請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52294
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐駿森 | |
dc.contributor.author | Yu-Yung Chang | en |
dc.contributor.author | 張裕勇 | zh_TW |
dc.date.accessioned | 2021-06-15T16:11:13Z | - |
dc.date.available | 2020-08-28 | |
dc.date.copyright | 2015-08-28 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-18 | |
dc.identifier.citation | 1. Vetting, M. W., Magnet, S., Nieves, E., Roderick, S. L., and Blanchard, J. S. (2004) A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones. Chemistry biology 11, 565-573 2. Neuwald, A. F., and Landsman, D. (1997) GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends in biochemical sciences 22, 154-155 3. Engel, C., and Wierenga, R. (1996) The diverse world of coenzyme A binding proteins. Current opinion in structural biology 6, 790-797 4. Dutnall, R. N., Tafrov, S. T., Sternglanz, R., and Ramakrishnan, V. (1998) Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 94, 427-438 5. Wolf, E., Vassilev, A., Makino, Y., Sali, A., Nakatani, Y., and Burley, S. K. (1998) Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell 94, 439-449 6. Lin, R., Allis, C. D., and Elledge, S. J. (1996) PAT1, an evolutionarily conserved acetyltransferase homologue, is required for multiple steps in the cell cycle. Genes to cells : devoted to molecular cellular mechanisms 1, 923-942 7. Mio, T., Yamada-Okabe, T., Arisawa, M., and Yamada-Okabe, H. (1999) Saccharomyces cerevisiae GNA1, an essential gene encoding a novel acetyltransferase involved in UDP-N-acetylglucosamine synthesis. The Journal of biological chemistry 274, 424-429 8. Hickman, A. B., Klein, D. C., and Dyda, F. (1999) Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism. Molecular cell 3, 23-32 9. Tercero, J. C., and Wickner, R. B. (1992) MAK3 encodes an N-acetyltransferase whose modification of the L-A gag NH2 terminus is necessary for virus particle assembly. The Journal of biological chemistry 267, 20277-20281 10. Sternglanz, R., and Schindelin, H. (1999) Structure and mechanism of action of the histone acetyltransferase Gcn5 and similarity to other N-acetyltransferases. Proceedings of the National Academy of Sciences of the United States of America 96, 8807-8808 11. Dyda, F., Klein, D. C., and Hickman, A. B. (2000) GCN5-related N-acetyltransferases: a structural overview. Annual review of biophysics and biomolecular structure 29, 81-103 12. Cain, J. A., Solis, N., and Cordwell, S. J. (2014) Beyond gene expression: the impact of protein post-translational modifications in bacteria. Journal of proteomics 97, 265-286 13. Mischerikow, N., and Heck, A. J. (2011) Targeted large-scale analysis of protein acetylation. Proteomics 11, 571-589 14. Walsh, C. T., Garneau-Tsodikova, S., and Gatto, G. J., Jr. (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angewandte Chemie (International ed. in English) 44, 7342-7372 15. Davidson, V. L. (2007) Protein-derived cofactors. Expanding the scope of post-translational modifications. Biochemistry 46, 5283-5292 16. Kouzarides, T. (2000) Acetylation: a regulatory modification to rival phosphorylation? The EMBO journal 19, 1176-1179 17. Starheim, K. K., Gevaert, K., and Arnesen, T. (2012) Protein N-terminal acetyltransferases: when the start matters. Trends in biochemical sciences 37, 152-161 18. Yuan, H., and Marmorstein, R. (2013) Histone acetyltransferases: Rising ancient counterparts to protein kinases. Biopolymers 99, 98-111 19. Grunstein, M. (1997) Histone acetylation in chromatin structure and transcription. Nature 389, 349-352 20. Sterner, D. E., and Berger, S. L. (2000) Acetylation of histones and transcription-related factors. Microbiology and molecular biology reviews : MMBR 64, 435-459 21. Bannister, A. J., and Kouzarides, T. (2011) Regulation of chromatin by histone modifications. Cell research 21, 381-395 22. McGhee, J. D., and Felsenfeld, G. (1980) Nucleosome structure. Annual review of biochemistry 49, 1115-1156 23. Norton, V. G., Marvin, K. W., Yau, P., and Bradbury, E. M. (1990) Nucleosome linking number change controlled by acetylation of histones H3 and H4. The Journal of biological chemistry 265, 19848-19852 24. Lee, D. Y., Hayes, J. J., Pruss, D., and Wolffe, A. P. (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72, 73-84 25. Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128, 693-705 26. Glozak, M. A., and Seto, E. (2007) Histone deacetylases and cancer. Oncogene 26, 5420-5432 27. Zhang, X., Ye, J., and Hojrup, P. (2009) A proteomics approach to study in vivo protein N(alpha)-modifications. Journal of proteomics 73, 240-251 28. Goetze, S., Qeli, E., Mosimann, C., Staes, A., Gerrits, B., Roschitzki, B., Mohanty, S., Niederer, E. M., Laczko, E., Timmerman, E., Lange, V., Hafen, E., Aebersold, R., Vandekerckhove, J., Basler, K., Ahrens, C. H., Gevaert, K., and Brunner, E. (2009) Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster. PLoS biology 7, e1000236 29. Falb, M., Aivaliotis, M., Garcia-Rizo, C., Bisle, B., Tebbe, A., Klein, C., Konstantinidis, K., Siedler, F., Pfeiffer, F., and Oesterhelt, D. (2006) Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey. Journal of molecular biology 362, 915-924 30. Aivaliotis, M., Gevaert, K., Falb, M., Tebbe, A., Konstantinidis, K., Bisle, B., Klein, C., Martens, L., Staes, A., Timmerman, E., Van Damme, J., Siedler, F., Pfeiffer, F., Vandekerckhove, J., and Oesterhelt, D. (2007) Large-scale identification of N-terminal peptides in the halophilic archaea Halobacterium salinarum and Natronomonas pharaonis. Journal of proteome research 6, 2195-2204 31. Jornvall, H. (1975) Acetylation of Protein N-terminal amino groups structural observations on alpha-amino acetylated proteins. Journal of theoretical biology 55, 1-12 32. Behnia, R., Panic, B., Whyte, J. R., and Munro, S. (2004) Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nature cell biology 6, 405-413 33. Caesar, R., and Blomberg, A. (2004) The stress-induced Tfs1p requires NatB-mediated acetylation to inhibit carboxypeptidase Y and to regulate the protein kinase A pathway. The Journal of biological chemistry 279, 38532-38543 34. Behnia, R., Barr, F. A., Flanagan, J. J., Barlowe, C., and Munro, S. (2007) The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic. The Journal of cell biology 176, 255-261 35. Hwang, C. S., Shemorry, A., and Varshavsky, A. (2010) N-terminal acetylation of cellular proteins creates specific degradation signals. Science (New York, N.Y.) 327, 973-977 36. Yi, C. H., Pan, H., Seebacher, J., Jang, I. H., Hyberts, S. G., Heffron, G. J., Vander Heiden, M. G., Yang, R., Li, F., Locasale, J. W., Sharfi, H., Zhai, B., Rodriguez-Mias, R., Luithardt, H., Cantley, L. C., Daley, G. Q., Asara, J. M., Gygi, S. P., Wagner, G., Liu, C. F., and Yuan, J. (2011) Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 146, 607-620 37. Sun, M., Liu, J., Qi, J., Tefsen, B., Shi, Y., Yan, J., and Gao, G. F. (2014) Nalpha-terminal acetylation for T cell recognition: molecular basis of MHC class I-restricted nalpha-acetylpeptide presentation. Journal of immunology (Baltimore, Md. : 1950) 192, 5509-5519 38. Forte, G. M., Pool, M. R., and Stirling, C. J. (2011) N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS biology 9, e1001073 39. Varshavsky, A. (2011) The N-end rule pathway and regulation by proteolysis. Protein science : a publication of the Protein Society 40. Scott, D. C., Monda, J. K., Bennett, E. J., Harper, J. W., and Schulman, B. A. (2011) N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science (New York, N.Y.) 334, 674-678 41. Polevoda, B., and Sherman, F. (2003) N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. Journal of molecular biology 325, 595-622 42. Arnesen, T., Van Damme, P., Polevoda, B., Helsens, K., Evjenth, R., Colaert, N., Varhaug, J. E., Vandekerckhove, J., Lillehaug, J. R., Sherman, F., and Gevaert, K. (2009) Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proceedings of the National Academy of Sciences of the United States of America 106, 8157-8162 43. Starheim, K. K., Gromyko, D., Velde, R., Varhaug, J. E., and Arnesen, T. (2009) Composition and biological significance of the human Nalpha-terminal acetyltransferases. BMC proceedings 3 Suppl 6, S3 44. Park, E. C., and Szostak, J. W. (1992) ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity. The EMBO journal 11, 2087-2093 45. Sugiura, N., Adams, S. M., and Corriveau, R. A. (2003) An evolutionarily conserved N-terminal acetyltransferase complex associated with neuronal development. The Journal of biological chemistry 278, 40113-40120 46. Arnesen, T., Anderson, D., Baldersheim, C., Lanotte, M., Varhaug, J. E., and Lillehaug, J. R. (2005) Identification and characterization of the human ARD1-NATH protein acetyltransferase complex. The Biochemical journal 386, 433-443 47. Arnold, R. J., Polevoda, B., Reilly, J. P., and Sherman, F. (1999) The action of N-terminal acetyltransferases on yeast ribosomal proteins. The Journal of biological chemistry 274, 37035-37040 48. Polevoda, B., Norbeck, J., Takakura, H., Blomberg, A., and Sherman, F. (1999) Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. The EMBO journal 18, 6155-6168 49. Van Damme, P., Evjenth, R., Foyn, H., Demeyer, K., De Bock, P. J., Lillehaug, J. R., Vandekerckhove, J., Arnesen, T., and Gevaert, K. (2011) Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase. Molecular cellular proteomics : MCP 10, M110.004580 50. Van Damme, P., Stove, S. I., Glomnes, N., Gevaert, K., and Arnesen, T. (2014) A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant. Molecular cellular proteomics : MCP 13, 2031-2041 51. Foyn, H., Jones, J. E., Lewallen, D., Narawane, R., Varhaug, J. E., Thompson, P. R., and Arnesen, T. (2013) Design, synthesis, and kinetic characterization of protein N-terminal acetyltransferase inhibitors. ACS chemical biology 8, 1121-1127 52. Liszczak, G., Goldberg, J. M., Foyn, H., Petersson, E. J., Arnesen, T., and Marmorstein, R. (2013) Molecular basis for N-terminal acetylation by the heterodimeric NatA complex. Nature structural molecular biology 20, 1098-1105 53. Starheim, K. K., Arnesen, T., Gromyko, D., Ryningen, A., Varhaug, J. E., and Lillehaug, J. R. (2008) Identification of the human N(alpha)-acetyltransferase complex B (hNatB): a complex important for cell-cycle progression. The Biochemical journal 415, 325-331 54. Ametzazurra, A., Larrea, E., Civeira, M. P., Prieto, J., and Aldabe, R. (2008) Implication of human N-alpha-acetyltransferase 5 in cellular proliferation and carcinogenesis. Oncogene 27, 7296-7306 55. Polevoda, B., Cardillo, T. S., Doyle, T. C., Bedi, G. S., and Sherman, F. (2003) Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal acetyltransferase and of actin and tropomyosin. The Journal of biological chemistry 278, 30686-30697 56. Starheim, K. K., Gromyko, D., Evjenth, R., Ryningen, A., Varhaug, J. E., Lillehaug, J. R., and Arnesen, T. (2009) Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization. Molecular and cellular biology 29, 3569-3581 57. Polevoda, B., and Sherman, F. (2001) NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p. The Journal of biological chemistry 276, 20154-20159 58. Hole, K., Van Damme, P., Dalva, M., Aksnes, H., Glomnes, N., Varhaug, J. E., Lillehaug, J. R., Gevaert, K., and Arnesen, T. (2011) The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PloS one 6, e24713 59. Song, O. K., Wang, X., Waterborg, J. H., and Sternglanz, R. (2003) An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. The Journal of biological chemistry 278, 38109-38112 60. Polevoda, B., Hoskins, J., and Sherman, F. (2009) Properties of Nat4, an N(alpha)-acetyltransferase of Saccharomyces cerevisiae that modifies N termini of histones H2A and H4. Molecular and cellular biology 29, 2913-2924 61. Gautschi, M., Just, S., Mun, A., Ross, S., Rucknagel, P., Dubaquie, Y., Ehrenhofer-Murray, A., and Rospert, S. (2003) The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Molecular and cellular biology 23, 7403-7414 62. Arnesen, T., Anderson, D., Torsvik, J., Halseth, H. B., Varhaug, J. E., and Lillehaug, J. R. (2006) Cloning and characterization of hNAT5/hSAN: an evolutionarily conserved component of the NatA protein N-alpha-acetyltransferase complex. Gene 371, 291-295 63. Evjenth, R., Hole, K., Karlsen, O. A., Ziegler, M., Arnesen, T., and Lillehaug, J. R. (2009) Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity. The Journal of biological chemistry 284, 31122-31129 64. Liszczak, G., Arnesen, T., and Marmorstein, R. (2011) Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation. The Journal of biological chemistry 286, 37002-37010 65. Van Damme, P., Hole, K., Pimenta-Marques, A., Helsens, K., Vandekerckhove, J., Martinho, R. G., Gevaert, K., and Arnesen, T. (2011) NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS genetics 7, e1002169 66. Mullen, J. R., Kayne, P. S., Moerschell, R. P., Tsunasawa, S., Gribskov, M., Colavito-Shepanski, M., Grunstein, M., Sherman, F., and Sternglanz, R. (1989) Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. The EMBO journal 8, 2067-2075 67. Polevoda, B., and Sherman, F. (2000) Nalpha -terminal acetylation of eukaryotic proteins. The Journal of biological chemistry 275, 36479-36482 68. Soppa, J. (2010) Protein acetylation in archaea, bacteria, and eukaryotes. Archaea (Vancouver, B.C.) 2010 69. Mackay, D. T., Botting, C. H., Taylor, G. L., and White, M. F. (2007) An acetylase with relaxed specificity catalyses protein N-terminal acetylation in Sulfolobus solfataricus. Molecular microbiology 64, 1540-1548 70. Bell, S. D., Botting, C. H., Wardleworth, B. N., Jackson, S. P., and White, M. F. (2002) The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science (New York, N.Y.) 296, 148-151 71. Zillig, W., Stetter, K., Wunderl, S., Schulz, W., Priess, H., and Scholz, I. (1980) The Sulfolobus-“Caldariella” group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Archives of Microbiology 125, 259-269 72. She, Q., Singh, R. K., Confalonieri, F., Zivanovic, Y., Allard, G., Awayez, M. J., Chan-Weiher, C. C., Clausen, I. G., Curtis, B. A., De Moors, A., Erauso, G., Fletcher, C., Gordon, P. M., Heikamp-de Jong, I., Jeffries, A. C., Kozera, C. J., Medina, N., Peng, X., Thi-Ngoc, H. P., Redder, P., Schenk, M. E., Theriault, C., Tolstrup, N., Charlebois, R. L., Doolittle, W. F., Duguet, M., Gaasterland, T., Garrett, R. A., Ragan, M. A., Sensen, C. W., and Van der Oost, J. (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proceedings of the National Academy of Sciences of the United States of America 98, 7835-7840 73. Schönheit, P., and Schäfer, T. (1995) Metabolism of hyperthermophiles. World Journal of Microbiology and Biotechnology 11, 26-57 74. Moll, R., and Schäfer, G. (1988) Chemiosmotic H+ cycling across the plasma membrane of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Letters 232, 359-363 75. Charlebois, R. L., Gaasterland, T., Ragan, M. A., Doolittle, W. F., and Sensen, C. W. (1996) The Sulfolobus solfataricus P2 genome project. FEBS Lett 389, 88-91 76. Schonheit, P., and Schafer, T. (1995) Metabolism of hyperthermophiles. World journal of microbiology biotechnology 11, 26-57 77. Xue, H., Guo, R., Wen, Y., Liu, D., and Huang, L. (2000) An abundant DNA binding protein from the hyperthermophilic archaeon Sulfolobus shibatae affects DNA supercoiling in a temperature-dependent fashion. Journal of bacteriology 182, 3929-3933 78. Wardleworth, B. N., Russell, R. J., Bell, S. D., Taylor, G. L., and White, M. F. (2002) Structure of Alba: an archaeal chromatin protein modulated by acetylation. The EMBO journal 21, 4654-4662 79. Lurz, R., Grote, M., Dijk, J., Reinhardt, R., and Dobrinski, B. (1986) Electron microscopic study of DNA complexes with proteins from the Archaebacterium Sulfolobus acidocaldarius. The EMBO journal 5, 3715-3721 80. Chang, Y. Y., and Hsu, C. H. (2015) Structural basis for substrate-specific acetylation of Nalpha-acetyltransferase Ard1 from Sulfolobus solfataricus. Scientific reports 5, 8673 81. Vogt, G., and Argos, P. (1997) Protein thermal stability: hydrogen bonds or internal packing? Fold Des 2, S40-46 82. Vogt, G., Woell, S., and Argos, P. (1997) Protein thermal stability, hydrogen bonds, and ion pairs. Journal of molecular biology 269, 631-643 83. Haney, P., Konisky, J., Koretke, K. K., Luthey-Schulten, Z., and Wolynes, P. G. (1997) Structural basis for thermostability and identification of potential active site residues for adenylate kinases from the archaeal genus Methanococcus. Proteins 28, 117-130 84. Yip, K. S., Britton, K. L., Stillman, T. J., Lebbink, J., de Vos, W. M., Robb, F. T., Vetriani, C., Maeder, D., and Rice, D. W. (1998) Insights into the molecular basis of thermal stability from the analysis of ion-pair networks in the glutamate dehydrogenase family. Eur J Biochem 255, 336-346 85. Elcock, A. H. (1998) The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. Journal of molecular biology 284, 489-502 86. Kumar, S., Ma, B., Tsai, C. J., and Nussinov, R. (2000) Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers. Proteins 38, 368-383 87. Russell, R. J., Ferguson, J. M., Hough, D. W., Danson, M. J., and Taylor, G. L. (1997) The crystal structure of citrate synthase from the hyperthermophilic archaeon pyrococcus furiosus at 1.9 A resolution. Biochemistry 36, 9983-9994 88. Zuber, H. (1988) Temperature adaptation of lactate dehydrogenase. Structural, functional and genetic aspects. Biophys Chem 29, 171-179 89. Russell, R. J., Gerike, U., Danson, M. J., Hough, D. W., and Taylor, G. L. (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6, 351-361 90. Watanabe, K., Hata, Y., Kizaki, H., Katsube, Y., and Suzuki, Y. (1997) The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization. Journal of molecular biology 269, 142-153 91. Bogin, O., Peretz, M., Hacham, Y., Korkhin, Y., Frolow, F., Kalb, A. J., and Burstein, Y. (1998) Enhanced thermal stability of Clostridium beijerinckii alcohol dehydrogenase after strategic substitution of amino acid residues with prolines from the homologous thermophilic Thermoanaerobacter brockii alcohol dehydrogenase. Protein science : a publication of the Protein Society 7, 1156-1163 92. Berndsen, C. E., and Denu, J. M. (2008) Catalysis and substrate selection by histone/protein lysine acetyltransferases. Current opinion in structural biology 18, 682-689 93. Vetting, M. W., Bareich, D. C., Yu, M., and Blanchard, J. S. (2008) Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for N(alpha)-acetylation of ribosomal protein S18. Protein science : a publication of the Protein Society 17, 1781-1790 94. Vetting, M. W., de Carvalho, L. P., Roderick, S. L., and Blanchard, J. S. (2005) A novel dimeric structure of the RimL Nalpha-acetyltransferase from Salmonella typhimurium. The Journal of biological chemistry 280, 22108-22114 95. Crockford, D., Turjman, N., Allan, C., and Angel, J. (2010) Thymosin beta4: structure, function, and biological properties supporting current and future clinical applications. Annals of the New York Academy of Sciences 1194, 179-189 96. Hannappel, E., and Huff, T. (2003) The thymosins. Prothymosin alpha, parathymosin, and beta-thymosins: structure and function. Vitamins and hormones 66, 257-296 97. Hannappel, E. (2007) beta-Thymosins. Annals of the New York Academy of Sciences 1112, 21-37 98. Goldstein, A. L., Hannappel, E., and Kleinman, H. K. (2005) Thymosin beta4: actin-sequestering protein moonlights to repair injured tissues. Trends in molecular medicine 11, 421-429 99. Gomez-Marquez, J. (2007) Function of prothymosin alpha in chromatin decondensation and expression of thymosin beta-4 linked to angiogenesis and synaptic plasticity. Annals of the New York Academy of Sciences 1112, 201-209 100. Ren, Y., Yao, X., Dai, H., Li, S., Fang, H., Chen, H., and Zhou, C. (2011) Production of Nalpha-acetylated thymosin alpha1 in Escherichia coli. Microbial cell factories 10, 26 101. Li, X., Zheng, L., Peng, F., Qi, C., Zhang, X., Zhou, A., Liu, Z., and Wu, S. (2007) Recombinant thymosin beta 4 can promote full-thickness cutaneous wound healing. Protein expression and purification 56, 229-236 102. Sai., C., HongMei., D., Xu., S., DanDan., Z., JinZhou., H., XinXi., S., ShuLong., L., HongQing., F., HuiPeng., C., DaPing., X., and ChangLin., Z. (2011) Biosynthesis of Nα-acetylated Thymosin β4 by Co-expressing an Archaeal Acetylase Integrated in Chromosome of Escherichia coli. Scientia Sinica Vitae 41, 1008-1015 103. Sai., C., HongMei., D., Xu., S., DanDan., Z., JinZhou., H., XinXi., S., ShuLong., L., HongQing., F., HuiPeng., C., DaPing., X., and ChangLin., Z. (2011) Biosynthesis of Nα-acetylated Thymosin β4 by Co-expressing an Archaeal Acetylase Integrated in Chromosome of Escherichia coli. Scientia Sinica Vitae 41, 1008-1015 104. Otwinowski, Z., and Minor, W. (1997) [20] Processing of X-ray diffraction data collected in oscillation mode. in Methods in Enzymology (Charles W. Carter, Jr. ed.), Academic Press. pp 307-326 105. Long, F., Vagin, A. A., Young, P., and Murshudov, G. N. (2008) BALBES: a molecular-replacement pipeline. Acta crystallographica. Section D, Biological crystallography 64, 125-132 106. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta crystallographica. Section D, Biological crystallography 53, 240-255 107. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta crystallographica. Section D, Biological crystallography 66, 213-221 108. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. Acta crystallographica. Section D, Biological crystallography 66, 486-501 109. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26, 283-291 110. Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta crystallographica. Section D, Biological crystallography 66, 12-21 111. Lin, H. J., Lien, Y. C., and Hsu, C. H. (2010) A high-throughput colorimetric assay to characterize the enzyme kinetic and cellular activity of spermidine/spermine N1-acetyltransferase 1. Analytical biochemistry 407, 226-232 112. Hsu, C. H., Pan, Y. R., Liao, Y. D., Wu, S. H., and Chen, C. (2010) NMR and biophysical elucidation of structural effects on extra N-terminal methionine residue of recombinant amphibian RNases from Rana catesbeiana. Journal of biochemistry 148, 209-215 113. Greenfield, N. J. (2006) Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nature protocols 1, 2733-2741 114. Vetting, M. W., LP, S. d. C., Yu, M., Hegde, S. S., Magnet, S., Roderick, S. L., and Blanchard, J. S. (2005) Structure and functions of the GNAT superfamily of acetyltransferases. Archives of biochemistry and biophysics 433, 212-226 115. Holm, L., and Rosenstrom, P. (2010) Dali server: conservation mapping in 3D. Nucleic acids research 38, W545-549 116. Filippova, E. V., Shuvalova, L., Minasov, G., Kiryukhina, O., Zhang, Y., Clancy, S., Radhakrishnan, I., Joachimiak, A., and Anderson, W. F. (2011) Crystal structure of the novel PaiA N-acetyltransferase from Thermoplasma acidophilum involved in the negative control of sporulation and degradative enzyme production. Proteins 79, 2566-2577 117. Chen, X., Zaro, J. L., and Shen, W. C. (2013) Fusion protein linkers: property, design and functionality. Advanced drug delivery reviews 65, 1357-1369 118. Hickman, A. B., Namboodiri, M. A., Klein, D. C., and Dyda, F. (1999) The structural basis of ordered substrate binding by serotonin N-acetyltransferase: enzyme complex at 1.8 A resolution with a bisubstrate analog. Cell 97, 361-369 119. Peneff, C., Mengin-Lecreulx, D., and Bourne, Y. (2001) The crystal structures of Apo and complexed Saccharomyces cerevisiae GNA1 shed light on the catalytic mechanism of an amino-sugar N-acetyltransferase. The Journal of biological chemistry 276, 16328-16334 120. Angus-Hill, M. L., Dutnall, R. N., Tafrov, S. T., Sternglanz, R., and Ramakrishnan, V. (1999) Crystal structure of the histone acetyltransferase Hpa2: A tetrameric member of the Gcn5-related N-acetyltransferase superfamily. Journal of molecular biology 294, 1311-1325 121. Rojas, J. R., Trievel, R. C., Zhou, J., Mo, Y., Li, X., Berger, S. L., Allis, C. D., and Marmorstein, R. (1999) Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature 401, 93-98 122. Bewley, M. C., Graziano, V., Jiang, J., Matz, E., Studier, F. W., Pegg, A. E., Coleman, C. S., and Flanagan, J. M. (2006) Structures of wild-type and mutant human spermidine/spermine N1-acetyltransferase, a potential therapeutic drug target. Proceedings of the National Academy of Sciences of the United States of America 103, 2063-2068 123. Cheng, K. C., Liao, J. N., and Lyu, P. C. (2012) Crystal structure of the dopamine N-acetyltransferase-acetyl-CoA complex provides insights into the catalytic mechanism. The Biochemical journal 446, 395-404 124. Scheibner, K. A., De Angelis, J., Burley, S. K., and Cole, P. A. (2002) Investigation of the roles of catalytic residues in serotonin N-acetyltransferase. The Journal of biological chemistry 277, 18118-18126 125. Clements, A., Rojas, J. R., Trievel, R. C., Wang, L., Berger, S. L., and Marmorstein, R. (1999) Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A. The EMBO journal 18, 3521-3532 126. Liu, X., Wang, L., Zhao, K., Thompson, P. R., Hwang, Y., Marmorstein, R., and Cole, P. A. (2008) The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451, 846-850 127. Hiller, R., Zhou, Z. H., Adams, M. W., and Englander, S. W. (1997) Stability and dynamics in a hyperthermophilic protein with melting temperature close to 200 degrees C. Proceedings of the National Academy of Sciences of the United States of America 94, 11329-11332 128. Varley, P. G., and Pain, R. H. (1991) Relation between stability, dynamics and enzyme activity in 3-phosphoglycerate kinases from yeast and Thermus thermophilus. Journal of molecular biology 220, 531-538 129. Hernandez, G., Jenney, F. E., Jr., Adams, M. W., and LeMaster, D. M. (2000) Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature. Proceedings of the National Academy of Sciences of the United States of America 97, 3166-3170 130. D'Auria, S., Moracci, M., Febbraio, F., Tanfani, F., Nucci, R., and Rossi, M. (1998) Structure-function studies on beta-glycosidase from Sulfolobus solfataricus. Molecular bases of thermostability. Biochimie 80, 949-957 131. D'Auria, S., Nucci, R., Rossi, M., Bertoli, E., Tanfani, F., Gryczynski, I., Malak, H., and Lakowicz, J. R. (1999) beta-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus: structure and activity in the presence of alcohols. Journal of biochemistry 126, 545-552 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52294 | - |
dc.description.abstract | 蛋白質 N 端乙醯基轉移酶 (Nα-acetyltransferases, Nats) 在細胞中廣泛的影響許多重要的生物功能。近年來研究報導,Nats 也被應用在的臨床藥物的大量製備,例如N端乙醯化thymosin α1 and thymosin β4,使其轉換成活性態並且於臨床上使用。依據受質前兩個胺基酸組成的不同,使Nats 蛋白質結構有著多元特性的呈現。然而,至今對於不同 Nats 與及受質專一性的選擇的辨認機制仍然沒有明確的了解。所以想探討 NatA 與其他Nats 在受質的序列專一性,其辨認機制上的差別。SsArd1 源自於嗜熱性古細菌火山口硫化葉菌(Sulfolobus solfataricus),屬於 NatA 的蛋白質家族,催化特性偏好以絲胺酸 (serine)為起始的蛋白質受質,並且在 65oC 下具有最佳的酵素催化活性。利用蛋白質晶體學及繞射實驗得到解析度為 1.84 Å的 SsArd1 與受質胜肽複合體立體結構。與人類NatE 蛋白家族的 Naa50p 結構比較,發現此兩酵素座落於受質胜肽的第一個胺基酸附近的殘基(Glu35, SsArd1; Val29, Naa50p),其特性有著非常顯著的不同。將 Glu35突變後,酵素活性實驗證實了,SsArd1 受質專一性則替換成 NatE 的受質特性。 另外,分析不同空間群(space group)的SsArd1晶體結構,在β3與β4 之間的 loop 區域呈現多個構形的狀態,與常溫的Nat相比,此SsArd1上的loop長度也較為延伸,並且此 loop 上的兩個絲胺酸與在此區域的其他胺基酸形成複雜的氫鍵網路(hydrogen bond networks),所以想探討嗜熱性 Nat 具有長度延伸的loop 區域(β3與β4 之間)在熱穩定性上的功能與角色。熱穩定性實驗指出,兩個serine的單一定點突變和雙定點突變,與野生型(wild type)相比分別下降了3度與7度,此結果也與其酵素活性的降低有所關連。 再者,探討催化機制的部份,結構分析指出SsArd1上的 His88與Glu127 與其他已知結構 Nats 參與催化的胺基酸,在空間當中有非常相似的位置。另外,在結構當中,His88,Glu127 與受質之間存在一個穩定地水分子,此水分子參與受質第一個胺基酸上胺基的去質子化,並且協助乙醯化反應的完成。但此水分子如何在高溫環境下可以穩定存在與催化位中目前尚未清楚的了解。定點突變與酵素動力學實驗指出,單定點突變與雙定點突變,並不會影響期受質親和力 (Km),但卻讓酵素轉換能力(kcat)有不同程度的下降,甚至完全失去。然而,將His88,Glu127 胺基酸互換,卻可以讓 kcat 能力回復至與 wild type 相同。分析 Nats 參與催化胺基酸指出,這些催化的胺基酸並非為保守序列。結構分析指出 H88E/E127H 的兩胺基酸的側鏈與 wild type 相同,藉由 hydrogen bond 和水分子鍵結與穩定。綜合以上結果,蛋白質結晶學結合了光譜學與生化特性的研究,不僅詳細的解釋受質選擇專一性之辨認,並且也闡述古細菌中 SsArd1 熱穩定性與其酵素催化之機制。 | zh_TW |
dc.description.abstract | Nα-acetyltransferases (Nats) possess a wide range of important biological functions. In recent studies, Nats also were applied to produce clinical drugs in large-scale including acetylation of thymosin α1 and thymosin β4 at N-terminus for maturation. The structure of Nats can vary according to the first two residues of their substrate. However, the mechanisms of substrate recognition of Nats are elusive. The Aim is identification of the mechanisms that NatA are able to preferentially acetylate sequence-specific substrates over other substrates from different Nats. SsArd1 from thermophilic Achaea Sulfolobus solfataricus, belonging to the NatA family with preference of Ser residues, exhibits the greatest activity of acetylation at optimal temperature of 65oC. Crystal structure of SsArd1 in complex with the peptide substrate was determined to 1.84 Å. Comparison of the structure of SsArd1 with human Naa50p (NatE) showed significant differences in key residues of enzymes near the first amino-acid position of the substrate peptide (Glu35 for SsArd1 and Val29 for Naa50p). The biochemical data revealed that the substrate specificity of SsArd1 could be altered the substrate of NatE by a range of Glu35 mutants. Additionally, the crystal structures of SsArd1 in different space groups indicated the loop region between β3 and β4 existing multiple conformations and extended loop compared with mesophilic Nats. Moreover, the loop of SsArd1 formed a hydrogen bond network via two Ser residues. We elucidate the functions of extended loop between β3 and β4 from thermophilic Nat. Comparing with wild-type SsArd1, the variants substituted with Ala (S75A, S82A and S75/S82A) and with loop deletion had almost identical folds. Strikingly, two single-point mutants showed ~3oC decrease in melting temperature, while two other variants showed even ~7oC decrease in melting temperature, which correlated to the seriously reducing enzymatic activity. Moreover, His88 and Glu127 of SsArd1 are located in very similar position of catalytic residues from structure-known Nats. In structural analysis, an ordered water was found between His88, Glu127 and substrate and performed deprotonation of the amino group from the first residue of protein substrate, facilitating the acetylation reaction. To understand why the ordered water molecule exists stably in the active site at high temperature, structure-based mutagenesis and kinetic studies were performed to indicated that substitution of His88 and Glu127 with Ala (H88A, E127A and H88/E127A) was loss of turnover rate although the binding ability has negligible effect on Km. However, the turnover rate could be rescued to wild-type level while the catalytic residues were exchanged each other. Sequence analysis indicates the catalytic residues from Nats are not conserved. The crystal structures of H88E/E127H mutated SsArd1 showed the side-chains of the two residues retain the hydrogen bonds with water. Taken together, the crystallographic studies combining spectroscopic and biochemical characterizations provide a detailed molecular basis for not only understanding the substrate-specific recognition, but also elucidating the mechanism of heat resistance and catalysis of the ancient archaeal SsArd1. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:11:13Z (GMT). No. of bitstreams: 1 ntu-104-D98623001-1.pdf: 45274046 bytes, checksum: e8d3666c9933704b9ab28ebe7683034b (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 作者經歷 i 謝誌 ii 中文摘要 iii Abstract v Contents vii Figures of contents ix Tables of contents xi CHAPTER 1 Introduction 1 1.1 The GNAT family 2 1.2 Protein acetylation 3 1.3 Functions of Nα-acetylation 4 1.4 Substrate specificity of Nats 5 1.5 Protein thermostability from mesophiles and thermophilies 10 1.6 Catalytic mechanism of Nats 11 1.7 Application of Nat in clinical drugs 13 1.8 Aims of this study 13 CHAPTER 2 Materials and Methods 15 2.1 Protein expression and purification 16 2.2 Crystallization and data collection 17 2.3 Structure determination and refinement 18 2.4 Acetyltransferase activity assay 19 2.5 Circular dichroism (CD) spectroscopy 20 2.6 Temperature and chemical induced denaturation 21 2.7 Isothermal titration calorimetry (ITC) 22 CHAPTER 3 Results 24 3.1 Overall structures of SsArd1 complexes 25 3.2 Coenzyme A (CoA) binding site on SsArd1 26 3.3 Substrate specificity of SsArd1 28 3.4 Loop between β3 and β4 presented multiple conformation and high degree of flexibility in various crystal forms 30 3.5 Flexible Loop from SsArd1 presented extended length than mesophilic Nats 31 3.6 Extended loop region contributed thermostability 32 3.7 Loop-deleted SsArd1 reduced the activity at high temperature 33 3.8 Loop has no participation in interaction with peptide and AcCoA 34 3.9 His88 and Glu127 likely play catalytic roles through an ordered water molecule 36 3.10 Structural analysis of catalytic residues mutants 37 3.11 Enzyme characteristic from room temperature to high temperature of SsArd1 39 CHAPTER 4 Discussion 41 References 87 Publication list 107 Conference posters 109 | |
dc.language.iso | en | |
dc.title | 嗜熱性乙醯基轉移酶 SsArd1 之受質專一性辨認與催化機制及其抗熱特性探討 | zh_TW |
dc.title | Insight into substrate-specific recognition, catalytic mechanism and heat resistance of thermophilic Nα-acetyltransferase, SsArd1 | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 吳世雄,陳金榜,梁博煌,詹迺立,林翰佳 | |
dc.subject.keyword | N端乙醯基轉移?,受質專一性,催化機制,熱穩定性, | zh_TW |
dc.subject.keyword | Nα-acetyltransferase,substrate specificity,catalytic mechanism,thermostability, | en |
dc.relation.page | 112 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 44.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。