請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52374完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪挺軒(Ting-Hsuan Hung) | |
| dc.contributor.author | Shun-Min Yao | en |
| dc.contributor.author | 姚舜閔 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:13:07Z | - |
| dc.date.available | 2015-08-20 | |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-18 | |
| dc.identifier.citation | 1. 王仁晃。2011。木瓜栽培管理要點。木瓜健康管理技術專刊–行政院農委會高雄區農業改良場技術專刊第1號。1-15頁。
2. 王仁晃、曾敏南、張耀聰、陳昱初、黃德昌。2011。木瓜健康管理。植物保護通報26號。12-16頁。 3. 王惠亮、王金池、邱人璋、孫明賢。1978。臺灣番木瓜輪點病研究初報。植物保護會刊20號。133-140頁。 4. 王德男。1991。台灣木瓜栽培之回顧與展望。台灣果樹之生產及硏究發展硏討會專刊。杜金池、程永雄、顏昌瑞編。台灣省農業試驗所嘉義分所。嘉義市。357-371頁。 5. 王德男。2006。番木瓜。臺灣農家要覽–農作篇(二)。129-136頁。 6. 吉井三惠子。1986。影響木瓜輪點病毒病徵表現與變異之因素。碩士論文。臺灣大學。 7. 包慧俊。2000。木瓜輪點病毒鞘蛋白轉基因木瓜抗病性狀之研究。博士論文。中興大學。135頁。 8. 李文立。2009。木瓜栽培管理手冊。行政院農委會鳳山熱帶園藝試驗分所–農業試驗所特刊140號。 9. 吳秉祜。2012。木瓜畸葉嵌紋病毒感染性選殖株之構築及與木瓜輪點病毒之交互作用。碩士論文。臺灣大學。77頁。 10. 吳建銘。2007。木瓜輪點病毒(SMN、DF系統)與木瓜畸葉嵌紋病毒在不同番木瓜品系上的交互作用。碩士論文。臺灣大學。140頁。 11. 邱獻廣。2012。木瓜輪點病毒兩系統在不同木瓜品種中之病理性差異與交互作用。碩士論文。臺灣大學。48頁。 12. 林正忠。1980。木瓜輪點毒素病之系統及交叉保護。博士論文。臺灣大學。 13. 張玉川、陳紹寧、梁穎、毛倩卓、金磊磊、陳集雙。2010。吊瓜上木瓜畸型花葉病毒的初步研究。中國科技論文在線。http://www.paper.edu.cn/index.php/default/releasepaper/content/201011-340。 14. 張世揚。2000。植物防疫之重要性。苗栗區農情月刊 10: 1-2。 15. 楊小瑩。2008。木瓜畸葉嵌紋病毒的基因體分析及其與木瓜輪點病毒在木瓜上的交互作用關係研究。碩士論文。臺灣大學。79頁。 16. 楊瑞春。2012。木瓜輪點病毒嚴重嵌紋壞疽系統及嚴重嵌紋系統感染性選殖株之構築及不同系統間之比較。碩士論文。臺灣大學。99頁。 17. 農業統計年報。2013。行政院農委會網站。http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx。 18. 廖奕晴。2004。臺灣木瓜輪點病毒系統之變異與鑑別及快速偵測。碩士論文。臺灣大學。107頁 19. 廖翊廷。2006。台灣木瓜畸葉嵌紋病毒全長度基因體序列之解讀。碩士論文。大葉大學。68 頁。 20. 蔡謹安。2014。台灣木瓜輪點病毒系統變異之現況研究。碩士論文。臺灣大學。86頁。 21. 關政平。1990。木瓜輪點病毒之單元抗體的特異性。碩士論文。臺灣大學。127頁。 22. 龔怡蓉。2004。木瓜輪點病毒及木瓜畸葉嵌紋病毒雙重抗性轉基因木瓜之育成及木瓜畸葉嵌紋病毒單株抗體之製備。碩士論文。中興大學。79頁。 23. Abdalla, O. A., and Ali, A. 2012. Genetic diversity in the 3’-terminal region of Papaya ringspot virus (PRSV-W) isolates from watermelon in Oklahoma. Arch. Virol. 157(3): 405-412. 24. Adsuar, J. 1946. Studied on virus disease of papaya (Carica papaya) in Puerto Rico III-Property studies of papaya mosaic virus. Revista Jurídica de la Universidad de Puerto Rico 4: 7-11. 25. Adsuar, J. 1947. Studied on virus disease of papaya (Carica papaya) in Puerto Rico I-Transmission of papaya mosaic. J. Agri. Univ. Puerto Rico 31: 248-256. 26. Ahlquist, P. and Janda, M. 1984. cDNA cloning and in vitro transcription of the complete Brome mosaic virus genome. Mol. Cell. Biol. 4: 2876-2882. 27. Atreya, C. D., Raccah, B., and Pirone, T. P. 1990. A point mutation in the coat protein abolishes aphids transmissibility of a potyvirus. Virology 178: 161-165. 28. Bau, H. J., Kung, Y. J., Raja, J. A., Chan, S. J., Chen, K. C., Chen, Y. K., Wu, H. W., and Yeh, S. D. 2008. Potential threat of a new pathotype of Papaya leaf distortion mosaic virus infecting transgenic papaya resistant of Papaya ringspot virus. Phytopathology 98: 848-856. 29. Capoor, S. P., and Varma, P. M. 1948. A mosaic disease of Carica papaya L. in Bombay province. Current Sci. 17: 265-266. 30. Chen, K. C., Chiang, C. H., Raja, J. A. J., Liu, F. L., Tai, C. H., and Yeh, S. D. 2008. A single amino acid of NIaPro of Papaya ringspot virus determines host specificity for infection of papaya. Mol. Plant-Microbe Interact 21: 1046-1057. 31. Chiang, C. H., and Yeh, S. D. 1997. Infectivity assays of in vitro and in vivo transcription of papaya ringspot virus. Bot. Bull. Acad. Sin. 38: 153-163. 32. Chiu, M. H., Chen, I. H., Baulcombe, D. C., and Tsai, C. H. 2010. The silencing suppressor p25 of Potato virus X interacts with Argonaute 1 and mediates its degradation through the proteasome pathway. Mol. Plant Pathol. 11: 641-649. 33. Conver, R. A. 1962. Virus disease of papaya in Florida. Phytopathology 52(6): 6. 34. Cuellar, W. J., Galvez, M., Fuentes, S., Tugume, J., and Kreuze, J. 2015. Synergistic interactions of begomoviruses with Sweet potato chlorotic stunt virus (genus Crinivirus) in sweet potato (Ipomoea batatas L.). Mol. Plant Pathol. 16: 459-471. 35. DaPalma, T., Doonan, B. P., Trager, N. M., and Kasman, L. M. 2010. A systematic approach to virus-virus interactions. Virus Res. 149: 1-9. 36. De Bokx, J. A. 1965. Hosts and electron microscopy of two papaya viruses. Plant Dis. Rep. 49: 742-746. 37. Dietrich, D., and Maiss, E. 2003. Fluorescent labeling reveals spatial separation of potyvirus population in mixed infected Nicotiana benthamiana plants. J. Gen. Virol. 84: 2871-2876. 38. Gal-On, A. and Shiboleth, Y. M. 2005. Cross protection. In: Natural Resistance Mechanisms of Plants to Virus (Loebenstein, G. and Carr, J. P., eds) pp. 261-288. 39. García-Cano, E., Resende, R. O., Fernández-Muñoz, R., and Moriones, E. 2006. Synergistic interaction between Tomato chlorosis virus and Tomato spotted wilt virus results in breakdown of resistance in tomato. Phytopathology 96: 1263-1269. 40. Gil-Salas, F. M., Peters, J., Boonham, N., Cuadrado, I. M., and Janssen, D. 2011. Yellowing disease in zucchini squash produced by mixed infection of Cucurbit yellowing stunting disorder virus and Cucumber vein yellowing virus. Phytopathology 101: 1365-1372. 41. Gómez P., Sempere, R. N., Elena, S. F., Aranda, M. A. 2009. Mixed infectious of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. J. Virol. 83: 12378-12387. 42. Gonsalves, D., Ishii, M. 1980. Purification serology of Papaya ringspot virus. Phytopathology 70: 1028-1032. 43. Gonsalves, D., Tripathi, S., Carr, J. B. and Suzuki, J. Y. 2010. Papaya ringspot virus. The Plant Health Instructor. doi: 10.1094/PHI-I-2010-1004-01. 44. González-Jara, P., Atencio, H. A., Martínez-García, B., Barajas, D., Tenllado, F., and Díaz-Ruiz, J. R. 2005. A single amino acid mutation in the Plum pox virus helper component-proteinase gene abolishes both synergistic and RNA silencing suppression activities. Phytopathology 95: 894-901. 45. González-Jara, P., Fraile, A., Canto, T., and García-Arenal, F. 2009. The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. J. Virol. 83: 7487-7494. 46. Herold, F., Weibel, J. 1962. Electron microscopic demonstration of Papaya ringspot virus. Virology 18: 302-311. 47. Hung, T. H., Wu, M. L., and Su, H. J. 1999. Development of a rapid method for the diagnosis of citrus greening disease using the polymerase chain reaction. J. Phytopathol. 147: 599-604. 48. Isawa, H., Kuwata, R., Tajima, S., Hoshino, K., Sasaki, T., Takasaki, T., Kobayashi, M., and Sawabe, K. 2012. Construction of an infectious cDNA clone of Culex flavivirus, an insect-specific flavivirus from Culex mosquitoes. Arch Virol. 157(5): 975-979. 49. Kalleshwaraswamy, C. M., and Krishna Kumar, N. K. 2008. Transmission efficiency of Papaya ringspot virus by three aphid species. Phytopathology 98: 541-546. 50. Kawano, S., and Yonaha, T. 1992. The occurrence of Papaya leaf distortion mosaic virus in Okinawa. Tech. Bull. of FFTC 132: 13-23. 51. Kiritani, K., and Su, H. J. 1999. Papaya ring spot, banana bunchy top, and citrus greening in the Asia and Pacific region: occurrence and control strategy. Japn. Agri. Res. Quar. 33: 23-30. 52. Kokkinos, C. D., and Clark, C. A. 2006. Interactions among Sweet potato chlorotic stunt virus and different potyviruses and potyvirus strains infecting sweetpotato in the United States. Plant Dis. 90: 1347-1352. 53. Kung, Y. J., Bau, H. J., Wu, Y. L., Huang, C. H., Chen, T. M., and Yeh, S. D. 2009. Generation of transgenic papaya with double resistance to Papaya ringspot virus and Papaya leaf distortion mosaic virus. Phytopathology 99: 1312-1320. 54. Lana, A. F. 1980. Transmission and properties of viruses isolated from Carica papaya in Nigeria. J. hort. Sci. 55: 191-198. 55. Linder, R. C., Jensen, D. D., and Ikeda, W. 1945. Ringspot: new papaya plunderer. Haw. Farm and Home 8(10): 10-14. 56. Mäkinen, K., and Hafrén, A. 2014. Intracellular coordination of potyviral RNA functions in infection. Front. Plant Sci. 5:110. doi: 10.3389/fpls.2014.00110 57. Mangrauthia, S. K., Parameswari, B., Jain, R. K., and Praveen, S. 2008. Role of genetic recombination in the molecular architecture of Papaya ringspot virus. Biochem Genet 46: 835-846. 58. Mangrauthia, S. K., Shakya, V. P. S., Jain, R. K., and Praveen, S. 2009. Ambient temperature perception in papaya for Papaya ringspot virus interaction. Virus Genes 38: 429-434. 59. Maoka, T., and Hataya, T. 2005. The complete nucleotide sequence and biotype variability of Papaya leaf distortion mosaic virus. Phytopathology 95: 128-135. 60. Mori, M., Mise, K., Kobayashi, K., Okuno, T., Furusawa, I. 1991. Infectivity of plasmids containing brome mosaic virus cDNA linked to the cauliflower mosaic virus 35S RNA promoter. J. Gen. Virol. 72: 243-246. 61. Purcifull, D. E., Edwardson, J. R. 1967. Watermelon mosaic virus: Tubular inclusion in pumpkin leaves and aggregates in leaf extracts. Virology 32: 393-401. 62. Purcifull, D. E., Edwardson, J. R., and Gonsalves, D. 1984. Papaya ringspot virus. CMI/AAB Descriptions of Plant Viruses. No.292. 63. Rentería-Canett, I., Xoconostle-Cázares, B., Ruiz-Medrano, R., and Rivera-Bustamante, R. F. 2011. Geminivirus mixed infection on pepper plants: synergistic interaction between PHYVV and PepGMV. Virol. J. 8: 104. 64. Rochow, W. F. and Ross, A. F. 1955. Virus multiplication in plants doubly infected by potato viruses X and Y. Virology 1: 10-27. 65. Sahana, N., Kaur, H., Tena, F., Jain, R. K., Palukaitis, P., Canto, T., and Praveen, S. 2012. Inhibition of the host proteasome facilitates Papaya ringspot virus accumulation and proteosomal catalytic activity is modulated by viral factor HcPro. PloS one 7(12): e52546. 66. Salvaudon, L., De Moraes, C. M., Mescher, M. C. 2013. Outcomes of co-infection by two potyviruses: implications for the evolution of manipulative strategies. Proc. R. Soc. B. 280: 20122959. 67. Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M., and Belshaw, R. 2010. Viral mutation rates. J. Virol. 84(19): 9733-9748. 68. Sarika, Akram, M., Iquebal, M. A., and Maimuddin, K. 2010. Prediction of MHC binding peptides and epitopes from coat protein of Mungbean yellow mosaic India virus-Ub05. J. Proteomics Bioinform. 3: 173-178. 69. Smith, F. E. V. 1929. Plant disease in Jamaica in 1928. Ann. Rept. Dept. Sci. and Agr. Jamaica 1928: 19. 70. Srinivasan, R., Alvarez, J. M. 2007. Effect of mixed viral infections (potato virus Y-potato leafroll virus) on biology and preference of vectors Myzus persicae and Macrosiphum euphorbiae (Hemiptera: Aphididae). J. Econ. Entomol. 100: 646-655. 71. Srisomchai, T. 1975. Studies on Papaya ringspot virus. NEROA Report 228-232. 72. Stenger, D. C., Young, B. A., Qu, F., Morris, T. J., and French, R. 2007. Wheat streak mosaic virus lacking helper component-proteinase is competent to produce disease synergism in double infections with Maize chlorotic mottle virus. Phytopathology 97: 1213-1221. 73. Story, G. E., Halliwell, R. S. 1969. Inditification of distortion ringspot virus disease of papaya in the Dominican Republic. Plant Dis. Rep. 53: 757-760. 74. Syller, J. 2012. Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol. Plant Pathol. 13(2): 204-216. 75. Tatineni, S., Afunian, M. R., Hilf, M. E., Gowda, S., Dawson, W. O., and Garnsey, S. M. 2009. Molecular characterization of Citus tatter leaf virus historically associated with Meyer lemon trees: complete genome sequence and development of biologically active in vitro transcripts. Phytopathology 99: 423-431. 76. Tena, F., González, I., Doblas, P., Rodríguez, C., Sahana, N., Kaur, H., Tenllado, F., Praveen, S., and Canto, T. 2013. The influence of cis-acting P1 protein and translational elements on the expression of Potato virus Y helper-component proteinase (HCPro) in heterologous systems and its suppression of silencing activity. Mol. Plant Pathol. 14(5): 530-541. 77. Thomas, J. E., Dodman, R. L. 1993. The first record of Papaya ringspot virus-type P from Australia. Aust. Plant Dis. Rep. 53: 757-760. 78. Untiveros, M., Fuentes, S. and Salazar, L. F. 2007. Synergistic interaction of Sweet potato chlorotic stunt virus (Crinivirus) with carla-, cucumo-, ipomo-, and potyviruses infecting sweet potato. Plant Dis. 91: 669-676. 79. Urcuqui-Inchima, S., Haenni, A. L., and Bernardi, F. 2001. Potyvirus proteins: a wealth of functions. Virus Res. 74: 157-175. 80. Vance, V. B. 1991. Replication of potato virus X RNA is altered in coinfections with potato virus Y. Virology 182: 486-494. 81. Visser, J. A. G. M., Hermisson, J., Wagner, G. P., Meyers, L. A., Bagheri-Chaichian, H., Blanchard, J. L., Chao, L., Cheverud, J. M., Elena, S. F., Fontana, W., Gibson, G., Hansen, T. F., Krakauer, D., Lewontin, R. C., Ofria, C., Rice, S. H. Dassow, G., Wagner, A. Lewontin, R. C., and Whitlock, M. C. 2003. Perspective: evolution and detection of genetic robustness. Evolution 57(9): 1959-1972. 82. Voinnet, O., Lederer, C., and Baulcombe, D. C. 2000. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103: 157-167. 83. Waner, J. L. 1994. Mixed viral infections: detection and management. Clin. Microbiol. Rev. 7: 143-151. 84. Yeh, S. D., Gonsalves, D. 1985. Translation of PRSV RNA in vitro: detection of a possible polyprotein that is processed for capsid protein, cylindrical-inclusion protein, and amorphous-inclusion protein. Virol. 143: 260-271. 85. Yeh, S. D., Gonsalves, D., Wang, H. I., Namba, R. and Chiu, R. J. 1988. Control of papaya ringspot virus by cross protection. Plan Dis. 72: 375-380. 86. Yeh, S. D., Jan, F. J., Chiang, C. H., Doong, P. J., Chen, M. C., Chung, P. H. and Bau, H. J. 1992. Complete nucleotides sequence and genetic organization of Papaya ringspot virus RNA. J. Gen. Virol. 73: 2531-2541. 87. Yonaha, T. 1977. Viruses isolated from papaya in Okinawa (Japan) 1. Properties of papaya ringspot virus. Bull. Coll. Agric. Univ. Ryukyus 23: 115-124. 88. Zhang, X. -S., and Holt, J. 2001. Mathematical models of cross protection in the epidemiology of plant-virus disease. Phytopathology 91: 924-934. 89. Zhang, X. -S., Holt, J., and Colvin, J. 2001. Synergism between plant viruses: a mathematical analysis of the epidemiological implications. Plant Pathol. 50: 732-746. 90. Ziebell, H., and Carr, J. P. 2010. Cross protection: a century of mystery. Adv. Virus Res. 76: 211-264. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52374 | - |
| dc.description.abstract | 台灣木瓜產業最大的限制因子為木瓜輪點病毒(Papaya ringspot virus,PRSV),而近年來發現另一木瓜病毒—木瓜畸葉嵌紋病毒(Papaya leaf distortion mosaic virus,PLDMV),不論是病徵、病害生態、分類地位、傳播媒介等,皆與木瓜輪點病毒之畸型系統(PRSV-DF)極為相似,因此被認為極有潛力成為台灣木瓜產業新的限制因子,需要進一步研究。本研究擬藉由先前已建構完成的PLDMV及PRSV-DF感染性選殖株來獲得胞外轉錄的純系病毒RNAs,探討兩病毒在不同木瓜品種上的病理性差異,以及二者在木瓜寄主體內的交互作用關係。本研究以同步、非同步接種兩病毒於不同木瓜品種上,觀察病徵及記錄病徵分級並以即時定量反轉錄聚合酶連鎖反應(Real-time RT-PCR)偵測兩病毒增幅動態,藉以解明兩病毒間的競合關係。病徵嚴重度方面,單獨感染PLDMV或是PRSV-DF在台農二號(TN2)木瓜上均與複合感染相差不大,但是單獨接種PLDMV與非同步接種(先接種PLDMV)的處理組,其病害發展較其他三處理組稍慢。而在紅妃(RL)木瓜上單獨感染PRSV-DF的病徵嚴重度最低,單獨感染PLDMV與複合感染也無明顯差異。在病毒增殖動態中,不論是TN2或RL上兩病毒量主要約在107至108 copy number之間,整體而言,PRSV-DF病毒量高於PLDMV。非同步接種時,後接種之病毒不影響先接種之病毒的增殖情況;同步接種時,兩病毒增殖也不互相干擾。此結果顯示兩病毒之間並無協力作用,兩者可以共存於田間,且以PRSV-DF較為優勢。未來若只專注於對木瓜輪點病的耐抗性,PLDMV將會帶來巨大的挑戰。 | zh_TW |
| dc.description.abstract | Papaya ring spot disease caused by Papaya ringspot virus (PRSV) is a main limiting factor for the papaya industry in Taiwan. Papaya leaf distortion mosaic virus (PLDMV) is a newly emerged virus of papaya. The pathological characteristics of PLDMV such as symptoms, transmission and ecological niche are similar to those of PRSV-deformation strain (PRSV-DF). Therefore, PLDMV is considered to be a potential threat for papaya industry. This study is dedicated to investigate the pathological differences in different papaya cultivars and the interaction in the hosts between PLDMV and PRSV-DF by the transfection using artificial viral RNA transcripts generated in vitro from the PLDMV and PRSV-DF infectious clones constructed in lab previously. The simultaneous and asynchronous inoculation tests in different papaya cultivars are conducted in this study to understand various statuses of co-infection. The results of area under disease progress curve (AUDPC) and dynamic of virus multiplication monitored by the real-time RT-PCR assays will be used to evaluate the interaction between PLDMV and PRSV-DF. Although the symptoms of the TN2 papaya could not be made a distinction between simultaneous infection and single infection of PLDMV or PRSV-DF, the results demonstrated that the symptom progression of PLDMV single inoculation and asynchronous inoculation (PLDMV previous) was slightly slower than other treatments. The symptom severity of PRSV-DF single infected RL papaya was the mildest one among all treatments. Furthermore, there were no significant differences between PLDMV single infection and mix infection in the RL papaya. Both in the TN2 and RL papaya, the amount of PLDMV and PRSV-DF was 107 to 108 copy numbers and PRSV-DF was more than PLDMV generally. The asynchronous tests presented that the later invasive virus did not affect the replication of previous virus. These findings suggest that there is no synergistic interaction of PLDMV with PRSV-DF. It seemed that these two viruses could exist independently in the field and PRSV-DF was more predominant. PLDMV may take big challenges when only focusing on the resistance to PRSV-DF in future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:13:07Z (GMT). No. of bitstreams: 1 ntu-104-R02633003-1.pdf: 3907990 bytes, checksum: 8d0eb3fc8fa002b11231051d07c45750 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 壹、 前言..........................1
貳、 前人研究..........................2 一、 木瓜畸葉嵌紋病毒..........................2 1. 病毒分類地位及分子特性..........................2 2. 木瓜畸葉嵌紋病毒之發現..........................2 3. 病徵、病毒系統及發病生態..........................2 4. 防治方法..........................3 二、 木瓜輪點病..........................4 1. 病毒分類地位及分子特性..........................4 2. 木瓜輪點病之發現..........................4 3. 病徵、病毒系統及發病生態..........................5 4. 防治方法..........................5 三、 感染性選殖株..........................6 四、 病毒交互作用..........................7 參、 材料與方法..........................9 一、 試驗植物之準備..........................9 二、 病毒感染性選殖株之來源與接種..........................9 三、 PLDMV與PRSV-DF之偵測方法..........................10 1. 總核酸萃取..........................10 2. 單步驟聚合酶連鎖反應..........................10 3. PCR產物分析..........................11 四、 PLDMV與PRSV-DF之交互作用..........................11 1. 接種試驗..........................11 2. 病徵分級..........................12 3. 病徵曲線下面積..........................12 4. 即時定量反轉錄聚合酶連鎖反應..........................12 A. RNA反轉錄..........................12 B. Real-time PCR/TaqMan primer/probe操作流程..........................13 肆、 結果..........................14 一、 PLDMV與PRSV-DF之交互作用..........................14 1. 病徵..........................14 2. 病徵曲線下面積(AUDPC)..........................15 3. real-time RT-PCR偵測結果..........................16 伍、 討論..........................18 陸、 參考文獻..........................22 柒、 表..........................31 捌、 圖..........................34 玖、 附錄..........................41 | |
| dc.language.iso | zh-TW | |
| dc.subject | 交互作用 | zh_TW |
| dc.subject | 感染性選殖株 | zh_TW |
| dc.subject | 木瓜輪點病毒畸型系統 | zh_TW |
| dc.subject | 木瓜畸葉嵌紋病毒 | zh_TW |
| dc.subject | Papaya leaf distortion mosaic virus | en |
| dc.subject | Papaya ringspot virus-deformation strain | en |
| dc.subject | infectious clone | en |
| dc.subject | interaction | en |
| dc.title | 木瓜畸葉嵌紋病毒與木瓜輪點病毒畸型系統的感染性選殖株轉錄病毒RNA在不同木瓜品種之交互感染研究 | zh_TW |
| dc.title | Interaction of viral RNAs derived from infectious clones of Papaya leaf distortion mosaic virus (PLDMV) and Papaya ringspot virus-Deformation strain (PRSV-DF) in different papaya cultivars | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 沈湯龍(Tang-Long Shen),詹富智(Fuh-Jyh Jan),陳煜焜(Yuh-Kun Chen) | |
| dc.subject.keyword | 木瓜輪點病毒畸型系統,木瓜畸葉嵌紋病毒,感染性選殖株,交互作用, | zh_TW |
| dc.subject.keyword | Papaya ringspot virus-deformation strain,Papaya leaf distortion mosaic virus,infectious clone,interaction, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
