請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52356完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃心豪(Hsin-Haou Huang) | |
| dc.contributor.author | Yen-Chang Chou | en |
| dc.contributor.author | 周彥璋 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:12:41Z | - |
| dc.date.available | 2018-08-25 | |
| dc.date.copyright | 2015-08-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-18 | |
| dc.identifier.citation | [1] R. Critchley, I. Corni, J. A. Wharton, F. C. Walsh, R. J. Wood, and K. R. Stokes, 2013 'A review of the manufacture, mechanical properties and potential applications of auxetic foams,' physica status solidi (b), 250, 1963-1982.
[2] Z. Wang and H. Hu, 2014 'Auxetic materials and their potential applications in textiles,' Textile Research Journal, 84, 1600-1611. [3] Y. Liu and H. Hu, 2010 'A review on auxetic structures and polymeric materials,' Scientific Research and Essays, 1052-1063. [4] Q. Liu, 'Literature review: materials with negative poisson's ratios and potential applications to Aerospace and Defence,' DTIC Document2006. [5] K. E. Evans and A. Alderson, 2000 'Auxetic materials: functional materials and structures from lateral thinking!,' Advanced materials, 12, 617-628. [6] A. Alderson, 1999 'A triumph of lateral thought,' Chem. Ind, 10, 384. [7] A. Alderson and K. Alderson, 2007 'Auxetic materials,' Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221, 565-575. [8] A. Alderson and K. E. Evans, 2002 'Molecular origin of auxetic behavior in tetrahedral framework silicates,' Physical review letters, 89, 225503. [9] A. Bezazi and F. Scarpa, 2009 'Tensile fatigue of conventional and negative Poisson’s ratio open cell PU foams,' International Journal of Fatigue, 31, 488-494. [10] A. Bezazi and F. Scarpa, 2007 'Mechanical behaviour of conventional and negative Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading,' International Journal of fatigue, 29, 922-930. [11] A. Alderson, J. Rasburn, and K. Evans, 2007 'Mass transport properties of auxetic (negative Poisson's ratio) foams,' physica status solidi (b), 244, 817-827. [12] R. Lakes, 1987 'Foam structures with a negative Poisson's ratio,' Science, 235, 1038-1040. [13] J. Schwerdtfeger, F. Schury, M. Stingl, F. Wein, R. Singer, and C. Korner, 2012 'Mechanical characterisation of a periodic auxetic structure produced by SEBM,' physica status solidi (b), 249, 1347-1352. [14] J. Schwerdtfeger, F. Wein, G. Leugering, R. Singer, C. Korner, M. Stingl, et al., 2011 'Design of auxetic structures via mathematical optimization,' Advanced materials, 23, 2650-2654. [15] J. Schwerdtfeger, P. Heinl, R. Singer, and C. Korner, 2010 'Auxetic cellular structures through selective electron‐beam melting,' physica status solidi (b), 247, 269-272. [16] J. Shen, S. Zhou, X. Huang, and Y. M. Xie, 2014 'Simple cubic three‐dimensional auxetic metamaterials,' physica status solidi (b), 251, 1515-1522. [17] J. T. Overvelde and K. Bertoldi, 2014 'Relating pore shape to the non-linear response of periodic elastomeric structures,' Journal of the Mechanics and Physics of Solids, 64, 351-366. [18] S. Babaee, J. Shim, J. C. Weaver, E. R. Chen, N. Patel, and K. Bertoldi, 2013 '3D soft metamaterials with negative Poisson's ratio,' Advanced Materials, 25, 5044-5049. [19] J. T. B. Overvelde, S. Shan, and K. Bertoldi, 2012 'Compaction through buckling in 2D periodic, soft and porous structures: effect of pore shape,' Advanced Materials, 24, 2337-2342. [20] C. Lira, F. Scarpa, and R. Rajasekaran, 2011 'A gradient cellular core for aeroengine fan blades based on auxetic configurations,' Journal of Intelligent Material Systems and Structures, 22, 907-917. [21] A. Alderson, K. Alderson, D. Attard, K. Evans, R. Gatt, J. Grima, et al., 2010 'Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading,' Composites Science and Technology, 70, 1042-1048. [22] Y. Chen, F. Scarpa, Y. Liu, and J. Leng, 2013 'Elasticity of anti-tetrachiral anisotropic lattices,' International Journal of Solids and Structures, 50, 996-1004. [23] A. Bacigalupo and L. Gambarotta, 2014 'Homogenization of periodic hexa-and tetrachiral cellular solids,' Composite Structures, 116, 461-476. [24] A. Lorato, P. Innocenti, F. Scarpa, A. Alderson, K. Alderson, K. Zied, et al., 2010 'The transverse elastic properties of chiral honeycombs,' Composites Science and Technology, 70, 1057-1063. [25] K. Tee, A. Spadoni, F. Scarpa, and M. Ruzzene, 2010 'Wave propagation in auxetic tetrachiral honeycombs,' Journal of Vibration and Acoustics, 132, 031007. [26] J. N. Grima, R. Gatt, and P. S. Farrugia, 2008 'On the properties of auxetic meta‐tetrachiral structures,' physica status solidi (b), 245, 511-520. [27] Y. Ma, F. Scarpa, D. Zhang, B. Zhu, L. Chen, and J. Hong, 2013 'A nonlinear auxetic structural vibration damper with metal rubber particles,' Smart Materials and Structures, 22, 084012. [28] J. Dirrenberger, S. Forest, and D. Jeulin, 2013 'Effective elastic properties of auxetic microstructures: anisotropy and structural applications,' International Journal of Mechanics and Materials in Design, 9, 21-33. [29] J. C. A. Elipe and A. D. Lantada, 2012 'Comparative study of auxetic geometries by means of computer-aided design and engineering,' Smart Materials and Structures, 21, 105004. [30] N. T. Kaminakis and G. E. Stavroulakis, 2012 'Topology optimization for compliant mechanisms, using evolutionary-hybrid algorithms and application to the design of auxetic materials,' Composites Part B: Engineering, 43, 2655-2668. [31] T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, et al., 2012 'Tailored 3D Mechanical Metamaterials Made by Dip‐in Direct‐Laser‐Writing Optical Lithography,' Advanced Materials, 24, 2710-2714. [32] A. Muslija and A. D. Lantada, 2014 'Deep reactive ion etching of auxetic structures: present capabilities and challenges,' Smart Materials and Structures, 23, 087001. [33] K. Alderson, A. Alderson, S. Anand, V. Simkins, S. Nazare, and N. Ravirala, 2012 'Auxetic warp knit textile structures,' physica status solidi (b), 249, 1322-1329. [34] H. Hu, Z. Wang, and S. Liu, 2011 'Development of auxetic fabrics using flat knitting technology,' Textile Research Journal, 0040517511404594. [35] M. Sloan, J. Wright, and K. Evans, 2011 'The helical auxetic yarn–A novel structure for composites and textiles; geometry, manufacture and mechanical properties,' Mechanics of Materials, 43, 476-486. [36] J. R. Wright, M. K. Burns, E. James, M. R. Sloan, and K. E. Evans, 2012 'On the design and characterisation of low-stiffness auxetic yarns and fabrics,' Textile Research Journal, 82, 645-654. [37] P. V. Pikhitsa, M. Choi, H. J. Kim, and S. H. Ahn, 2009 'Auxetic lattice of multipods,' physica status solidi (b), 246, 2098-2101. [38] C. Coulais, J. T. Overvelde, L. A. Lubbers, K. Bertoldi, and M. van Hecke, 2014 'Discontinuous Buckling of Wide Beams and Metabeams,' arXiv preprint arXiv:1410.6016, [39] J. Shim, C. Perdigou, E. R. Chen, K. Bertoldi, and P. M. Reis, 2012 'Buckling-induced encapsulation of structured elastic shells under pressure,' Proceedings of the National Academy of Sciences, 109, 5978-5983. [40] J. Shim, S. Shan, A. Košmrlj, S. H. Kang, E. R. Chen, J. C. Weaver, et al., 2013 'Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials,' Soft Matter, 9, 8198-8202. [41] A. Lazarus and P. M. Reis, 2015 'Soft actuation of structured cylinders through auxetic behavior,' Advanced Engineering Materials, [42] G. J. Murray and F. Gandhi, 2013 'Auxetic honeycombs with lossy polymeric infills for high damping structural materials,' Journal of Intelligent Material Systems and Structures, 1045389X13480569. [43] W. Miller, C. Smith, F. Scarpa, H. Abramovich, and K. Evans, 'Multifunctional Chiral Negative Poisson’s ratio (Auxetic) Honeycomb Cores with Embedded Piezo-ceramic Patches,' [44] H. Abramovitch, M. Burgard, L. Edery-Azulay, K. Evans, M. Hoffmeister, W. Miller, et al., 'Sensing and actuation of smart chiral honeycombs,' in The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, 2008, pp. 693506-693506-7. [45] S. Iyer, M. Alkhader, and T. Venkatesh, 2015 'Electromechanical behavior of auxetic piezoelectric cellular solids,' Scripta Materialia, 99, 65-68. [46] W. A. Smith, 'Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson's ratio,' in Ultrasonics Symposium, 1991. Proceedings., IEEE 1991, 1991, pp. 661-666. [47] J. Ko, Y. Cho, S. Bhullar, and M. B.-G. Jun, 'Fabrication and Characterization of Novel Stretchable Force Sensor Using Melt Electrospinning,' [48] M. N. Ali and I. U. Rehman, 2011 'An Auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer; development and in vitro mechanical analysis,' Journal of Materials Science: Materials in Medicine, 22, 2573-2581. [49] T. Themistocleous, 2013 'Modelling, Simulation and Verification of Pneumatically Actuated Auxetic Systems,' [50] J. Smardzewski, R. Kłos, and B. Fabisiak, 2013 'Design of small auxetic springs for furniture,' Materials & Design, 51, 723-728. [51] J. Smardzewski, D. Jasińska, and M. Janus-Michalska, 2014 'Structure and properties of composite seat with auxetic springs,' Composite Structures, 113, 354-361. [52] M. Taylor, L. Francesconi, M. Gerendas, A. Shanian, C. Carson, and K. Bertoldi, 2014 'Low Porosity Metallic Periodic Structures with Negative Poisson's Ratio,' Advanced Materials, 26, 2365-2370. [53] X. N. Liu, G. K. Hu, G. L. Huang, and C. T. Sun, 2011 'An elastic metamaterial with simultaneously negative mass density and bulk modulus,' Applied Physics Letters, 98, 251907. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52356 | - |
| dc.description.abstract | 在這篇論文中,我們設計了一種能展現出負波松比的結構,並且詳述設計的規則與方法;之後此結構的實體也由3D列印技術製作出來,並進行壓縮試驗,由於結構的非對稱性,我們進行了不同方向的壓縮試驗,且觀察到了非等向性;除了壓縮的荷重與位移之外,結構的變形也由攝影機錄製,而錄製的影像則使用影像量測軟體ImageJ進行分析;另外我們也以軟體Abaqus 6.12製作了有限元素模型與實驗比較,再以模型研究實驗難以觀察的結構內部的變形,然後藉由調整模型材料與幾何參數進行參數研究,探討波松比、等效應力、孔隙比與幾何間的關係,最後再討論此結構的可能應用與未來研究方向。 | zh_TW |
| dc.description.abstract | In this thesis, we designed a structure that can achieve negative Poisson’s ratio (auxeticity). The design rules and procedures were developed. The structure is studied experimentally by compressing a 3D printed specimen. Due to the complex geometry of the structure, compression test of different load direction were performed and anisotropic behavior is observed. Besides compression force and displacement, deformed shape is recorded by camera and the video was analyzed by image measurement software ImageJ. Also, a model was built by finite element software Abaqus 6.12 to compare with experiment. Then we studied the deformation inside the structure by finite element (FE) model because it’s hard to observe the internal deformation in experiment. Next, parametric study was performed by changing material setting and structure geometry in FEM model. The relation between Poisson’s ratio, effective stress, porosity and geometry is investigated. Finally, the possible application and future research are discussed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:12:41Z (GMT). No. of bitstreams: 1 ntu-104-R02525020-1.pdf: 3833424 bytes, checksum: 0663bc138524d0b1f9cd3b55bef36637 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | ACKNOWLEDGMENT ii
ABSTRACT iii Table of Content iv List of Figures v List of Tables xi Chapter 1 Introduction 1 1-1. Motivation and Background 1 1-2. Literature Review 1 1-3. Research Methods 23 1-4. Thesis Structure 24 Chapter 2 Auxetic Structure 25 Chapter 3 Experiment 37 Chapter 4 Finite Element Model 47 4-1. Surface Nodes 51 4-2. Surface Cube Center Nodes 67 4-3. Middle Cube Center Nodes 73 Chapter 5 Parametric Study 76 Chapter 6 Conclusions & Future works 94 6-1. Conclusions 94 6-2. Future Research 95 Reference 101 Appendix A 107 Appendix B 110 Appendix C 114 | |
| dc.language.iso | en | |
| dc.subject | 軟性結構 | zh_TW |
| dc.subject | 負波松比 | zh_TW |
| dc.subject | 細胞增大 | zh_TW |
| dc.subject | 3D列印 | zh_TW |
| dc.subject | 有限元素模型 | zh_TW |
| dc.subject | 3D printing | en |
| dc.subject | Negative Poisson’s ratio | en |
| dc.subject | Soft structure | en |
| dc.subject | Finite Element Model | en |
| dc.subject | Auxetic | en |
| dc.title | 以螺旋晶體設計負波松比材料 | zh_TW |
| dc.title | Auxetic Material Design Using Chiral Lattice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 施文彬(Wen-Pin Shih),宋家驥(Chia-Chi Sung),吳文中(Wen-Jong Wu) | |
| dc.subject.keyword | 負波松比,細胞增大,3D列印,有限元素模型,軟性結構, | zh_TW |
| dc.subject.keyword | Negative Poisson’s ratio,Auxetic,3D printing,Finite Element Model,Soft structure, | en |
| dc.relation.page | 119 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
