請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52342
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李瑞庭 | |
dc.contributor.author | Tsung-Hao Chang | en |
dc.contributor.author | 張宗浩 | zh_TW |
dc.date.accessioned | 2021-06-15T16:12:20Z | - |
dc.date.available | 2025-01-01 | |
dc.date.copyright | 2015-09-17 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-18 | |
dc.identifier.citation | [1] Arora, R., Ravindran, B., Latent Dirichlet allocation based multi-document summarization, Proceedings of the Second Workshop on Analytics for Noisy Unstructured Text Data, (2008) 91-97.
[2] Bíró, I., Szabó, J., Benczúr, A.A., Latent Dirichlet allocation in web spam filtering, Proceedings of the 4th International Workshop on Adversarial Information Retrieval on the Web, (2008) 29-32. [3] Blei, D.M., Ng, A.Y., Jordan, M.I., Latent Dirichlet allocation, Journal of Machine Learning Research, 3 (2003) 993-1022. [4] Chang-Sik, C., Dong-Chun, L., Kang-Min, S., Chang-Joon, P., Ji-Hoon, K., Scenario-based approach for blackbox load testing of online game servers, Proceedings of International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, (2010) 259-265. [5] Chang-Sik, C., Kang-Min, S., Chang-Jun, P., Ji-Hoon, K., Online game testing using scenario-based control of massive virtual users, Proceedingss of IEEE 12th International Conference on Advanced Communication Technology, 2 (2010) 1676-1680. [6] Drachen, A., Riley, J., Baskin, S., Klabjan, D., Going out of business: Auction house behavior in the massively multi-player online game glitch, Entertainment Computing, 5 (2014) 219-232. [7] Gaofei, G., Liping, C., Junping, D., The research on topic detection of microblog based on TC-LDA, Proceedings of 15th IEEE International Conference on Communication Technology, (2013) 722-727. [8] Guo, Y., Shen, S., Visser, O., Iosup, A., An analysis of online match-based games, Proceedings of IEEE International Workshop on Haptic Audio Visual Environments and Games, (2012) 134-139. [9] Hingmire, S., Chakraborti, S., Topic labeled text classification: A weakly supervised approach, Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, (2014) 385-394. [10] Hsing-Kuo, P., Kuan-Ta, C., Hong-Chung, C., Game bot detection via avatar trajectory analysis, IEEE Transactions on Computational Intelligence and AI in Games, 2 (2010) 162-175. [11] JARVELIN, K., KEKALAINEN, J., Cumulated gain-based evaluation of IR techniques, ACM Transactions on Information Systems, 20 (2002) 422-446. [12] Khajvand, M., Tarokh, M.J., Recommendation rules for an online game site based oncustomer lifetime value, Proceedings of IEEE 7th International Conference on Service Systems and Service Management, (2010) 1-6. [13] Kim, Y., Shim, K., TWILITE: A recommendation system for Twitter using a probabilistic model based on latent Dirichlet allocation, Information Systems, 42 (2014) 59-77. [14] Lienou, M., Maitre, H., Datcu, M., Semantic annotation of satellite images using latent Dirichlet allocation, IEEE Geoscience and Remote Sensing Letters, 7 (2010) 28-32. [15] Maskeri, G., Sarkar, S., Heafield, K., Mining business topics in source code using latent Dirichlet allocation, Proceedings of the 1st India Software Engineering Conference, (2008) 113-120. [16] McCallum, A., Wang, X., Corrada-Emmanuel, A., Topic and role discovery in social networks with experiments on enron and academic email, Computer Science Department Faculty Publication Series, 30 (2007) 249-272. [17] Mishima, Y., Fukuda, K., Esaki, H., An analysis of players and bots behaviors in MMORPG, Proceedings of IEEE 27th International Conference on Advanced Information Networking and Applications, 40 (2013) 870-876. [18] Moro, S., Cortez, P., Rita, P., Business intelligence in banking: A literature analysis from 2002 to 2013 using text mining and latent Dirichlet allocation, Expert Systems with Applications, 42 (2015) 1314-1324. [19] Newman, D., Chemudugunta, C., Smyth, P., Steyvers, M., Analyzing entities and topics in news articles using statistical topic models, Proceedings of the 4th IEEE International Conference on Intelligence and Security Informatics, (2006) 93-104. [20] Pratanwanich, N., Lio, P., Exploring the complexity of pathway–drug relationships using latent Dirichlet allocation, Computational Biology and Chemistry, 53, Part A (2014) 144-152. [21] Rowe, M., Alani, H., Mining and comparing engagement dynamics across multiple social media platforms, Proceedings of the ACM Conference on Web Science, (2014) 229-238. [22] Shim, K.J., Pathak, N., Ahmad, M.A., DeLong, C., Borbora, Z., Mahapatra, A., Srivastava, J., Analyzing human behavior from multiplayer online game logs: A knowledge discovery approach, IEEE Intelligent Systems, 26 (2011) 85-89. [23] Spasojevic, N., Yan, J., Rao, A., Bhattacharyya, P., LASTA: Large scale topic assignment on multiple social networks, Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2014) 1809-1818. [24] Szell, M., Thurner, S., Measuring social dynamics in a massive multiplayer online game, Social Networks, 32 (2010) 313–329. [25] Vallim, R.M.M., Andrade Filho, J.A., de Mello, R.F., de Carvalho, A.C.P.L.F., Online behavior change detection in computer games, Expert Systems with Applications, 40 (2013) 6258-6265. [26] Yu, J., Mohan, S., Putthividhya, D., Wong, W.-K., Latent Dirichlet allocation based diversified retrieval for e-commerce search, Proceedings of the 7th ACM International Conference on Web Search and Data Mining, (2014) 463-472. [27] Zeng, Y., Zhong, N., Ren, X., Wang, Y., User interests driven web personalization based on multiple social networks, Proceedings of the 4th International Workshop on Web Intelligence & Communities, (2012) 1-4. [28] Zheng, B., McLean, D., Lu, X., Identifying biological concepts from a protein-related corpus with a probabilistic topic model, BMC Bioinformatics, 7:58 (2006). [29] Zhong, E., Fan, W., Yang, Q., User behavior learning and transfer in composite social networks, ACM Transactions on Knowledge Discovery from Data, 8 (2014) 1-32. [30] Zhong, E., Fan, W., Zhu, Y., Yang, Q., Modeling the dynamics of composite social networks, Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2013) 937-945. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52342 | - |
dc.description.abstract | 隨著網路遊戲的日漸熱門,越來越多玩家透過網路遊戲相關的社群媒體,討論遊戲內容或者分享自己的遊戲心得。這些社群媒體上的內容可以提供有用的資訊給遊戲公司以及玩家做參考;然而,這些內容的資料量非常龐大且包含大量無用的資訊。因此,本論文提出一個研究架構,將遊戲論壇及Facebook專業的資料分群成多個主題,並且針對每一個主題,分析其隨時間的演化、情緒分布及跨社群的比較,提供洞見給遊戲公司及玩家。此架構包含四個部分,首先,針對每一討論串取出遊戲相關的字詞形成虛擬文件;接著,修改隱含狄利克雷分布分群方法,加強字詞共同出現的重要性將虛擬文件分群成多個主題,並且將每一主題再依其中字詞的時間戳記分群成數個子主題;然後,計算每一主題及討論串之情緒分布並且找出異常值;最後,分析及比較跨社群的類似主題,提供不同面向的資訊予遊戲公司。實驗結果顯示,我們的研究架構能將相似且相關聯的字詞分群在同一主題中,且主題演化、情緒及跨平台分析之結果,能幫助遊戲公司了解玩家需求及協助玩家了解遊戲玩法的攻略及指引。 | zh_TW |
dc.description.abstract | As online games have become more and more popular recently, more and more players discuss and share their opinions on online game social media. The contents of media are informative and helpful to game companies and players, but they may be overwhelming and contain plenty of noises. Moreover, every social media may provide different aspects of information. Therefore, in this thesis, we propose a framework to cluster the contents in the forum and the Facebook page of an online game into several topics, analyze the evolution of each topic and sentiment distribution, and compare the topics clustered on both media to provide helpful insights for game companies and players. The proposed framework contains four phases. First, we extract game terms from threads to form a virtual document, where a thread contains a question and a sequence of comments about the question. Second, we modify Latent Dirichlet Allocation (LDA) to cluster the virtual documents into latent topics by increasing the importance of co-occurred game terms. For each topic, we further divide it into several sub-topics by considering the timestamp of each game term in the topic. Third, we compute the sentiment distribution of each topic and thread, and find the outliers. Finally, we analyze similar topics found from both social media, which can provide different insights for game companies. The experiment result shows that the proposed framework can cluster similar and relevant game terms together. The topic evolution, sentiment analysis and intermedia analysis can help game companies understand the demand of players, and help players to know the guidelines and tips of playing the game. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:12:20Z (GMT). No. of bitstreams: 1 ntu-104-R02725050-1.pdf: 1144837 bytes, checksum: 0220d9bb6cd8ac8059f1fc96bfc2a5e1 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Table of Contents i
List of Figures ii List of Tables iii Chapter 1 Introduction 1 Chapter 2 Related Work 5 Chapter 3 The Proposed Method 7 3.1 Virtual Documents 8 3.2 Topic Clustering 8 3.3 Sentiment Analysis 11 3.4 Intermedia Analysis 12 Chapter 4 Experiments 15 4.1 Datasets 15 4.2 Performance of Clustering 17 4.3 Topics clustered by J-LDA and LDA 19 4.4 Sentiment Analysis 23 4.4.1 LOL 23 4.4.2 Candy Crush 24 4.5 Intermedia Analysis 25 Chapter 5 Conclusions and Future Work 28 References 31 | |
dc.language.iso | en | |
dc.title | 網路遊戲之跨社群資料探勘 | zh_TW |
dc.title | Mining Online Game Social Intermedia | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許秉瑜,吳怡瑾 | |
dc.subject.keyword | 網路遊戲,跨社群分析,隱含狄利克雷分布,資料探勘, | zh_TW |
dc.subject.keyword | online game,multiple social media,LDA,data mining, | en |
dc.relation.page | 34 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-18 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。