Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52362
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韓仁毓(Jen-Yu Han)
dc.contributor.authorTsung-Hsien Juanen
dc.contributor.author阮宗憲zh_TW
dc.date.accessioned2021-06-15T16:12:49Z-
dc.date.available2017-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citationBarnes, N., and Loy, G., 2006. Real-Time Regular Polygonal Sign Detection (Vol. 25). Springer Berlin Heidelberg.6.
Barnes, N., and Zelinsky, A., 2004. Real-time radial symmetry for speed sign detection. In Intelligent Vehicles Symposium, 2004 IEEE. pp. 566-571.
Benallal, M., and Meunier, J., 2003. Real-time color segmentation of road signs. In Electrical and Computer Engineering, 2003. Canadian Conference on vol.1823. pp. 1823-1826
Cardani, D., 2001. Adventures in HSV space. Laboratorio de Robótica, Instituto Tecnológico Autónomo de Méxic.
Chang, C. C. and C. J. Lin, LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. last access: 2015.07.21
Cortes, C., and Vapnik, V., 1995. Support-vector networks. Machine learning, 20(3). pp. 273-297.
Duda, R. O., and Hart, P. E., 1972. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM, 15(1). pp. 11-15
Fleyeh, H., 2006. Shadow And Highlight Invariant Colour Segmentation Algorithm For Traffic Signs. In Cybernetics and Intelligent Systems, 2006 IEEE Conference on. pp. 1-7.
Garcia-Garrido, M. A., Ocana, M., Llorca, D. F., Sotelo, M. A., Arroyo, E., and Llamazares, A., 2011. Robust traffic signs detection by means of vision and V2I communications. In Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Conference on. pp. 1003-1008.
Groger, G.; Kolbe, T. H.; Czerwinski, A. & Nagel, C., 2008. OpenGIS City Geography Markup Language (CityGML) Encoding Standard, Tech. Report No. OGC-08-007r1, v1.0.0, Open Geospatial Consortium Inc.
Gonzalez, A., Garrido, M. A., Llorca, D. F., Gavilan, M., Fernandez, J. P., Alcantarilla, P. F., Parra, I., Herranz, F., Bergasa, L. M., Sotelo, M. A., and Revenga de Toro, P., 2011. Automatic Traffic Signs and Panels Inspection System Using Computer Vision. Intelligent Transportation Systems, IEEE Transactions on, 12(2). pp. 485-499.
Greenhalgh, J., and Mirmehdi, M., 2012. Real-Time Detection and Recognition of Road Traffic Signs. Intelligent Transportation Systems, IEEE Transactions on, 13(4). pp. 1498-1506.
Hammoudi, K., and Mc Donald, J., 2013. Design, Implementation and Simulation of an Experimental Multi-Camera Imaging System for Terrestrial and Multi-Purpose Mobile Mapping Platforms: A Case Study. In Trans Tech Publications, the International Conference on Optimization of the Robots Vol. 332, pp. 139-144.
Hazelhoff, L., Creusen, I., and De With, P. H., 2012. Robust detection, classification and positioning of traffic signs from street-level panoramic images for inventory purposes. In Applications of Computer Vision (WACV), 2012 IEEE Workshop on. pp. 313-320.
Hu, M. K., 1962. Visual pattern recognition by moment invariants. Information Theory, IRE Transactions on, 8(2), 179-187.
Huang, J. J., Huawei, L., Zhilin, W., Tao, M., and Yan, S., 2013. Robust lane marking detection under different road conditions. In Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on. pp. 1753-1758.
Hoferlin, B., and Zimmermann, K., 2009. Towards reliable traffic sign recognition. In Intelligent Vehicles Symposium, 2009 IEEE. pp. 324-329.
Kheyrollahi, A., and Breckon, T., 2012. Automatic real-time road marking recognition using a feature driven approach. Machine Vision and Applications, 23 (1). pp. 123-133.
Lafuente-Arroyo, S., Garcıa-Dıaz, P., Acevedo-Rodrıguez, F., Gil-Jiménez, P., and Maldonado-Bascón, S., 2004. Traffic sign classification invariant to rotations using support vector machines. Proceedings of Advabced Concepts for Intelligent Vision Systems, Brussels, Belgium.
Lee, J. H., Young-Woo, S., and Wettergreen, D., 2013. Kernel-based tracking for improving sign detection performance. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. pp. 4388-4393.
Li, Y. C., Kezhong, H., and Peifa, J., 2007. Road Markers Recognition Based on Shape Information. In Intelligent Vehicles Symposium, 2007 IEEE. pp. 117-122.
Lin, C., Pan, S., Zhang, F., Li, M., and Ke, B., 2011. A Method of Traffic Sign Detecting Based on Color Similarity. In Measuring Technology and Mechatronics Automation (ICMTMA), 2011 Third International Conference on. pp. 123-126.
Lorsakul, A., and Suthakorn, J., 2007. Traffic sign recognition for intelligent vehicle/driver assistance system using neural network on OpenCV. In The 4th International Conference on Ubiquitous Robots and Ambient Intelligence.
Loy, G., and Zelinsky, A., 2003. Fast radial symmetry for detecting points of interest. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(8). pp. 959-973.
Maldonado-Bascon, S., Lafuente-Arroyo, S., Gil-Jimenez, P., Gomez-Moreno, H., and Lopez-Ferreras, F., 2007. Road-Sign Detection and Recognition Based on Support Vector Machines. Intelligent Transportation Systems, IEEE Transactions on, 8(2). pp. 264-278.
Mallot, H., Bülthoff, H. H., Little, J. J., and Bohrer, S., 1991. Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biological Cybernetics, 64(3). pp. 177-185.
McCulloch, W., and Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4). pp. 115-133.
Mikhail, E. M., Bethel, J. S., and McGlone, J. C., 2001. Introduction to modern photogrammetry. New York: Wiley. 471 p
Mogelmose, A., Trivedi, M. M., and Moeslund, T. B., 2012. Vision-Based Traffic Sign Detection and Analysis for Intelligent Driver Assistance Systems: Perspectives and Survey. Intelligent Transportation Systems, IEEE Transactions on, 13(4). pp. 1484-1497.
Moutarde, F., Bargeton, A., Herbin, A., and Chanussot, L., 2007. Robust on-vehicle real-time visual detection of American and European speed limit signs, with a modular Traffic Signs Recognition system. In Intelligent Vehicles Symposium, 2007 IEEE. pp. 1122-1126.
Noda, M., and Takahashi, T., 2008. Recognition of Road Markings from In-Vehicle Camera Images by a Generative Learning Method. In IEICE 2008/10 PRMU Conference/Symposium/Workshop/Colloquim
Overett, G., and Petersson, L., 2011. Large scale sign detection using HOG feature variants. In Intelligent Vehicles Symposium (IV), 2011 IEEE. pp. 326-331.
Prieto, M. S., and Allen, A. R., 2009. Using self-organising maps in the detection and recognition of road signs. Image and vision computing, 27(6). pp. 673-683.
Sebsadji, Y., Tarel, J. P., Foucher, P., and Charbonnier, P., 2010. Robust road marking extraction in urban environments using stereo images. In Intelligent Vehicles Symposium (IV), 2010 IEEE. pp. 394-400.
Shoba, E., and Suruliandi, A., 2013. Performance analysis on road sign detection, extraction and recognition techniques. In Circuits, Power and Computing Technologies (ICCPCT), 2013 International Conference on. pp. 1167-1173.
Soheilian, B., Paparoditis, N., and Vallet, B., 2013. Detection and 3D reconstruction of traffic signs from multiple view color images. ISPRS Journal of Photogrammetry and Remote Sensing, 77(0). pp. 1-20.
SVS-VISTEK, 2015. Factsheet eco 445CVGE – SVS-VISTEK, URL: < https://www.svs-vistek.com/en/svcam-cameras/svs-svcam-factsheet.php?id=eco445CVGE&type=cameras&lang=en> (last date accessed: 15 June 2015).
Timofte, R., Zimmermann, K., and Luc Van, G., 2009. Multi-view traffic sign detection, recognition, and 3D localisation. In Applications of Computer Vision (WACV), 2009 Workshop on. pp. 1-8.
Topcon, 2015. GR-3, URL: <http://www.topcon.co.jp/en/positioning/products/pdf/gr-3_e.pdf> (last date accessed: 15 June 2015)
Ubong-Lydia, J., Chee Siong, T., and Giap Weng, N., 2008. A comparison of RGB and HSI color segmentation in real - time video images: A preliminary study on road sign detection. In Information Technology, International Symposium on, pp. 1-6.
Wang, K. C. P., Hou, Z., and Gong, W., 2010. Automated Road Sign Inventory System Based on Stereo Vision and Tracking. Computer-Aided Civil and Infrastructure Engineering, 25(6). pp. 468-477.
Wolf, P. R., and Dewitt, B. A., 2000. Elements of photogrammetry: With applications in GIS. 3rd edition. Boston: McGraw-Hill. 608 p.
Yang, S., Wu, X., and Miao, Q., 2011. Road-sign segmentation and recognition in natural scenes. In Signal Processing, Communications and Computing (ICSPCC), 2011 IEEE International Conference on. pp. 1-4.
Yanlei, G., Yendo, T., Tehrani, M. P., Fujii, T., and Tanimoto, M., 2011. Traffic sign detection in dual-focal active camera system. In Intelligent Vehicles Symposium (IV), 2011 IEEE. pp. 1054-1059.
Zhang, K., Sheng, Y., and Li, J., 2012. Automatic detection of road traffic signs from natural scene images based on pixel vector and central projected shape feature. Intelligent Transport Systems, IET, 6(3). pp. 282-291.
交通部,2003,公路養護手冊。交通部公路總局,臺北,臺灣。
交通部,2014,102年道路長度及橋梁座數概況。URL: <http://www.motc.gov.tw/ch-/home.jsp?id=64&parentpath=0,6> (last date accessed: 15 June 2015)
交通部公路總局,2014,中華民國102年交通部公路總局統計年報。交通部,臺北,臺灣
黃維信,董基良,林志勇,許峻嘉,黃臣鴻,李明德,陳一昌,許書耕,張昭芸,黃俊豪,2013,公路養護巡查作業效率提升之研究。交通部運輸研究所,臺北,臺灣。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52362-
dc.description.abstract交通標誌與標線為公路養護工程中重要的項目之一,但目前在巡查作業上多仰賴人工進行,導致公路巡查效率不彰且資料更新緩慢。本研究發展以影像為基礎之標誌標線自動化辨識及測繪技術,以複合式門檻建立適應戶外環境之候選物偵測方法,接著以具尺度、平移及旋轉不變性之特徵進行形狀分類再透過支持向量機辨識標誌圖案內容,完成辨識後以時間連續性與成像幾何為依據將針對相同標誌標線之連續辨識影像分段,最後以空間前方交會解算標誌標線之物空間坐標。由實驗結果顯示:在辨識階段中標誌、標線之形狀分類正確率以獨立個數計皆可達100%;以影像張數計則可個別達98.2 %與99.7 %,標誌之圖案辨識正確率以獨立個數計可達95.0 %;以影像張數計可達89.4 %,並且於日、夜間皆能獲得穩定的成果。而藉由物件追蹤能改正分類錯誤之物件類別並提供基線長足夠之共軛像對以進行空間坐標解算。zh_TW
dc.description.abstractThe maintenance of road signs and markings is an important issue for road user safety. An automatic recognition technique can provide road information in short time, making maintenance tasks more efficient. This study developed an image-based approach for automatic traffic signs and markings recognition and reconstruction. The proposed algorithm is translation-, scale-, and rotation variant, and is thus capable of detecting and recognizing traffic signs and markings in an outdoor environment. The object tracking technique can be used to segment image sequence adaptively and to provide conjugate photos for space intersection. Based on the results from a field experiment, it has been demonstrated that the successful detection rate reached 100 % for traffic signs and 80.9 % for markings. The classification accuracy of shape reached 100 % for both traffic signs and markings, and the recognition accuracy of traffic sign pattern reached 95.0 %. Consequently, an image-based automatic recognition and reconstruction of traffic signs and markings is achieved by algorithm proposed in this study.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:12:49Z (GMT). No. of bitstreams: 1
ntu-104-R02521113-1.pdf: 9398190 bytes, checksum: f83449c01639e70abe2b57a99ac84df3 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 I
謝誌 II
摘要 III
Abstract IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究背景 2
1-3 研究動機及目的 5
1-4 論文架構 6
第二章 文獻回顧 7
2-1 影像基礎之候選物偵測 7
2-1.1 基於顏色之方法 7
2-1.2 基於形狀之方法 11
2-2 影像基礎之標誌標線物件辨識 12
2-2.1 形狀分類 12
2-2.2 圖案辨識 14
2-3 影像基礎之標誌標線定位 17
2-4 小結 20
第三章 研究方法 22
3-1 影像前處理 22
3-2 候選物偵測 24
3-2.1 影像二值化 24
3-2.2 群聚分析 24
3-2.3 獨立候選物萃取 26
3-3 標誌標線辨識 27
3-3.1 形狀分類 27
3-3.2 圖案辨識 30
3-4 標誌標線坐標解算 36
3-5 小結 40
第四章 數值實驗分析 41
4-1 實驗配置 41
4-2 候選物偵測成果 42
4-3 形狀分類成果 46
4-3.1 標誌分類成果探討 47
4-3.2 標線分類成果探討 49
4-4 圖案內容辨識成果 50
4-5 物件追蹤成果 53
4-6 坐標解算成果與檢核 58
4-6.1 解算成果 58
4-6.2 成果檢核 60
4-7 運算效能分析 64
4-8 夜間實驗 65
4-9 小結 74
第五章 結論與建議 76
5-1 結論 76
5-2 建議 78
參考文獻 81
dc.language.isozh-TW
dc.subject空間前方交會zh_TW
dc.subject標誌標線辨識zh_TW
dc.subjectDtB向量zh_TW
dc.subject支持向量機zh_TW
dc.subject物件追蹤zh_TW
dc.subjectSign recognitionen
dc.subjectMarking recognitionen
dc.subjectSpace intersectionen
dc.subjectDtB methoden
dc.title以影像為基礎之交通標誌標線自動化辨識與幾何重構zh_TW
dc.titleImage-based Automatic Recognition and Reconstruction of Traffic Signs and Markingsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡富安,楊明德,陳柏華
dc.subject.keyword標誌標線辨識,物件追蹤,空間前方交會,支持向量機,DtB向量,zh_TW
dc.subject.keywordSign recognition,Marking recognition,Space intersection,DtB method,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
9.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved