請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52302完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳燕惠 | |
| dc.contributor.author | Shang-Hsun Tsou | en |
| dc.contributor.author | 鄒尚勳 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:11:24Z | - |
| dc.date.available | 2020-09-24 | |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-18 | |
| dc.identifier.citation | 1. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2: 48-58. 2. Lim B, Cream LV, Harvey HA (2013) Update on clinical trials: genetic targets in breast cancer. Adv Exp Med Biol 779: 35-54. 3. Luqmani YA (2005) Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract 14 Suppl 1: 35-48. 4. Saxena M, Stephens MA, Pathak H, Rangarajan A (2011) Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis 2: e179. 5. O'Connor R (2007) The pharmacology of cancer resistance. Anticancer Res 27: 1267-1272. 6. Munoz M, Henderson M, Haber M, Norris M (2007) Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life 59: 752-757. 7. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29: 4741-4751. 8. Calcagno AM, Salcido CD, Gillet JP, Wu CP, Fostel JM, Mumau MD, Gottesman MM, Varticovski L, Ambudkar SV (2010) Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst 102: 1637-1652. 9. Ogretmen B, Safa AR (1997) Expression of the mutated p53 tumor suppressor protein and its molecular and biochemical characterization in multidrug resistant MCF-7/Adr human breast cancer cells. Oncogene 14: 499-506. 10. Mehta K, Devarajan E, Chen J, Multani A, Pathak S (2002) Multidrug-resistant MCF-7 cells: an identity crisis? J Natl Cancer Inst 94: 1652-1654; author reply 1654. 11. Diamanti-Kandarakis E, Bartzis MI, Bergiele AT, Tsianateli TC, Kouli CR (2000) Microsatellite polymorphism (tttta)(n) at -528 base pairs of gene CYP11alpha influences hyperandrogenemia in patients with polycystic ovary syndrome. Fertil Steril 73: 735-741. 12. Glavinas H, Krajcsi P, Cserepes J, Sarkadi B (2004) The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv 1: 27-42. 13. Gottesman MM, Ludwig J, Xia D, Szakacs G (2006) Defeating drug resistance in cancer. Discov Med 6: 18-23. 14. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455: 152-162. 15. Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB (1986) Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47: 381-389. 16. Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I (1987) Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A 84: 265-269. 17. Fairchild CR, Moscow JA, O'Brien EE, Cowan KH (1990) Multidrug resistance in cells transfected with human genes encoding a variant P-glycoprotein and glutathione S-transferase-pi. Mol Pharmacol 37: 801-809. 18. Bentires-Alj M, Barbu V, Fillet M, Chariot A, Relic B, Jacobs N, Gielen J, Merville MP, Bours V (2003) NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene 22: 90-97. 19. Madden MJ, Morrow CS, Nakagawa M, Goldsmith ME, Fairchild CR, Cowan KH (1993) Identification of 5' and 3' sequences involved in the regulation of transcription of the human mdr1 gene in vivo. J Biol Chem 268: 8290-8297. 20. Ogretmen B, Safa AR (1999) Negative regulation of MDR1 promoter activity in MCF-7, but not in multidrug resistant MCF-7/Adr, cells by cross-coupled NF-kappa B/p65 and c-Fos transcription factors and their interaction with the CAAT region. Biochemistry 38: 2189-2199. 21. Kars MD, Iseri OD, Gunduz U, Ural AU, Arpaci F, Molnar J (2006) Development of rational in vitro models for drug resistance in breast cancer and modulation of MDR by selected compounds. Anticancer Res 26: 4559-4568. 22. Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258: 1650-1654. 23. Muredda M, Nunoya K, Burtch-Wright RA, Kurz EU, Cole SP, Deeley RG (2003) Cloning and Characterization of the Murine and Rat mrp1 Promoter Regions. Mol Pharmacol 64: 1259-1269. 24. Manohar CF, Bray JA, Salwen HR, Madafiglio J, Cheng A, Flemming C, Marshall GM, Norris MD, Haber M, Cohn SL (2004) MYCN-mediated regulation of the MRP1 promoter in human neuroblastoma. Oncogene 23: 753-762. 25. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259: 1769-1771. 26. Haynes TA, Filippov V, Filippova M, Yang J, Zhang K, Duerksen-Hughes PJ (2012) DNA damage induces down-regulation of UDP-glucose ceramide glucosyltransferase, increases ceramide levels and triggers apoptosis in p53-deficient cancer cells. Biochim Biophys Acta 1821: 943-953. 27. Pallis M, Russell N (2000) P-glycoprotein plays a drug-efflux-independent role in augmenting cell survival in acute myeloblastic leukemia and is associated with modulation of a sphingomyelin-ceramide apoptotic pathway. Blood 95: 2897-2904. 28. Johnstone RW, Cretney E, Smyth MJ (1999) P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood 93: 1075-1085. 29. Ruefli AA, Smyth MJ, Johnstone RW (2000) HMBA induces activation of a caspase-independent cell death pathway to overcome P-glycoprotein-mediated multidrug resistance. Blood 95: 2378-2385. 30. Pal T, Permuth-Wey J, Betts JA, Krischer JP, Fiorica J, Arango H, LaPolla J, Hoffman M, Martino MA, Wakeley K, Wilbanks G, Nicosia S, Cantor A, Sutphen R (2005) BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer 104: 2807-2816. 31. Dhillon KK, Swisher EM, Taniguchi T (2011) Secondary mutations of BRCA1/2 and drug resistance. Cancer Sci 102: 663-669. 32. Gowen LC, Avrutskaya AV, Latour AM, Koller BH, Leadon SA (1998) BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science 281: 1009-1012. 33. Zhong Q, Chen CF, Li S, Chen Y, Wang CC, Xiao J, Chen PL, Sharp ZD, Lee WH (1999) Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science 285: 747-750. 34. Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15: 2-8. 35. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26: 2157-2165. 36. Balcer-Kubiczek EK, Yin J, Lin K, Harrison GH, Abraham JM, Meltzer SJ (1995) p53 mutational status and survival of human breast cancer MCF-7 cell variants after exposure to X rays or fission neutrons. Radiat Res 142: 256-262. 37. Caamano J, Ruggeri BA, Klein-Szanto AJ (1992) A catalog of p53 alterations in selected human and laboratory animal neoplasms. Prog Clin Biol Res 376: 331-355. 38. Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH, Wang Q, Zambetti GP, Schuetz JD (2001) Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J Biol Chem 276: 39359-39367. 39. Keshelava N, Zuo JJ, Waidyaratne NS, Triche TJ, Reynolds CP (2000) p53 mutations and loss of p53 function confer multidrug resistance in neuroblastoma. Med Pediatr Oncol 35: 563-568. 40. Sturm I, Bosanquet AG, Hermann S, Guner D, Dorken B, Daniel PT (2003) Mutation of p53 and consecutive selective drug resistance in B-CLL occurs as a consequence of prior DNA-damaging chemotherapy. Cell Death Differ 10: 477-484. 41. Bahr O, Wick W, Weller M (2001) Modulation of MDR/MRP by wild-type and mutant p53. J Clin Invest 107: 643-646. 42. El-Deiry WS (2003) The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22: 7486-7495. 43. Yu ST, Chen TM, Tseng SY, Chen YH (2007) Tryptanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells. Biochem Biophys Res Commun 358: 79-84. 44. Kanagasabai R, Krishnamurthy K, Druhan LJ, Ilangovan G (2011) Forced expression of heat shock protein 27 (Hsp27) reverses P-glycoprotein (ABCB1)-mediated drug efflux and MDR1 gene expression in Adriamycin-resistant human breast cancer cells. J Biol Chem 286: 33289-33300. 45. Karin M (1999) How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 18: 6867-6874. 46. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853-6866. 47. Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH (2005) Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 65: 6934-6942. 48. Braeuer SJ, Buneker C, Mohr A, Zwacka RM (2006) Constitutively activated nuclear factor-kappaB, but not induced NF-kappaB, leads to TRAIL resistance by up-regulation of X-linked inhibitor of apoptosis protein in human cancer cells. Mol Cancer Res 4: 715-728. 49. Godwin P, Baird AM, Heavey S, Barr MP, O'Byrne KJ, Gately K (2013) Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol 3: 120. 50. Baldwin AS, Jr. (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14: 649-683. 51. Siebenlist U, Franzoso G, Brown K (1994) Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol 10: 405-455. 52. Webster GA, Perkins ND (1999) Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol 19: 3485-3495. 53. Perkins ND (1997) Achieving transcriptional specificity with NF-kappa B. Int J Biochem Cell Biol 29: 1433-1448. 54. Weisz L, Damalas A, Liontos M, Karakaidos P, Fontemaggi G, Maor-Aloni R, Kalis M, Levrero M, Strano S, Gorgoulis VG, Rotter V, Blandino G, Oren M (2007) Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res 67: 2396-2401. 55. Ryan KM, Ernst MK, Rice NR, Vousden KH (2000) Role of NF-kappaB in p53-mediated programmed cell death. Nature 404: 892-897. 56. Oren M, Rotter V (2010) Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2: a001107. 57. Maiti AK (2012) Genetic determinants of oxidative stress-mediated sensitization of drug-resistant cancer cells. Int J Cancer 130: 1-9. 58. Cook JA, Gius D, Wink DA, Krishna MC, Russo A, Mitchell JB (2004) Oxidative stress, redox, and the tumor microenvironment. Semin Radiat Oncol 14: 259-266. 59. Walsh AC, Feulner JA, Reilly A (2001) Evidence for functionally significant polymorphism of human glutamate cysteine ligase catalytic subunit: association with glutathione levels and drug resistance in the National Cancer Institute tumor cell line panel. Toxicol Sci 61: 218-223. 60. Schuliga M, Chouchane S, Snow ET (2002) Upregulation of glutathione-related genes and enzyme activities in cultured human cells by sublethal concentrations of inorganic arsenic. Toxicol Sci 70: 183-192. 61. Ryter SW, Otterbein LE, Morse D, Choi AM (2002) Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol Cell Biochem 234-235: 249-263. 62. Kensler TW, Wakabayashi N (2010) Nrf2: friend or foe for chemoprevention? Carcinogenesis 31: 90-99. 63. Colas E, Pedrola N, Devis L, Ertekin T, Campoy I, Martinez E, Llaurado M, Rigau M, Olivan M, Garcia M, Cabrera S, Gil-Moreno A, Xercavins J, Castellvi J, Garcia A, Ramon y Cajal S, Moreno-Bueno G, Dolcet X, Alameda F, Palacios J, Prat J, Doll A, Matias-Guiu X, Abal M, Reventos J (2012) The EMT signaling pathways in endometrial carcinoma. Clin Transl Oncol 14: 715-720. 64. Subramaniam D, Ramalingam S, Houchen CW, Anant S (2010) Cancer stem cells: a novel paradigm for cancer prevention and treatment. Mini Rev Med Chem 10: 359-371. 65. Garcia MG, Alaniz LD, Cordo Russo RI, Alvarez E, Hajos SE (2009) PI3K/Akt inhibition modulates multidrug resistance and activates NF-kappaB in murine lymphoma cell lines. Leuk Res 33: 288-296. 66. Amaravadi R, Thompson CB (2005) The survival kinases Akt and Pim as potential pharmacological targets. J Clin Invest 115: 2618-2624. 67. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR (2005) Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 94: 29-86. 68. Hardt O, Wild S, Oerlecke I, Hofmann K, Luo S, Wiencek Y, Kantelhardt E, Vess C, Smith GP, Schroth GP, Bosio A, Dittmer J (2012) Highly sensitive profiling of CD44+/CD24- breast cancer stem cells by combining global mRNA amplification and next generation sequencing: evidence for a hyperactive PI3K pathway. Cancer Lett 325: 165-174. 69. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3: e2888. 70. Iseri OD, Kars MD, Arpaci F, Atalay C, Pak I, Gunduz U (2011) Drug resistant MCF-7 cells exhibit epithelial-mesenchymal transition gene expression pattern. Biomed Pharmacother 65: 40-45. 71. Voulgari A, Pintzas A (2009) Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta 1796: 75-90. 72. Yang HW, Menon LG, Black PM, Carroll RS, Johnson MD (2010) SNAI2/Slug promotes growth and invasion in human gliomas. BMC Cancer 10: 301. 73. Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW, Yang SC, Chan WK, Li KC, Hong TM, Yang PC (2009) p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11: 694-704. 74. Storci G, Sansone P, Trere D, Tavolari S, Taffurelli M, Ceccarelli C, Guarnieri T, Paterini P, Pariali M, Montanaro L, Santini D, Chieco P, Bonafe M (2008) The basal-like breast carcinoma phenotype is regulated by SLUG gene expression. J Pathol 214: 25-37. 75. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266: 807-810. 76. Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H, Sudo S, Ju J, Sakuragi N (2013) Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 32: 3286-3295. 77. Liu Y, Sun J, Lian H, Cao W, Wang Y, He Z (2014) Folate and CD44 receptors dual-targeting hydrophobized hyaluronic acid paclitaxel-loaded polymeric micelles for overcoming multidrug resistance and improving tumor distribution. J Pharm Sci 103: 1538-1547. 78. Ganesh S, Iyer AK, Morrissey DV, Amiji MM (2013) Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials 34: 3489-3502. 79. Choi KY, Chung H, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, Jeong SY (2010) Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31: 106-114. 80. Gu J, Fang X, Hao J, Sha X (2015) Reversal of P-glycoprotein-mediated multidrug resistance by CD44 antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery. Biomaterials 45: 99-114. 81. Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI (1992) Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci U S A 89: 12160-12164. 82. Naor D, Nedvetzki S (2003) CD44 in rheumatoid arthritis. Arthritis Res Ther 5: 105-115. 83. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57-70. 84. Fang XJ, Jiang H, Zhao XP, Jiang WM (2011) The role of a new CD44st in increasing the invasion capability of the human breast cancer cell line MCF-7. BMC Cancer 11: 290. 85. Miletti-Gonzalez KE, Chen S, Muthukumaran N, Saglimbeni GN, Wu X, Yang J, Apolito K, Shih WJ, Hait WN, Rodriguez-Rodriguez L (2005) The CD44 receptor interacts with P-glycoprotein to promote cell migration and invasion in cancer. Cancer Res 65: 6660-6667. 86. Fang XJ, Jiang H, Zhu YQ, Zhang LY, Fan QH, Tian Y (2014) Doxorubicin induces drug resistance and expression of the novel CD44st via NF-kappaB in human breast cancer MCF-7 cells. Oncol Rep 31: 2735-2742. 87. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100: 3983-3988. 88. Li XX, Wang J, Wang HL, Wang W, Yin XB, Li QW, Chen YY, Yi J (2012) Characterization of cancer stem-like cells derived from a side population of a human gallbladder carcinoma cell line, SGC-996. Biochem Biophys Res Commun 419: 728-734. 89. Gudjonsson T, Magnusson MK (2005) Stem cell biology and the cellular pathways of carcinogenesis. APMIS 113: 922-929. 90. Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene 23: 7274-7282. 91. O'Flaherty JD, Barr M, Fennell D, Richard D, Reynolds J, O'Leary J, O'Byrne K (2012) The cancer stem-cell hypothesis: its emerging role in lung cancer biology and its relevance for future therapy. J Thorac Oncol 7: 1880-1890. 92. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R, Jr., Badve S, Nakshatri H (2006) CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8: R59. 93. Li W, Liu C, Tang Y, Li H, Zhou F, Lv S (2011) Overexpression of Snail accelerates adriamycin induction of multidrug resistance in breast cancer cells. Asian Pac J Cancer Prev 12: 2575-2580. 94. Saleh EM, El-Awady RA, Abdel Alim MA, Abdel Wahab AH (2009) Altered expression of proliferation-inducing and proliferation-inhibiting genes might contribute to acquired doxorubicin resistance in breast cancer cells. Cell Biochem Biophys 55: 95-105. 95. Yu ST, Chen TM, Chern JW, Tseng SY, Chen YH (2009) Downregulation of GSTpi expression by tryptanthrin contributing to sensitization of doxorubicin-resistant MCF-7 cells through c-jun NH2-terminal kinase-mediated apoptosis. Anticancer Drugs 20: 382-388. 96. Safa AR, Pollok KE (2011) Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy. Cancers (Basel) 3: 1639-1671. 97. Shim GS, Manandhar S, Shin DH, Kim TH, Kwak MK (2009) Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway. Free Radic Biol Med 47: 1619-1631. 98. Liu YY, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J, Mehendale H, Cabot MC, Li YT, Jazwinski SM (2010) Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol Cancer 9: 145. 99. Olsson E, Honeth G, Bendahl PO, Saal LH, Gruvberger-Saal S, Ringner M, Vallon-Christersson J, Jonsson G, Holm K, Lovgren K, Ferno M, Grabau D, Borg A, Hegardt C (2011) CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers. BMC Cancer 11: 418. 100. Bourguignon LY, Xia W, Wong G (2009) Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates beta-catenin signaling and NFkappaB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J Biol Chem 284: 2657-2671. 101. Weberpals J, Garbuio K, O'Brien A, Clark-Knowles K, Doucette S, Antoniouk O, Goss G, Dimitroulakos J (2009) The DNA repair proteins BRCA1 and ERCC1 as predictive markers in sporadic ovarian cancer. Int J Cancer 124: 806-815. 102. Nugoli M, Chuchana P, Vendrell J, Orsetti B, Ursule L, Nguyen C, Birnbaum D, Douzery EJ, Cohen P, Theillet C (2003) Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications. BMC Cancer 3: 13. 103. Shinoda C, Maruyama M, Fujishita T, Dohkan J, Oda H, Shinoda K, Yamada T, Miyabayashi K, Hayashi R, Kawagishi Y, Fujita T, Matsui S, Sugiyama E, Muraguchi A, Kobayashi M (2005) Doxorubicin induces expression of multidrug resistance-associated protein 1 in human small cell lung cancer cell lines by the c-jun N-terminal kinase pathway. Int J Cancer 117: 21-31. 104. Wang T, Arifoglu P, Ronai Z, Tew KD (2001) Glutathione S-transferase P1-1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J Biol Chem 276: 20999-21003. 105. Furusawa S, Kimura E, Kisara S, Nakano S, Murata R, Tanaka Y, Sakaguchi S, Takayanagi M, Takayanagi Y, Sasaki K (2001) Mechanism of resistance to oxidative stress in doxorubicin resistant cells. Biol Pharm Bull 24: 474-479. 106. Chen PL, Chen YM, Bookstein R, Lee WH (1990) Genetic mechanisms of tumor suppression by the human p53 gene. Science 250: 1576-1580. 107. Maxwell SA, Roth JA (1994) Posttranslational regulation of p53 tumor suppressor protein function. Crit Rev Oncog 5: 23-57. 108. Wosikowski K, Regis JT, Robey RW, Alvarez M, Buters JT, Gudas JM, Bates SE (1995) Normal p53 status and function despite the development of drug resistance in human breast cancer cells. Cell Growth Differ 6: 1395-1403. 109. Ogretmen B, Safa AR (1996) Down-regulation of apoptosis-related bcl-2 but not bcl-xL or bax proteins in multidrug-resistant MCF-7/Adr human breast cancer cells. Int J Cancer 67: 608-614. 110. Ryan JJ, Prochownik E, Gottlieb CA, Apel IJ, Merino R, Nunez G, Clarke MF (1994) c-myc and bcl-2 modulate p53 function by altering p53 subcellular trafficking during the cell cycle. Proc Natl Acad Sci U S A 91: 5878-5882. 111. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC (1993) Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53: 4701-4714. 112. Kwak MK, Kensler TW (2010) Targeting NRF2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol 244: 66-76. 113. Wang R, Tu J, Zhang Q, Zhang X, Zhu Y, Ma W, Cheng C, Brann DW, Yang F (2013) Genistein attenuates ischemic oxidative damage and behavioral deficits via eNOS/Nrf2/HO-1 signaling. Hippocampus 23: 634-647. 114. Oka M, Kounoura K, Narasaki F, Sakamoto A, Fukuda M, Matsuo I, Ikeda K, Tsurutani J, Ikuno N, Omagari K, Mizuta Y, Soda H, Gudas JM, Kohno S (1997) P-glycoprotein is positively correlated with p53 protein accumulation in human colorectal cancers. Jpn J Cancer Res 88: 738-742. 115. Wang Q, Beck WT (1998) Transcriptional suppression of multidrug resistance-associated protein (MRP) gene expression by wild-type p53. Cancer Res 58: 5762-5769. 116. Chin KV, Ueda K, Pastan I, Gottesman MM (1992) Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 255: 459-462. 117. Zastawny RL, Salvino R, Chen J, Benchimol S, Ling V (1993) The core promoter region of the P-glycoprotein gene is sufficient to confer differential responsiveness to wild-type and mutant p53. Oncogene 8: 1529-1535. 118. Lin J, Teresky AK, Levine AJ (1995) Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes of human p53 mutants. Oncogene 10: 2387-2390. 119. Lanyi A, Deb D, Seymour RC, Ludes-Meyers JH, Subler MA, Deb S (1998) 'Gain of function' phenotype of tumor-derived mutant p53 requires the oligomerization/nonsequence-specific nucleic acid-binding domain. Oncogene 16: 3169-3176. 120. Tsou SH, Chen TM, Hsiao HT, Chen YH (2014) A critical dose of doxorubicin is required to alter the gene expression profiles in MCF-7 cells acquiring multidrug resistance. Plos one 121. Berglind H, Pawitan Y, Kato S, Ishioka C, Soussi T (2008) Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination. Cancer Biol Ther 7: 699-708. 122. Nygren P, Larsson R, Gruber A, Peterson C, Bergh J (1991) Doxorubicin selected multidrug-resistant small cell lung cancer cell lines characterised by elevated cytoplasmic Ca2+ and resistance modulation by verapamil in absence of P-glycoprotein overexpression. Br J Cancer 64: 1011-1018. 123. Norberg T, Klaar S, Lindqvist L, Lindahl T, Ahlgren J, Bergh J (2001) Enzymatic mutation detection method evaluated for detection of p53 mutations in cDNA from breast cancers. Clin Chem 47: 821-828. 124. Takahashi RU, Takeshita F, Honma K, Ono M, Kato K, Ochiya T (2013) Ribophorin II regulates breast tumor initiation and metastasis through the functional suppression of GSK3beta. Sci Rep 3: 2474. 125. Labialle S, Gayet L, Marthinet E, Rigal D, Baggetto LG (2002) Transcriptional regulators of the human multidrug resistance 1 gene: recent views. Biochem Pharmacol 64: 943-948. 126. Wang LH, Okaichi K, Ihara M, Okumura Y (1998) Sensitivity of anticancer drugs in Saos-2 cells transfected with mutant p53 varied with mutation point. Anticancer Res 18: 321-325. 127. Chan KT, Lung ML (2004) Mutant p53 expression enhances drug resistance in a hepatocellular carcinoma cell line. Cancer Chemother Pharmacol 53: 519-526. 128. Sosa AJ, Chavez P, Dyke KV (2014) Inibitory effect of tetrandrine and paxlitaxel or doxorubicin on Multi-Drug-Resistant (MDR) cancer cells associated with MDR-ATPase. International Journal of Pharmacotherapy 4: 10. 129. Kim HG, Hien TT, Han EH, Hwang YP, Choi JH, Kang KW, Kwon KI, Kim BH, Kim SK, Song GY, Jeong TC, Jeong HG (2011) Metformin inhibits P-glycoprotein expression via the NF-kappaB pathway and CRE transcriptional activity through AMPK activation. Br J Pharmacol 162: 1096-1108. 130. Kajita M, McClinic KN, Wade PA (2004) Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 24: 7559-7566. 131. Fenouille N, Tichet M, Dufies M, Pottier A, Mogha A, Soo JK, Rocchi S, Mallavialle A, Galibert MD, Khammari A, Lacour JP, Ballotti R, Deckert M, Tartare-Deckert S (2012) The epithelial-mesenchymal transition (EMT) regulatory factor SLUG (SNAI2) is a downstream target of SPARC and AKT in promoting melanoma cell invasion. PLoS One 7: e40378. 132. Roger L, Jullien L, Gire V, Roux P (2010) Gain of oncogenic function of p53 mutants regulates E-cadherin expression uncoupled from cell invasion in colon cancer cells. J Cell Sci 123: 1295-1305. 133. Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, Childs T, Chen J, Li J, Weberpals J, Davey S, Squire J, Park PC, Feilotter H (2012) EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 12: 91. 134. Dhasarathy A, Phadke D, Mav D, Shah RR, Wade PA (2011) The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer. PLoS One 6: e26514. 135. Catalano A, Rodilossi S, Rippo MR, Caprari P, Procopio A (2004) Induction of stem cell factor/c-Kit/slug signal transduction in multidrug-resistant malignant mesothelioma cells. J Biol Chem 279: 46706-46714. 136. Bhat-Nakshatri P, Appaiah H, Ballas C, Pick-Franke P, Goulet R, Jr., Badve S, Srour EF, Nakshatri H (2010) SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype. BMC Cancer 10: 411. 137. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98: 10869-10874. 138. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406: 747-752. 139. Gordon LA, Mulligan KT, Maxwell-Jones H, Adams M, Walker RA, Jones JL (2003) Breast cell invasive potential relates to the myoepithelial phenotype. Int J Cancer 106: 8-16. 140. Walter RB, Raden BW, Hong TC, Flowers DA, Bernstein ID, Linenberger ML (2003) Multidrug resistance protein attenuates gemtuzumab ozogamicin-induced cytotoxicity in acute myeloid leukemia cells. Blood 102: 1466-1473. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52302 | - |
| dc.description.abstract | 癌細胞產生對於單一或是多種化療藥物的抵抗作用稱為多重抗藥性(MDR)。多重抗藥性的發生是化學治療失敗的重要原因,其細胞機制涉及轉運蛋白表現,增強排除藥物至細胞外的功能、並減少藥物進入細胞的量,或藉由變更藥物標的、抑制細胞凋亡程序、增進細胞DNA受損後修復能力、活化解毒與藥物代謝基因來達成。對於多重抗藥性的研究,過去多是探討野生型與多重抗藥性型癌細胞的各種表現差異,但對於發生過程的機轉仍不清楚。本研究利用人類乳癌細胞株MCF-7野生型 (MCF-7/WT) 作為起始,建立一系列對doxorubicin有抗藥性的細胞株,來探討誘發多重抗藥性過程中有哪些基因參與其中? 而其相互關係如何? 本實驗室將MCF-7/WT培養在含1 nM doxorubicin的培養基中,待細胞生長穩定後,增加藥物濃度,以二的次方的doxorubicin濃度篩選具有抗藥性的細胞株稱為MCF-7/ADR-n,n為1 nM的倍數。總共建立了MCF-7/ADR-1、MCF-7/ADR-2、MCF-7/ADR-4、MCF-7/ADR-8、MCF-7/ADR-16、MCF-7/ADR-32、MCF-7/ADR-64、MCF-7/ADR-128、MCF-7/ADR-256、MCF-7/ADR-512、MCF-7/ADR-1024等11個不同抗藥性程度的細胞株。細胞培養的終點止於MCF-7/ADR-1024,其與抗藥型細胞株MCF-7/ADR具有相同程度的抗藥性及P-glycoprotein (P-gp)表現。研究結果發現MCF-7 / ADR-1024和MCF-7 /ADR具有相近的細胞型態與DNA倍體狀態。基因表現方面,MCF-7/ADR-1024和MCF-7/ADR在細胞修復基因p53、BRCA1/2,細胞凋亡相關基因Bcl-2和上皮-間葉轉換(EMT)的上皮特徵基因E-cadherin的基因表表現量皆下降;而解毒酶GST-π與蛋白激酶PKC-α表達皆上升。上皮特徵基因E-cadherin表現下降以及間葉特徵基因N-cadherin、Slug、Twist,與 Vimentin的表現上升,證實抗藥性發生過程中上皮-間葉特性發生轉化。此外,MCF-7/ADR-1024經PI3K / AKT抑製劑wortmannin處理後,上皮-間葉特徵基因Slug, Twist表現量下降及轉運蛋白P-gp表現量下降。MCF-7 / ADR-1024和MCF-7 /ADR有相似的微球體形成能力及癌幹細胞特徵簇群CD44 high/CD24 low。同時,具有相同突變形式的p53基因,兩者皆缺失密碼子127-133。更進一步證實突變型p53參與了抗藥性發生的過程。本研究將MCF-7/ADR中帶有缺失密碼子127-133的突變型p53基因轉殖進入MCF-7/WT野生型,建立MCF-7/del p53細胞株。結果發現MCF-7/del p53能表現轉運蛋白P-gp,並顯著活化MDR-1啟動子。以NF-κB抑制劑cyclosporine處理,MCF-7/del p53對於doxorubicin的敏感性會增加。此外MCF-7/del p53與MCF-7/ADR細胞型態近似;間葉特徵基因Slug、Vimentin表現上升而上皮特徵基因CDH1表現下降。與MCF-7/WT比較,MCF-7/del p53具有高度的遷徙能力,癌幹細胞特徵簇群表現與微球體形成能力增加。因此具缺失密碼子127-133的突變型p53基因可能是藉由活化NF-κB信號傳導及MDR-1啟動子、並影響上皮-間葉轉化與癌幹細胞特徵表達,來參與多重抗藥性的發生。 結論 多重抗藥性發生過程中,在篩選劑量為1.024 μM doxorubicin下,P-gp才得以表現。P-gp的表現與一些相關基因的表現或是突變有關,這些基因如DNA修復基因,抗細胞凋亡基因、代謝解毒基因、上皮-間葉轉化基因等。因此,本論文提出兩種可能的多重抗藥性的建立機制。模式一、篩選自癌幹細胞特徵簇群; 模式二、突變累積導致抗藥性表現。無論模式為何,皆是在1.024 μM doxorubicin處理下才有的變化。藉由篩選自癌幹細胞特徵族群外,p53突變亦參與抗藥性發生,證實突變的累積亦是造成抗藥性發生的原因。因此,針對癌幹細胞特徵或是突變基因作為藥物設計的標的,在未來癌症治療上將有相當助益。 | zh_TW |
| dc.description.abstract | Cellular mechanisms of multidrug resistance (MDR) are related to ABC transporters, apoptosis, antioxidation, drug metabolism, DNA repair and cell proliferation. It remains unclear whether the process of resistance development is programmable. I aimed to study gene expression profiling circumstances in MCF-7 during MDR development. Eleven MCF-7 sublines with incremental doxorubicin resistance were established as a valued tool to study resistance progression. MDR marker P-gp was overexpressed only in cells termed MCF-7/ADR-1024 under the selection dose approaching 1024 nM. MCF-7/ADR-1024 and authentic MCF-7/ADR shared common features in cell morphology and DNA ploidy status. MCF-7/ADR-1024 and authentic MCF-7/ADR showed downregulation of DNA repair genes BRCA1/2 and wild type p53, apoptosis-related gene Bcl-2 and epithelial-mesenchymal transition (EMT) epithelial marker gene E-cadherin; Whereas, detoxifying enzymes glutathione-S transferase-π and protein kinase C-α were up-regulated. The genes involved in EMT mesenchymal formation were also overexpressed, including N-cadherin, vimentin and the E-cadherin transcription repressors Slug, Twist and ZEB1/2. PI3K/AKT inhibitor wortmannin suppressed expression of Slug, Twist and MDR-1. In addition, MCF-7/ADR-1024 cells exerted CSC-like cell surface marker CD44 high/CD24 low and form mammospheres. Mutant p53 with a deletion at codons 127-133 markedly appeared in MCF-7/ADR-1024 and authentic MCF-7/ADR as well. In order to understand if p53 mutation is related to drug resistance development, a del p53-containing construct was transfected into MCF-7/WT to generate the MCF-7/del p53 which stably expressed del p53. Results showed that MCF-7/del p53 acquired resistance to doxorubicin with increased P-gp efflux function. The MDR-1 promoter was significantly activated by external or integrated del p53 using transient expression assay (p < 0.001). Inhibition of NF-κB by cyclosporine sensitized MCF-7/del p53 cells to doxorubicin toxicity. In addition, morphology of MCF-7/del p53 and MCF-7/adr were alike. EMT was observed in MCF-7/del p53 cells with regard to presence of mesenchymal markers Slug and Vimentin and the decrease in epithelial marker CDH1, as well as significant migration ability (p < 0.001). Furthermore, expression of cancer stem cell-like marker CD44 increased, accompanying with mammosphere formation. Altogether, expression of del p53 renders MCF-7/del p53 to acquire doxorubicin resistance characteristics as MCF-7/adr but less effectively. del p53 may be an important factor for the non-invasive MCF-7 to activate NF-κB signaling and MDR-1 promoter and partly attribute to EMT and stem cell-like properties so as to facilitate drug resistance. Conclusion Resistance marker P-gp arises owing to turn on/off or mutation of the genes involving in DNA repair, apoptosis, detoxifying enzymes, EMT and ABC transporters at a turning point (1.024 μM doxorubicin challenge). Behind this point, no obvious alterations were found in most tested genes. Selection for CSC-like cells under this dose may also importantly attribute to propagation of the population presenting invasive properties and drug resistance. Thereby, two models are suggested in the induction of drug resistance. Model 1: Selection for CSC-like cells and model 2: Mutations for gain-of-resistance. The acclamation of mutations facilitates drug resistance development. del p53 may play a role in drug resistance. Drugs designs for targeting the cancer stem cell characteristics or mutated genes involved in drug resistance will be useful in cancer treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:11:24Z (GMT). No. of bitstreams: 1 ntu-104-D97423001-1.pdf: 13129822 bytes, checksum: 77673d5ed3f26fd962a0f3ea24e88dc0 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 I Abstract III Table of Contents VI List of Figures Tables IX Abbreviations XII Chapter 1. Introduction 1 1.1 Multidrug Resistance 2 1.2 Transporters 4 1.2.1 MDR-1 5 1.2.2 MRP-1 7 1.3 Apoptosis 8 1.4 DNA Repair 9 1.5 p53……………….. 10 1.6 NF-κB… 12 1.7 Detoxification 14 1.8 PI3K-AKT 15 1.9 EMT….. 17 1.10 CD44… 18 1.11 CSCs… 19 1.12 Specific aims of the study 20 Chapter 2. Materials and Methods 26 2.1 Antibodies and chemicals 27 2.2 Cell lines and cell culture 29 2.3 MTT assay 30 2.4 RT-PCR 31 2.5 Ploidy composition analysis 32 2.6 Western blot analysis 33 2.7 Flow cytometry analysis of MDR-1 function 34 2.8 Full-length p53 cDNA sequencing 35 2.9 Detection of intracellular ROS levels 36 2.10 Wound-healing assay 37 2.11 Flow cytometry for cancer stem cells markers CD44 and CD24 38 2.12 Colony formation assay 39 2.13 Construction of the plasmid pcDNA3.1 containing del p53 and establishment of the del p53 stably expressing cell line MCF-7/del p53 40 2.14 Construction of the expression vector containing MDR-1 promoter 42 2.15 Transient expression assay 43 2.16 Statistical analysis 44 Chapter 3.Results 45 3.1 Establishment of a series of MCF-7 cell lines with incremental strength of resistance to doxorubicin 46 3.2 Gene expression and DNA ploidy status of MCF-7/WT, MCF-7/ADR-1024 and MCF-7 /ADR cell lines 47 3.3 The MDR-1 gene is expressed in MCF-7/ADR-1024 and the MRP-1 gene is mainly expressed in MCF-7/ADR-128 and MCF-7/ADR-256 48 3.4 Low expression of Bcl-2 in doxorubicin-resistant cells 49 3.5 Repair genes BRCA1/2 and wild type p53 are down-regulated in the development of doxorubicin resistance 50 3.6 Involvement of detoxifying genes Nrf-2, GST-π and PKC-α in doxorubicin-induced resistance 52 3.7 Epithelial to mesenchymal transition in MCF-7/ADR-1024 54 3.8 Association of PI3K/AKT pathway with EMT properties and drug resistance in MCF-7/ADR-1024 55 3.9 Presence of cancer stem cell-like properties upon doxorubicin selection 57 3.10 Epithelial-mesenchymal transition and tumorigenic properties in MCF-7/WT treated with high dose doxorubicin. 59 3.11 Establishment of the MCF-7/del p53 cell line stably expressing del p53 60 3.12 MCF-7/del p53 cells acquire resistance to doxorubucin 61 3.13 del p53-mediated P-gp function is associated with MDR-1 promoter activation and NF-κB expression 63 3.14 Epithelial-mesenchymal transition is induced in MCF-7/del p53 cells 65 3.15 MCF-7/del p53 carrying cancer stem cell-like properties 66 Chapter 4. Discussion 96 4.1 A critical dose of doxorubicin is required to alter the gene expression profiles in MCF-7 cells acquiring multidrug resistance 97 4.2 Mutated p53 gene with 21 bp deletion confers susceptibility to gain-of-function for multidrug resistance in MCF-7 cells 104 4.3 Conclusion 111 Figures Tables Figure 1-1. Cellular mechanisms of multidrug resistance. 21 Figure 1-2. The phenotypic effects of TP53 mutations. 22 Figure 1-3. Schematic representation of EMT-related genes expression pattern in drug resistant cells. 23 Figure 1-4. EMT results in cells with stem-like properties. 24 Figure 1-5. The cancer stem cell hypothesis. 25 Figure 3-1. The resistance index in doxorubicin-resistant MCF-7 cell lines. 67 Figure 3-2 Differential gene expression and DNA ploidy status of the MCF-7 derived cell lines. 68 Figure 3-3. ABC transports are upregulated in the induction of drug resistance. 70 Figure 3-4. Expression profiles of apoptosis-related genes in the series of resistant cells. 71 Figure 3-5. Repair genes BRCA1/2 and wild type p53 are downregulated in the development of doxorubicin resistance. 72 Figure3- 6. Detoxifying genes Nrf-2, GST-π and PKC-α are associated with doxorubicin-induced resistance. 75 Figure 3-7. EMT processes in the induction of doxorubicin resistance. 77 Figure3- 8. Association of PI3K/AKT pathway with EMT properties and drug resistance. 79 Figure 3-9. Expression of CD44 isoforms is associated with doxorubicin-induced resistance. 80 Figure 3-10. Presence of cancer stem cell-like properties upon doxorubicin selection. 82 Figure 3-11. Epithelial-mesenchymal transition and tumorigenic property could be induced in the transient treatment with high dose of doxorubicin. 83 Figure 3-12. Cloning of MCF-7/del p53 stably expressing del p53. 84 Figure 3-13. MCF-7 /del p53 acquiring resistance to doxorubicin. 86 Figure 3-14. del p53-mediated P-gp function is associated with MDR-1 promoter activation and NF-κB expression. 89 Figure 3-15. del p53 is involved in EMT properties. 92 Figure 3-16. MCF-7/del p53 cells express cancer stem cell-like properties. 95 Table 4-1. Expression of mutidrug resistance-related genes in the series of MCF-7/ADR-n cell lines. 113 Figure 4-1. Up/down regulation of multidrug resistance-related genes in the time line of MCF-7/ADR-1024 development. 114 Figure 4-2. Two models illustrate development of doxorubicin resistance. 115 References 116 Appendices 129 Supplementary Table S1. Primer sequences for RT-PCR 130 Supplementary Table S2. Drug-resistance-related genes screened in this study 134 | |
| dc.language.iso | en | |
| dc.subject | P-糖蛋白 | zh_TW |
| dc.subject | 上皮-間葉轉化 | zh_TW |
| dc.subject | 突變型p53基因 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | 磷脂?肌醇3激? | zh_TW |
| dc.subject | 細胞核因子B | zh_TW |
| dc.subject | 癌幹細胞特徵 | zh_TW |
| dc.subject | 艾黴素 | zh_TW |
| dc.subject | Doxorubicin | en |
| dc.subject | Cancer stem cell-like cells | en |
| dc.subject | Mutant p53 | en |
| dc.subject | Epithelial-mesenchymal transition | en |
| dc.subject | P-glycoprotein | en |
| dc.subject | Apoptosis | en |
| dc.subject | Breast cancer | en |
| dc.subject | PI3K | en |
| dc.subject | NF- | en |
| dc.title | 乳癌細胞株MCF-7引發多重抗藥性之機轉探討 | zh_TW |
| dc.title | The Mechanisms of Multidrug Resistance Development in the Breast Cancer Cell Line MCF-7 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 駱雨利,許麗卿,楊家榮,張國友 | |
| dc.subject.keyword | 癌幹細胞特徵,突變型p53基因,上皮-間葉轉化,P-糖蛋白,艾黴素,細胞凋亡,細胞核因子B,磷脂?肌醇3激?,乳癌, | zh_TW |
| dc.subject.keyword | Cancer stem cell-like cells,Mutant p53,Epithelial-mesenchymal transition,P-glycoprotein,Doxorubicin,Apoptosis,NF-,PI3K,Breast cancer, | en |
| dc.relation.page | 166 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 藥學專業學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 12.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
