. M. Bevensee, “Probabilistic potential theory applied to electrical engineering problems,” Proc. IEEE, vol. 61, p. 423, 1973. [15]A. Haji-Sheikh and E. M. Sparrow, “The solution of heat conduction problems by probability methods,” Trans. ASME Ser. C, J. Hear Transfer, vol. C-89, p. 121, 1967. [16]Y. L. Coz and R. B. Iverson, “A stochastic algorithm for high speed capacitance extraction in integrated circuits,” Solid State Electron., vol. 35, no. 7, pp. 1005–1012, Jul. 1992. [17]S. H. Batterywala, R. Ananthakrishna, Y. Luo, and A. Gyure, “A statistical method for fast and accurate capacitance extraction in the presence of floating dummy fills,” in Proc. 19th Int. Conf. VLSI Design, Jan. 2006, pp. 129–134. [18]T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, “A capacitance solver for incremental variation-aware extraction,” in Proc. ICCAD, Nov. 2008, pp. 662–669. [19]T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, “A hierarchical floating random walk algorithm for fabric-aware 3-D capacitance extraction,” in Proc. ICCAD, Nov. 2009, pp. 752–758. [20]W. Yu, H. Zhuang, C. Zhang, G. Hu, and Z. Liu, “RWCap: A floating random walk solver for 3-D capacitance extraction of VLSI interconnects,” IEEE Trans. Computer-Aided Design, vol. 32, no. 3, pp. 353–366, Mar. 2013. [21]G. Rollins. (2010, Jul.). “Rapid3D 20X performance improvement,” Online presentation of Synopsys, Inc. [Online]. Available: http://www. synopsys.com/Community/UniversityProgram/Pages/Presentations.aspx [22]W. Yu, X. Wang, Z. Ye, and Z. Wang, “Efficient extraction of frequency dependent substrate parasitics using direct boundary element method,” IEEE Trans. Computer-Aided Design, vol. 27, no. 8, pp. 1508–1513, Aug. 2008. [23]N. Bansal, “Randomized algorithms for capacitance estimation,” Indian Instit. Technol. Bombay, Mumbai, India, Tech. Rep., Apr. 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52375 | - |
| dc.description.abstract | 在IC製程不斷微型化的今日,金屬導線間寄生電容準確計算的重要性日益顯著。本篇論文目的在於發展一新隨機算法,希望針對複雜金屬-介電體結構之寄生電容計算,能提供更好的解決方案。藉由參考前人提出之隨機步進演算法,發展出一套新隨機算法,逐一對各種模型進行測試,並與理論值及商用軟體比較。
此新隨機算法在單純兩平行極板且單一介質之模型中,與理論電容值之誤差小於百分之一;在兩平行極板含有垂直邊界金屬導體且單一介質上下對稱之模型中,此新隨機算法之上、下極板電容值的對稱性,明顯優於商用軟體之計算結果,且兩者誤差不大,故可相信在簡單模型中,此新隨機算法之對稱性及準確度可優於商用軟體。觀察各模型之計算結果,此新隨機算法亦可達到極高的準確度。 此新隨機算法相較於有限元素法,在複雜結構中反而能縮短運算時間,提升計算速度,此為新隨機算法最大的優勢。此新隨機算法的另一優勢為擴展至三維模型的簡易性,因為步進的機率分布主要根據夾角與介電係數決定,只要多加上一個角度參數即可擴展至三維模型。 | zh_TW |
| dc.description.abstract | In today’s era which the IC manufacturing process continuously miniaturizing, an accurate calculation of the parasitic capacitance between the metal wires has become increasingly important.
This paper aims to develop a new stochastic algorithm in order to provide a better solution for the parasitic capacitance calculation of complex metal-dielectric structure. By referring to previous random walk algorithm, we have developed a new stochastic algorithm, through which tested various models, as well as compared with theoretical values and commercial software. In the model of simply two parallel plates and a single medium, the error between this new stochastic algorithm and the theoretical capacitance value is less than one percent; in the model of two parallel plates containing vertical boundary metal conductor and a symmetry single medium, through this new randomized algorithm, the symmetry between the capacitances of the upper and underneath plate is significantly better than the calculation results of commercial software, and the error between these two is not large. It can be concluded that in a simple model, the symmetry and accuracy of this new stochastic algorithm are more outstanding than commercial software. Observing the results of the models, this new stochastic algorithm can also achieve extremely high accuracy. Compared to finite element method, in a complex structure, this new stochastic algorithm can efficiently shorten the calculating time and improve the processing speed. This is the biggest advantage of the new stochastic algorithm. Another advantage of this new stochastic algorithm is the simplicity of extending to three-dimensional model. Since the probability distribution is mainly based on the angle and the dielectric constant, by simply adding one angle parameter, it can be expanded to three-dimensional model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:13:09Z (GMT). No. of bitstreams: 1 ntu-104-R02543007-1.pdf: 2079118 bytes, checksum: 9ba21157932e33361fffcd0eaa68d5b8 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 II
誌謝 III 中文摘要 IV ABSTRACT V 目錄 VII 圖目錄 IX 表目錄 XIII Chapter 1 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 隨機步進法文獻回顧 2 1.2.2 寄生電容值演算法文獻回顧 4 1.2.3 提升演算法效率文獻回顧 9 1.3 研究目的 9 1.4 全文概述 10 Chapter 2 第二章 隨機步進與布朗運動 12 2.1 隨機步進的基本概念 12 2.2 隨機步進的基本概念之證明 13 2.2.1 準確性證明 13 2.2.2 隨機性證明 14 2.2.3 調和函數與唯一性原則 15 2.3 布朗運動:近似連續的隨機步進方法 15 2.4 布朗運動:定義與特性 17 Chapter 3 第三章 數值方法 19 3.1 簡介 19 3.2 計算模型 19 3.3 網格生成 28 3.4 計算範圍 29 3.5 演算法 37 3.5.1 演算法步驟 37 3.5.2 下一步進選擇 38 3.5.3 機率分布 39 3.5.4 電容矩陣 49 Chapter 4 第四章 結果與討論 51 4.1 利用格點法求解寄生電容 51 4.2 利用勻向法求解寄生電容 60 Chapter 5 第五章 結論與未來展望 81 5.1 結論 81 5.2 未來展望 81 參考文獻 83 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微型化 | zh_TW |
| dc.subject | 金屬-介電體 | zh_TW |
| dc.subject | 複雜結構 | zh_TW |
| dc.subject | 寄生電容 | zh_TW |
| dc.subject | 隨機步進 | zh_TW |
| dc.subject | metal-dielectrics | en |
| dc.subject | miniaturization | en |
| dc.subject | parasitic capacitance | en |
| dc.subject | complex structure | en |
| dc.subject | random walk | en |
| dc.title | 求解複雜結構金屬-介電體電容之新隨機算法 | zh_TW |
| dc.title | A New Stochastic Solver for Evaluating the Capacitances of Complex-Structured Metal-Dielectrics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張家歐(Chia-Ou Chang),朱錦洲(Chin-Chou Chu),宮春斐(Chun-Fei Gong) | |
| dc.subject.keyword | 微型化,金屬-介電體,複雜結構,寄生電容,隨機步進, | zh_TW |
| dc.subject.keyword | miniaturization,metal-dielectrics,complex structure,parasitic capacitance,random walk, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
