請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52287完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林法勤(Far-Ching Lin) | |
| dc.contributor.author | Cheng-Chi Kao | en |
| dc.contributor.author | 高振齊 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:11:04Z | - |
| dc.date.available | 2020-09-01 | |
| dc.date.copyright | 2020-08-25 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-10 | |
| dc.identifier.citation | 王松永(1993)木材之燃燒熱值與其影響因子探討。林產工業12:35-45。 王啓佑(2012)草本生質物與柳杉-生物污泥顆粒燃料製粒性質研究。國立臺灣大學碩士論文。 行政院農業委員會(2018)綠色國民所得帳農業固體廢棄物歷年表。農業統計資料查詢。檢自https://agrstat.coa.gov.tw/sdweb/public/common/Download.aspx 行政院農業委員會畜牧處(2018)法規鬆綁,加速及擴大農業廢棄物資源化再利用。檢自https://www.coa.gov.tw/theme_data.php?theme=news sub_theme=agri id=7244 行政院環境保護署環境檢驗所(2003)NIEA R205.01C 廢棄物中灰分、可燃分測定方法。 行政院環境保護署環境檢驗所(2004)NIEA R214.01C 廢棄物熱值檢測方法-燃燒彈熱卡計法。 吳耿東、李宏台(2007)全球生質能源應用現況與未來展望。林業研究專訊14:5-9。 吳雅芳、陳昇寬、鄭安秀(2017)設施栽培番茄病蟲害管理。2016設施蔬果病蟲害管理暨安全生產研討會論文集:98-109。行政院農業委員會農業試驗所。 林法勤(2012)生質顆粒燃料製造手冊。農業推廣諮識+。國立臺灣大學生物資源暨農學院農業推廣委員會。檢自http://ntucae.blog.ntu.edu.tw/2012/11/30/h69/ 林裕仁(2009)生質能源利用新寵兒-木質顆粒。林業研究專訊16:17-19。 林裕仁、潘薇如(2014)國際木質顆粒發展現況。林業研究專訊21:68-72。 邱淑媛、陳金村、林相仁(2016)油茶籽榨油副產物產率、成分分析及抗氧化活性。臺灣農業化學與食品科學54:37-44。 洪昆源、潘富俊(2006)森林下層植物之相剋作用與生物量關係及其在林業上之應用。臺灣林業,32(3):64-67。行政院農業委員會林務局。 陳載永、陳合進(2002)生質能之利用與經濟性。農政與農情117。行政院農業委員會。檢自https://www.coa.gov.tw/ws.php?id=4080 黃巧雯、楊宏仁、林靜宜、許淑麗、賴素玉、倪蕙芳(2016)甘藷基腐病菌 phomopsis destruens生理特性及防治技術研究。台灣農業研究:45-53。 盛奎川、吳杰 (2004)生物質成型燃料的物理品質和成型機理的研究進展。農業工程學報20:242-245。 楊之遠、張榮豐、鄒倫(2012)環境及能資源未來發展趨勢及策略分析。財團法人中技社。 經濟部標準檢驗局(2005)CNS 452木材含水率試驗法。 廖震元(2016)友善環境與畜產經營。農政與農情294。行政院農業委員會。檢自https://www.coa.gov.tw/ws.php?id=2505841 ASAE S269.4 (1991) Cubes, pellets, and crumbles-definitions and methods for determining density, durability, and moisture content. American Society of Agricultural and Biological Engineers. Benton, J. (2017) Grain Silo Collapses Causing Combustible Dust Explosion In Indiana. EHS Safety News America. Retrieved from https://ehssafetynewsamerica.com/2017/08/01/grain-silo-collapses-causing-combustible-dust-explosion-in-indiana-combustibledust/ Bergman, P. C., A. Boersma, R. Zwart and J. Kiel (2005) Torrefaction for biomass co-firing in existing coal-fired power stations. Energy Research Centre of the Netherlands. CEN/TS 15210-1 (2005) Solid biofuels - Methods for the determination of mechanical durability of pellets and briquettes - Part 1: Pellets. European Committee for Standardization. Gauthier, S., H. Grass, M. Lory, T. Krämer, M. Thali and C. Bartsch (2012) Lethal carbon monoxide poisoning in wood pellet storerooms-two cases and a review of the literature. The Annals of Occupational Hygiene 56: 755-763. Holm, J. K., U. B. Henriksen, J. E. Hustad and L. H. Sorensen (2006) Toward an understanding of controlling parameters in softwood and hardwood pellets production. Energy Fuels 20: 2686-2694. Nachenius, R., F. Ronsse, R. Venderbosch and W. Prins (2013). Biomass pyrolysis. Advances in Chemical Engineering, Elsevier. 42: 75-139. Organization of the Petroleum Exporting Countries. OPEC Basket Price (2020). Retrieved from https://www.opec.org/opec_web/en/data_graphs/40.htm Pellet Fuels Institute (2018) Pellet Fuels Institute (PFI) Standard Specifications for Residential/Commercial Densified Fuel. 11 pp. Richard, H. L. (1970) Wood pellet fuel and the residential market. Andritz, Inc. 9 pp. Röder, M., C. Whittaker and P. Thornley (2015) How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. Biomass and Bioenergy 79: 50-63. Svedberg, U., J. Samuelsson and S. Melin (2008) Hazardous off-gassing of carbon monoxide and oxygen depletion during ocean transportation of wood pellets. The Annals of Occupational Hygiene 52: 259-266. Yazdanpanah, F., S. Sokhansanj, J. Lim, A. Lau, X. Bi, P. Y. Lam and S. Melin (2014) Potential for flammability of gases emitted from stored wood pellets. The Canadian Journal of Chemical Engineering 92: 603-609. Yildiz, H. N., Aysan, Y. E. Ş. İ. M., Sahin, F., Cinar, O. (2004). Potential inoculum sources of tomato stem and pith necrosis caused by Pseudomonas viridiflava in the Eastern Mediterranean Region of Turkey. Journal of Plant Diseases and Protection, 380-387. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52287 | - |
| dc.description.abstract | 本次研究以地瓜(Ipomoea batatas)藤蔓、番茄(Solanum lycopersicum)莖葉殘體、油茶(Camellia oleifera)殼作為原料,柳杉(Cryptomeria japonica)木粉為混合配料進行造粒,藉由比較造粒前、後在熱能、燃燒性質上表現的差異進行評估,以解決國內此類無法堆肥,且對環境具有危害性的環境不友善農業廢棄物之處置問題。 地瓜藤蔓、番茄莖葉殘體為草本生質物,灰分較高、熱值較低。而油茶殼與柳杉木粉則為木本生質物,灰分較低,熱值較高。實驗中,除了單獨使用地瓜藤蔓、番茄莖葉殘體、油茶殼造粒(P10、T10、O10),也分別與柳杉木粉以80:20、60:40、40:60、20:80比例混合、調高含水率至30%後造粒,並測量所有顆粒的含水率、熱值、灰分、顆粒堅牢度等基本性質。 從結果可發現,來自油料木本植物的油茶殼,不但具有與柳杉木粉接近的熱值(4,438 cal/g),也有極低的灰分(0.451%),但單獨造粒時,因材料本身真密度高(1.4 g/cm3),投入造粒機時較不易被擠壓成型,絕大多數以粉末直接掉出,經過提高材料初始含水率至30%後,方可順利造粒,且有達到PFI顆粒燃料標準中Premium等級之實力。而為統一比較基準,也將其它單獨造粒與混料配方的材料初始含水率調高至與前者相等,卻同時提高了卡料的發生次數與機會,降低了顆粒成品的顆粒堅牢度、熱值等性質。 草本生質物的地瓜藤蔓、番茄莖葉殘體,雖然單獨造粒後的表現,相比原始材料差異不大,但隨著混入的柳杉木粉比例愈高,各項性質也隨之上升,藉由計算、比對其在不同比例的熱值與灰分之迴歸線後,得出如果本次實驗顆粒如果要達到2018年PFI顆粒燃料標準中Utility級或Standard級,番茄莖葉殘體需搭配至少75%、92%的柳杉木粉,地瓜藤蔓則需搭配至少65%、91%的柳杉木粉。 本次研究可確定這3種環境不友善農業廢棄物的造粒可行性,唯未來仍需要注意材料初始含水率的調整,避免造粒過程中卡料、塞模等現象發生的機會,方可進一步提升產出顆粒的熱值與PDI,增加其應用價植。 | zh_TW |
| dc.description.abstract | In this study, potato (Ipomoea batatas) vines, tomato (Solanum lycopersicum) residual stems and leaves, and shells of camellia’s (Camellia oleifera) seeds were used as raw materials; Japanese Cedar’s (Cryptomeria japonica) wood powder was used as a mixed ingredient for pelletizing. Through evaluating the differences in thermal energy and combustion properties before and after, we want to solve the problem of the environmental unfriendly agricultural waste disposal that is not compostable and harmful to the environment. Potato vines and tomato residual stems and leaves are herbaceous biomass with higher ash content and lower calorific value. Shells of camellia’s seeds and Japanese Cedar’s wood powder are woody biomass with lower ash content and higher calorific value. In this experiment, we not only separately used potato vines, tomato residual stems and leaves, and shells of camellia’s seeds to pelletize (P10, T10, O10), but also mixed them with Japanese Cedar’s wood powder with the ratio: 80:20, 60:40, 40:60, and 20:80 to pelletize with moisture adjustment up to 30%. After pelletizing, we measure the basic properties of pellets such as moisture content, calorific value, ash content and pellet durability index. According to the results, it can be found that shells of camellia’s seeds, which are from oily woody plants, not only have the calorific value that is close to Japanese Cedar’s (4,438 cal/g), but also have very low ash content (0.451%). However, when they pelletize alone, due to their true density are high (1.4 g/cm3), they are not easy to be extruded when throwing into the mill, and most of them are directly dropped out in powder form. After the initial moisture content of them is increased to 30%, they can be successfully pelletize and reach the premium grade in PFI pellet fuel standard. Yet, on the other hand, in order to unify the comparative benchmarks, the initial moisture content of other materials with pelletizing whether in separate or in mixed formula are also increased to 30%. At the same time, the times of occurrence and opportunities of stuck are increased, and the durability and calorific value of the pellets are reduced. After pelletizing, although the performance of potato vines and tomato residual stems and leaves, which both are the herb biomass, are still similar to their original materials, the higher proportion of Japanese Cedar’s wood powder they mixed with, the better the various properties of them display. After calculating and comparing the regression lines of calorific value and ash content in different proportions, we can conclude that if the experimental pellets want to reach the “utility” or “standard” grade in 2018 PFI pellet fuel standard, tomato residual stems and leaves must be blended with at least 75% or 92% of Japanese Cedar’s wood powder; potato vines need to be blended with at least 65% or 91% of Japanese Cedar’s wood powder. After this research, we can confirm the pelletizing feasibility of these 3 kinds of environmental unfriendly agricultural wastes. However, in the future, it is still necessary for us to notice the adjustment of the initial moisture content of the material, so that the risks of stuck or plug will decrease, and the pellets will be able to enhance their properties and utilization value further. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:11:04Z (GMT). No. of bitstreams: 1 U0001-0708202002235800.pdf: 3652654 bytes, checksum: e7c4e59fa405193bf26d84a9a0c8fb97 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 摘要 iii Abstract v 圖目錄 x 表目錄 xiv 第一章 前言 1 1.1國際油價對臺灣能源發展之影響 1 1.2臺灣農業廢棄物現況 2 第二章 文獻回顧 3 2.1環境友善之定義 3 2.2造粒機種類對造粒的影響 4 2.3模具種類對造粒的影響 5 2.4顆粒燃料內含水率對VOCs之影響 6 2.5調控造粒前材料的初始含水率對碳排放之影響 7 2.6生質物焙燒(Torrefaction)中3大主要成分之變化 8 2.7顆粒燃料標準 10 第三章 材料與方法 11 3.1架構與流程 11 3.2試驗材料 12 3.3試驗方法 13 3.3.1造粒 13 3.3.2配料混合與含水率調整 14 3.3.3性質測定 15 3.3.3.1含水率 15 3.3.3.2灰分 15 3.3.3.3熱值 16 3.3.3.4顆粒堅牢度(Pellet Durability Index, PDI) 17 3.3.3.5熱重分析(Thermogravimetric analysis, TGA) 18 3.3.3.6元素分析(Elemental analysis, EA) 19 3.3.3.6.1碳氫氮硫元素分析(CHNS-EA) 19 3.3.3.6.2氧元素分析(O-EA) 19 3.3.3.7真密度(True density)試驗 20 3.3.3.8 顆粒混合比品質試驗 20 第四章 結果與討論 21 4.1造粒過程發生現象之描述 21 4.1.1卡料 21 4.1.2塞模 22 4.1.3 粉塵、VOCs、煙之排放 23 4.2材料初始性質 23 4.3造粒前後含水率比較 24 4.4造粒前後熱值比較 25 4.5不同材料比例混合造粒後之品質試驗 25 4.5.1熱值 25 4.5.2灰分 29 4.5.3堅牢度 33 4.5.4熱重分析 34 4.5.5元素分析 55 第五章 結論 56 參考文獻 57 附錄 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 農業廢棄物 | zh_TW |
| dc.subject | 柳杉 | zh_TW |
| dc.subject | 環境不友善 | zh_TW |
| dc.subject | 生質能 | zh_TW |
| dc.subject | 造粒 | zh_TW |
| dc.subject | 油茶殼 | zh_TW |
| dc.subject | 地瓜藤蔓 | zh_TW |
| dc.subject | 番茄莖葉殘體 | zh_TW |
| dc.subject | Potato vines | en |
| dc.subject | Biomass | en |
| dc.subject | Pellets | en |
| dc.subject | Japanese Cedar’s wood powder | en |
| dc.subject | Shells of camellia’s seeds | en |
| dc.subject | Environmental unfriendly | en |
| dc.subject | Agricultural waste | en |
| dc.subject | Tomato residual stems and leaves | en |
| dc.title | 環境不友善農業廢棄物造粒可行性與基本性質探討 | zh_TW |
| dc.title | Study on Basic Characteristic and Pelletizing Feasibility on Environmental Unfriendly Agricultural Waste | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張慶源(Ching-Yuan Chang),陳奕宏(Yi-Hung Chen) | |
| dc.subject.keyword | 環境不友善,農業廢棄物,番茄莖葉殘體,地瓜藤蔓,油茶殼,柳杉,造粒,生質能, | zh_TW |
| dc.subject.keyword | Environmental unfriendly,Agricultural waste,Potato vines,Tomato residual stems and leaves,Shells of camellia’s seeds,Japanese Cedar’s wood powder,Pellets,Biomass, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU202002596 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0708202002235800.pdf 未授權公開取用 | 3.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
